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SUMMARY

Integrons are versatile gene acquisition systems commonly found
in bacterial genomes. They are ancient elements that are a hot spot
for genomic complexity, generating phenotypic diversity and
shaping adaptive responses. In recent times, they have had a major
role in the acquisition, expression, and dissemination of antibiotic
resistance genes. Assessing the ongoing threats posed by integrons
requires an understanding of their origins and evolutionary his-
tory. This review examines the functions and activities of inte-
grons before the antibiotic era. It shows how antibiotic use se-
lected particular integrons from among the environmental pool of
these elements, such that integrons carrying resistance genes are
now present in the majority of Gram-negative pathogens. Finally,
it examines the potential consequences of widespread pollution
with the novel integrons that have been assembled via the agency
of human antibiotic use and speculates on the potential uses of
integrons as platforms for biotechnology.

INTRODUCTION

Integrons are genetic elements that allow efficient capture and
expression of exogenous genes. They are widely known for their

role in the dissemination of antibiotic resistance, particularly
among Gram-negative bacterial pathogens. However, since their
initial discovery in clinical contexts, it has become apparent that
integrons are a common component of bacterial genomes and
that they have a long evolutionary history. Integrons occur in all
environments, are able to move between species and lineages over

evolutionary time frames, and have access to a vast pool of novel
genes whose functions are largely yet to be determined. Over the
last decade, exploration of integron diversity in natural environ-
ments has shown that they are more than just a curious feature of
antibiotic-resistant pathogens but have a more general and im-
portant role in bacterial adaptation and genome evolution.

This review examines the natural history of integrons. It ex-
plores the activities of integrons in the general environment and
the mechanisms by which they sample and rearrange their stock of
gene cassettes. It shows how clinically relevant integrons arose by
sampling genes from diverse environmental sources, speculates
on the future evolutionary trajectory of integron systems, and ex-
plores the potential use of integrons in biotechnology.

STRUCTURE AND NATURAL HISTORY OF INTEGRONS

Structure of Integrons

All integrons share three essential core features, whose combined
activities capture and subsequently express exogenous genes as
part of gene cassettes (1, 2). The first feature is intI, a gene which
encodes an integron integrase (IntI), a member of the tyrosine
recombinase family (3). The integron integrase protein catalyzes
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recombination between incoming gene cassettes and the second
core feature, an integron-associated recombination site, attI (4).
Once a gene cassette is recombined, it is expressed by the third
core feature, an integron-associated promoter, Pc (Fig. 1) (5, 6).

Integrons acquire new genes as part of gene cassettes (7). These
are simple structures, usually consisting of a single open reading
frame (ORF) bounded by a cassette-associated recombination
site, originally called a 59-base element but now referred to as attC
(8, 9). Circular gene cassettes are integrated by site-specific recom-
bination between attI and attC, a process mediated by the integron
integrase (10) (Fig. 2). This process is reversible, and cassettes can
be excised as free circular DNA elements (11–13). Insertion at the
attI site allows expression of an incoming cassette, driven by the
adjacent Pc promoter (5).

The integron system has two key advantages as a means of
genomic innovation. First, new genetic material is integrated into
the bacterial genome at a specific recombination site (attI) and
thus does not perturb existing genes. Second, the newly integrated
gene is then expressed via the integron promoter (Pc) and there-
fore is instantly ready to be subjected to natural selection. Conse-

quently, in a population of integron-containing cells, each of
which samples different gene cassettes, any newly generated vari-
ants will immediately express genes that might confer advanta-
geous phenotypes.

Evolutionary History of Integrons

Integrons are genetic loci defined by the presence of a gene encod-
ing the integron integrase, IntI. The integron integrases are mem-
bers of the tyrosine recombinase family but are characterized by
having an additional unique 16-amino-acid conserved motif nec-
essary for activity (3, 14). On the basis of carrying an IntI gene
(intI), more than 15% of genome-sequenced bacteria appear to
contain an integron (1, 2). Integrons are also found in a wide
diversity of environments, including forest soils, desert soils, riv-
erine sediment, Antarctic soils, hot springs, aquatic biofilms, plant
surfaces, marine sediment, and deep-sea sediment (15–20).

Different integrons can be distinguished based on the relative
homology of intI, although a percent cutoff point to discriminate
between different “classes” of integrons has not been formally
defined. Nevertheless, it is clear that hundreds of different inte-

FIG 1 Integron structure. The basic integron platform consists of the following: intI, a gene for the integron integrase; Pc, an integron-carried promoter; attI, the
integron-associated recombination site; and gene cassettes, sequentially inserted into an array via recombination between attI and the cassette associated-
recombination sites, attC. (A) Gene cassettes normally contain a single open reading frame (ORF) (arrow) expressed from the Pc promoter. In some integrons,
Pc lies between intI and attI. (B) Cassettes with two ORFs, no ORF, or an ORF in the reverse direction are known. In some genera, intI is transcribed in the same
direction as the gene cassettes. (C) Gene cassettes may also contain internal promoters.

FIG 2 Acquisition of gene cassettes. Integrons acquire new gene cassettes by recombination between the attC of a circular cassette and the attI site of the integron.
This inserts incoming cassettes at a position proximal to the integrase gene and its embedded promoter. Cassette arrays can expand by repeated cassette
acquisition, but cassettes can also be excised as closed circles by attI � attC or attC � attC recombination.
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gron families have been discovered in the last decade (1). These
integrons fall into three broad groups based on the phylogeny of
their respective integrase genes: (i) a group found in proteobacte-
ria from freshwater and soil environments, which also includes
the clinically important class 1 and 3 integrons; (ii) a group found
in gammaproteobacteria from marine environments, which in-
cludes the class 2 integrons and integrons found on the SXT inte-
grative conjugative element and pRSV1 plasmid from Vibrio; and
(iii) integrons whose integrase genes are in the reverse orientation
to those listed above (Fig. 1). These reverse integrons have so far
been found in members of the Spirochaetes, Planctomycetes, Cya-
nobacteria, and Chlorobi isolated from a variety of environments
(1, 21, 22).

Initially, it was suggested that integrons could be divided into
two categories: the mobile integrons, which had few cassettes, usu-
ally encoding antibiotic resistance, had diverse attC sites and
gained their mobility by association with transposons or plasmids,
and the “superintegrons,” which could have hundreds of cassettes,
had homogenous attC sites and were located on chromosomes (9,
21, 23, 24). This distinction was based on a limited set of examples,
and it is now clear that there is a continuum of integron structures
between these two extremes (1, 25, 26). Nevertheless, the location
of integrons on chromosomes versus mobile elements has impor-
tant functional and evolutionary consequences, since mobility al-
lows penetration into new taxa, while chromosomal locations can
become sites for generating genomic complexity and phenotypic
diversity (18, 27).

The clustering of integrons by environment (terrestrial versus
marine), rather than by the identity of their host cells suggests that
lateral transfer of integrons can occur between bacterial species
residing in similar environments. This suggestion is supported by
comparisons of phylogenetic trees based on the 16S rRNA gene or
rpoB with those based on intI. The phylogenies are not congruent,
and they demonstrate that lateral transfers of chromosomal inte-
grons have occurred between bacterial groups (1, 21). In some
cases, such as the chromosomal integrons found in Shewanella,
Xanthomonas, and the Vibrio cholerae clades, the integron was
clearly acquired before radiation of the extant species. How-
ever, in many other instances, closely related integrons are
found in distantly related bacterial lineages. Two conclusions
may be drawn: first, that the integron system is an ancient one,
dating back hundreds of millions of years at least, and second,
that over this evolutionary time there has been considerable
lateral transfer of integron platforms between different lin-
eages, even though in the short term some integrons are trans-
mitted mainly vertically (1, 21).

Integrons are not mobile in their own right, since the integron
integrase cannot excise its own gene from a chromosome. Rather,
integrons must rely on linkage to transposases or recombinases for
interchromosomal mobility. Chromosomal integrons often have
such genes within their cassette arrays, or they lie adjacent to the
integrase gene. Transposases are commonly found within Xan-
thomonas cassette arrays (18) and have been found adjacent to
chromosomal integrons in Comamonas and Pseudomonas (28,
29). Recombinase genes lie adjacent to chromosomal integrons in
Azoarcus, Acidovorax, and Delftia (30, 31), and overall some 30 out
of 50 genome-sequenced integrons are linked to transposase or
recombinase genes (1). In Acinetobacter and Enterobacter, some
are flanked by miniature inverted-repeat transposable elements
(MITEs). Recombination between these flanking regions or

MITE-directed transposition can excise the integron-containing
element from the chromosome (32, 33). Mapping of chromo-
somal class 1 integrons in betaproteobacteria has identified con-
served, precise sequence boundaries for integron excision (see Fig.
4), although the enzymes responsible for this process are not
known (34).

Diversity of Chromosomal Integrons

The first chromosomal integron to be described was from Vibrio
cholerae (23, 35). It differed significantly from all integrons char-
acterized up to that time because it was located on a chromosome
and had hundreds of gene cassettes that encoded novel proteins of
largely unknown function. Work over the last 15 years has now
shown that chromosomal integrons are the norm for environ-
mental bacteria, while the “clinical” integrons, borne on plasmids
and typically found in pathogens, are a recent phenomenon
driven by human antibiotic selection.

As more genome sequences of bacteria have been determined, it
has become apparent that chromosomal integrons are a common
feature of bacterial DNA. A recent survey showed that up to 17%
of bacterial genomes in the NCBI database contained an integron
integrase gene (2). Chromosomal integrons are most commonly
found in various classes of Proteobacteria (beta through epsilon)
but have also been reported in Chlorobi, Cyanobacteria, Spiro-
chaetes, and Planctomycetes (1). As more genomes are sequenced,
the range of species and phyla that contain integrons is likely to
expand.

Integrons have been extensively studied in Vibrio, where all spe-
cies investigated to date carry these elements on their chromo-
somes (36–39). The cassette arrays in Vibrio integrons are large,
with reported arrays containing between 36 and 219 cassettes and
accounting for between 0.7% and 3.1% of the genome (36). In
general, integrons in vibrios are inherited vertically, with only two
independent acquisitions of an integron platform identified by
phylogenetic analysis, one into the V. fischeri group and one into
V. cholerae and relatives (36, 39). The acquisition of an integron
predated speciation in both these groups, and consequently inte-
gron activity and the assembly of large, diverse collections of gene
cassettes have accompanied the evolution of the vibrios for hun-
dreds of millions of years (21).

A chromosomal integron also seems to be an ancestral feature
of Xanthomonas, since an integron integrase gene is located at the
same chromosomal location, downstream from the dihydroxy-
acid dehydratase gene, ilvD, in all strains tested (18, 40). The xan-
thomonad arrays are shorter than those in vibrios, having between
1 and 22 cassettes. Particular cassettes and arrays are associated
with specific strains and pathovars, suggesting a role for those gene
cassettes in conferring pathogenicity on particular host plants
(18). The correspondence between individual cassette arrays and
xanthomonad species, strains, and pathovars means that PCR typ-
ing of cassette arrays can be used for identification and epidemi-
ological studies (41–44).

Chromosomal integrons are also present in Pseudomonas, al-
though in this genus integrons are distributed patchily among the
various species, suggesting multiple instances of acquisition by
lateral gene transfer (1, 24). Cassette numbers are similar to those
in xanthomonads, ranging from 10 to more than 32. The cassette
arrays vary considerably in content, with otherwise identical
strains sharing few or no gene cassettes. The ability of the integron
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platform to capture and express gene cassettes has been formally
established for at least some members of the genus (45, 46).

In the integrons described above, the integron integrase gene
and the gene cassettes are transcribed in opposite directions (Fig.
1A and B). Some bacterial phyla with chromosomal integrons
have the integrase gene transcribed in the same orientation as the
cassettes (47). The best-studied phylum with this characteristic is
the Spirochaetes, in particular the genus Treponema. Integrons in
the ancestral Treponema appear to have been acquired in a single
lateral transfer event and subsequently lost in some members of
the genus. In the best-studied species, T. denticola, the number of
cassettes in the respective arrays varies between 18 and 45 (22, 47).
The cassettes in these arrays are extraordinarily dynamic. Exami-
nation of metagenomic data from the human microbiome project
showed that the oral Treponema strains detected carried a total of
826 gene cassettes and that few of these elements were shared
between individual strains (48).

Not all chromosomal integrons carry large numbers of gene
cassettes. Examples of chromosomal integron integrase genes
that are associated with just a few gene cassettes, or none at all,
can be found in the genera Shewanella, Nitrosomonas, Psy-
chromonas, Oceanobacter, Geobacter, Pelobacter, Marinobacter,
and Synechococcus, to name a few (1). Whether these integrons are
active in natural environments is not known, but the Shewanella
and Nitrosomonas integrases are both functional (49, 50).

Chromosomal integrons as a source of genomic diversity.
Chromosomal integron arrays are a hot spot for genome diver-
sity (51). Even within closely related strains of a single bacterial
species, different isolates can have very different gene cassette
arrays. In Treponema and Pseudomonas, different isolates of oth-
erwise identical strains often harbor few cassettes in common (22,
46, 48).

Most comparative analysis has been done in the vibrios, where
acquisition, loss, and rearrangement of gene cassettes generate
considerable diversity within serotypes, strains, and species (39,
52–55). There appears to be frequent movement of cassettes be-
tween vibrios, with high rates of loss or gain of individual ele-
ments. These rearrangements generate significant differences in
cassette content and order (36). Movements of gene cassettes of-
ten seem to involve entire blocks within the array, thus mobilizing
a series of linked cassettes in one event. The diversity thus gener-
ated can be used as a phylogenetic typing system for tracking pan-
demic strains (56, 57).

The speed with which diversity is generated in the V. cholerae
integron cassette array allows repeated rearrangement and cross-
species sampling of genes. This activity generates diverse geno-
types that can then be acted upon by natural selection, allowing
rapid adaptation to local conditions (27). In-depth analyses of 12
Vibrio spp. isolated from coral mucus showed that only 1 to 10%
of the cassettes in their arrays were held in common. Even when
isolates carried the same cassette, the position of that cassette in
the array was different. Consequently, the arrays in some vibrio
species may evolve even more quickly than those in V. cholerae
(58).

So what triggers activity of the integron integrase gene and
consequently leads to gene cassette rearrangements? Within the
intI promoter region are binding sites for LexA, a transcriptional
repressor that governs the SOS response. Induction of the SOS
response triggers the expression of integron integrase and thereby
increases cassette excision rates by orders of magnitude (59). This

regulatory machinery appears to be ancestral, as it is preserved in
both chromosomal and mobile integrons (60). Transformation
with foreign DNA and bacterial conjugation both induce the SOS
response and therefore upregulate integrase activity, as do stress
and exposure to antibiotics (61–64). Integrase-mediated recom-
bination also increases during the stationary phase (65). Conse-
quently, the cassette acquisition and rearrangement machinery is
stimulated at precisely the time when acquiring new functions and
genetic diversity might be most advantageous.

However, unregulated integrase activity in stable environ-
ments runs the risk of rearranging cassette arrays that already have
an optimum content and order. For this reason, we might expect
that integrase activity is downregulated under such circum-
stances. Certainly, in Xanthomonas, where individual pathovars
specialize as pathogens of particular plant species, there is wide-
spread inactivation of the integrase gene by frameshifts, nonsense
mutations, and deletions (18). In at least some cases, IntI activity
brings about a fitness cost, particularly under stable conditions,
and modeling suggests that episodes of selection during environ-
mental perturbations are needed to help maintain functional in-
tegrase genes in bacterial genomes (66, 67). This may explain why
almost one-third of IntI genes are inactivated and why there are
frequent losses and gains of this gene within lineages (68). Taken
together, these features show that integrons are uniquely placed to
rapidly generate diversity in gene content and order during peri-
ods of change and natural selection, while remaining quiescent or
becoming inactive during periods of environmental stability.

Gene Cassette Structure and Recombination

Gene cassettes are compact DNA elements that generally have a
simple structure, consisting of a single open reading frame and a
recombination site (7) (Fig. 3). The recombination site is called
attC (shown in its integrated format in Fig. 3A) and exhibits sig-
nificant internal homology that allows formation of stable second-
ary structures that are important both for recognition by IntI and
for recombination (10) (Fig. 3B). Using Fig. 3A as a guide, from
left to right, the typical features of a gene cassette in an array are as
follows: the section of attC cleaved during insertion into the array
and consisting of the conserved nucleotides TTRRRY; a short
noncoding region, often less than 10 nucleotides, which may con-
tain a ribosome binding site; a start codon (ATG, GTG, or TTG)
for the internal open reading frame (ORF); a stop codon, often
located in attC; and attC itself, consisting of a series of inverted
repeats (R�, L�, L=, and R=) which are the integrase binding do-
mains (10, 20, 69). Variations to this basic structure involve
mainly the identity and orientation of the embedded open reading
frame. Most cassettes contain a single ORF, oriented from left to
right, but cassettes with two or more ORFs, no ORFs, or ORFs in
reverse orientation are known (Fig. 1) (20, 70).

The attC sites are the recombination substrate recognized by the
integron integrase, IntI. There are four integrase binding domains
within attC, designated here, after the scheme of Johansson et al.
(69), R�, L�, L=, and R= (Fig. 3B). Among these binding domains,
only R� and R= have conserved sequences, these being 5=-
RYYYAAC and 5=-GTTRRRY, respectively. Despite the lack of
sequence conservation, there is strong conservation of palin-
dromic sequence elements within attC, such that it can fold into a
cruciform secondary structure by pairing R� with R= and L� with L=
(10, 71). Since the central part of attC exhibits considerable vari-
ation in sequence and length, it appears that conservation of the
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attC secondary structure is more critical for activity than the attC
sequence (72). Indeed, it has been shown that IntI binds to the
bulged hairpin DNA of the secondary structure (69). The protrud-
ing base in L� (asterisk in Fig. 3B) serves to orient the polarity of
the recombination event by determining which strand is recom-
bined and thus ensures that cassettes are inserted in the correct
orientation (2, 72). Recombination between attI and attC involves
only the bottom strand of the incoming attC, and the single-
stranded recombination structure is then resolved by replication
(73, 74). Because IntI activity is dependent on structure, rather
than sequence, this explains why diverse IntI proteins are able to
mobilize gene cassettes with very different attC sequences (75).

The most common form of cassette insertion event involves
recombination between attC and the integron-associated attI site
(4). The attI site, like attC, carries integrase binding sites, called L
and R (Fig. 3C). The R binding site contains the canonical se-
quence 5=-GTTRRRY, with incoming gene cassettes being in-
serted between the G and T residues. In the attI sites of class 1
integrons, there are two further integrase binding sites, consisting
of direct repeats termed DR1 and DR2 (76, 77) (Fig. 3C). How-
ever, neither this region nor the L binding site sequence is con-
served among attI sites of other integron classes. Different IntI
proteins preferentially recognize their attendant attI, but they are
able to operate on attI sites from heterologous systems, albeit with
lower efficiency (78).

Integron integrases can also catalyze other recombination reac-
tions in addition to attI � attC, although less efficiently (4, 79).
Recombination between two attC sites in a cassette array excises
cassettes as DNA circles (11). These circles may contain multiple
gene cassettes, thus deleting or rearranging a block of linked cas-
settes (57). Insertion of cassettes into an array during attC � attC
recombination is also possible, but attI is the preferred insertion
point for incoming cassettes (80, 81).

Recombination between two attI sites is the least efficient inte-
grase-catalyzed reaction (79) but may show an increase in fre-
quency during late log phase and early stationary phase (65). Such
recombination events could generate hybrid attI sites (82) and
fuse different integrons into new arrangements. attI can also in-
advertently recombine into secondary sites, which usually contain
the conserved GTT motif characteristic of the attI recombination
point. Insertion into secondary target sites via attI recombination
fuses the integron into a new genomic location (82), and this may
explain the movement of integrons between chromosomal loca-
tions.

attC sites can also recombine with secondary sites in the ge-
nome, and in such cases the target site may be the simplified rec-
ognition sequence GNT. These insertions render the attC inactive
and thus fix the gene cassette at the secondary location. This may
be an important mechanism for gene acquisition onto plasmids
and chromosomes (83, 84). In other cases, when the secondary site
has the canonical GTTRRRY sequence, nonspecific insertion re-
tains the integrity of the attC, and thus the gene cassette can still be
excised via integrase activity (85).

Expression of Gene Cassettes

Gene cassettes often only contain an open reading frame and an
attC recombination site. This means they rely on an external pro-
moter for expression. Most work on cassette expression has been
conducted using the class 1 integron system, where expression of
cassettes is driven by one of two promoters, Pc1, located in the
IntI1 gene, and Pc2, located in attI1. A number of promoter vari-
ants that vary in strength have been identified (5, 6). Integrons
with weaker promoters often have higher excision activity by the
integron integrase (86).

Promoters within the integron integrase gene drive expression
of gene cassettes in the associated array, but the strength of expres-

FIG 3 Structure of gene cassettes and associated recombination sites. (A) A single gene cassette is shown in linear form, inserted into a cassette array. From left
to right, the salient features are as follows: the conserved recombination site, GTTRRY, with the vertical arrow showing the recombination point; the start codon
and open reading frame encoded by the cassette; and the attC site, containing integrase binding domains R�, L�, L=, and R=. (B) Detailed structure of a single attC
site. These elements have partially palindromic sequences (labeled with letters), such that R� can pair with R= and L� can pair with L=, thus forming a stable
cruciform structure recognized by integron integrases. An extra base, labeled with an asterisk in L�, ensures correct orientation and insertion of cassettes into the
array. Between the terminal palindromic regions is a region that varies in length (16 to 109 nucleotides [nts]) and sequence between different cassettes. This
region is also capable of forming a stable secondary structure, and the lack of sequence conservation suggests that structure, rather than sequence, is important
for recognition. (C) An attI site from a class 1 integron. The attI1 site also has L and R elements, with the conserved recombination point G2TTRRRY. The attI
of class 1 integrons also has two direct repeats, DR1 and DR2, but these are not known from the attI sites of other integron classes.
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sion drops off as cassettes become more distal to the promoter (5,
87). This may be why the cassette arrays in clinical class 1 integrons
rarely contain more than six cassettes, as any additional cassettes
may not be expressed because of their distance from the promoter.
In addition, the ability of attC sites to form stable stem-and-loop
structures may impede ribosome progression along polycistronic
RNAs, further reducing translation of polypeptides encoded by
downstream cassettes (88).

Promoters that drive cassette expression have also been identi-
fied in the attI regions of class 2 integrons (6, 89) and within the
intI genes of both class 3 integrons and the chromosomal integron
of Pseudomonas stutzeri (5, 45). Consequently, it seems probable
that all integrons carry a cassette promoter within the intI-attI
region. However, some chromosomal cassette arrays carry hun-
dreds of gene cassettes and are simply too long for expression of all
the cassettes to be driven by a single promoter. Either these cas-
settes are transcriptionally silent or they carry their own internal
promoters. In the very long cassette arrays that characterize many
Vibrio species, it appears that most cassettes are transcribed and
that this transcription is enhanced by some stress treatments (90).
Consequently, it seems likely that gene cassettes with internal pro-
moters are scattered throughout the Vibrio arrays and that these
help drive the expression of downstream cassettes.

Internal promoters have been identified in a number of gene
cassettes. The cmlA chloramphenicol resistance gene cassette has
its own promoter (91, 92), and it appears that the quinolone re-
sistance genes of the qnrVC family may all carry internal promot-
ers (93). This arrangement would allow expression of these cas-
settes regardless of their position in the array. Toxin-antitoxin
(TA) genes are a common feature of large chromosomal cassette
arrays and are thought to contribute to array stability (94, 95). To
maintain themselves in lineages, such genes must be constitutively
expressed, so it is not surprising that such cassettes also have their
own promoters (39, 96). Finally, a number of cassettes have been
identified in metagenomic samples that have no identifiable open
reading frame. These ORF-less cassettes may be mobile, cassette-
borne promoters (20, 70).

Gene Cassette Diversity and Function

Integron gene cassettes are common, and abundant, in environ-
mental samples. Metagenomic analyses show that gene cassettes
can be recovered from every environment that has been investi-
gated: desert soil, forest soil, polar soil, riverine sediment, hot
springs, and estuaries (20, 70); seawater, marine sediment, and
deep sea vents (15, 16, 20, 97, 98); and biofilms, plant surfaces, and
the symbionts of eukaryotes (15, 17, 18, 34). Thus, cassettes are
widely disseminated in diverse environments. Cassettes also have
diverse origins, since homology and codon usage analyses show
that the ORFs carried by gene cassettes originated in diverse bac-
terial phyla (1, 21, 97).

Gene cassettes are an enormous reservoir of genomic novelty
(70). Combined analyses of metagenomic and chromosomal
gene cassettes show that up to 65% of cassettes and their en-
coded polypeptides have no known homologues in DNA or
protein databases. A further �15% exhibit homology to con-
served hypothetical proteins, while the remaining �20% have
sufficient homology to characterized proteins that their function
might be predicted (1). Many cassette-encoded polypeptides are
predicted to form novel protein folds and thus may comprise a
toolbox of flexible molecular components for assembling new

quaternary structures (99, 100). The composition of gene cassettes
in environmental samples exhibits significant spatial turnover,
even across distances as small as one meter (19). Given this, it is
not surprising that different environments have distinctive popu-
lations of gene cassettes and that there is often little overlap in
composition between environments (15, 16, 97, 98).

The mobile nature of gene cassettes means that their genomic
locations and host cells are not fixed, and this creates problems for
conventional annotation. Consequently, a number of dedicated
databases have been established for annotation and curation of
integrons and their gene cassettes (101, 102). Software for identi-
fying cassettes in DNA sequences has been developed (39). Be-
cause some research groups focus more on the clinical aspects of
integron biology, databases and annotation systems that deal ex-
clusively with gene cassettes from integrons found in pathogens
have also been developed. These cassettes mainly encode antibi-
otic resistance (103–105).

Some gene cassettes recovered from metagenomic DNA or
chromosomal integrons do not appear to encode polypeptides
(20). Such noncoding cassettes can make up a considerable pro-
portion of arrays. For instance, they comprise between 4 and 49%
of Vibrio cassette arrays (36). These noncoding cassettes might
encode promoters or regulatory RNAs. In Xanthomonas campes-
tris pv. campestris, the trans-acting small RNA (sRNA) Xcc1 is
encoded by an integron gene cassette and is involved in regulation
of virulence (106). In metagenomic DNA, a family of noncoding
gene cassettes that demonstrates conservation of a central motif
with an imperfect inverted repeat has been recovered, suggesting
that RNA structure rather than sequence is important (70), which
again is a feature of regulatory RNAs.

The functions of about 20% of environmental gene cassettes
can be inferred through homology with known genes. These func-
tions are diverse and include secondary metabolism, plasmid
maintenance, virulence, and surface properties. Toxin-antitoxin
(TA) systems are commonly found within or adjacent to integrons
(1, 2, 20, 21, 39). Loss of TA systems kills the cells that housed
them, since the toxin has a longer half-life than the antitoxin that
inactivates it. Consequently, the presence of TA systems within
integrons may stabilize chromosomal arrays and maintain inte-
gron-bearing plasmids within cells (94–96, 107).

A number of gene cassettes appear to encode functions associ-
ated with virulence and host relationships, including lipocalin
(108), capsular polysaccharide (109), enterotoxin (110), isocho-
rismatase (97), lipases (70, 111), and methionine sulfoxide reduc-
tases (32). The diversity of cassettes with other inferred functions
is impressive, covering DNA modification, functions related to
phage, polysaccharide biosynthesis, amino acid synthesis, trans-
porters, and efflux systems, to name a few (1, 17, 21, 112, 113). The
presence of signal peptides for export to cell membranes implies
that cassette gene products are often important for interacting
with the local environment and help to create surface properties
necessary for biofilm formation or for interactions with phage and
grazers (39, 97, 114).

The conclusion must be reached that the gene cassettes con-
tained within integrons are an important component of bacterial
adaptation. The ability of integrons to acquire new gene cassettes,
and to rearrange those already within arrays, provides a rapid
means of generating adaptive diversity (58). These conclusions are
confirmed by observations of bacterial adaptation in natural en-
vironments. The genus Xanthomonas is specialized for pathoge-
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nicity on plants. Different pathovars are restricted to different
plant hosts, and in each case their integron cassette arrays are
unique (18). Integrons help bacteria adapt to particular niches
(16, 115), encode functions relevant to interactions with symbi-
onts (15), and may help generate ecotypes (27). In polluted ma-
rine sediments, cassettes encode diverse functions relevant to ca-
tabolism of industrial waste, such as polypeptides dealing with the
transport and catabolism of aromatic compounds (98).

Clearly, integrons and their gene cassettes are an important re-
source for bacterial adaptation. Given this, it is not surprising that
integrons have had a major role in the adaptation of bacteria to
antibiotic therapy. Because integrons have access to a vast pool
of gene cassettes with diverse functions, they were preadapted
for acquisition and expression of resistance determinants, al-
lowing integron-containing cells to rapidly fix under the strong
selection pressure imposed by antibiotic use. Environmental
gene cassettes that can be, and have been, coopted as resistance
determinants have been described, such as the various efflux
pumps encoded by the qac gene family (17). In some cases,
potential antibiotic resistance activity has been demonstrated
for novel gene cassette products. These include an RNA meth-
yltransferase and a phosphotransferase (116). A number of cas-
settes recovered from chromosomal integrons have significant
homology to known antibiotic resistance genes (9), and various
gene cassettes from Vibrio can be demonstrated to confer resis-
tance phenotypes (117–120).

Thus, prior to the antibiotic era, integrons were already poised
to take advantage of their access to the vast pool of genetic novelty
encoded by environmental gene cassettes. The use of antibiotics in
human medicine and agriculture then provided the selective force
to fix rare events where integrons had acquired gene cassettes of
relevance to antibacterial resistance. This sampling of the resis-
tome (121, 122) has continued to the present day, resulting in the
accumulation of gene cassettes with diverse mechanisms for deal-
ing with an equally diverse number of antibiotics. The history of
this evolution is the subject of the next section of this review.

INTEGRONS IN THE PRESENT: THE RISE OF ANTIBIOTIC
RESISTANCE

Integrons are major players in the spread of antibiotic resistance,
particularly in Gram-negative pathogens. In resistance integrons,
the functional integron platform is linked to mobile DNA ele-
ments such as transposons and/or conjugative plasmids, thus en-
hancing transfer between cells and species (21). There are five
classes of “mobile” integrons, all associated with antibiotic resis-
tance: classes 1, 2, and 3, usually recovered from clinical contexts
(123); class 4, found on the SXT element of Vibrio cholerae (124);
and class 5, found on the pRSV1 plasmid of Alivibrio salmonicida
(125).

These integrons share a pool of gene cassettes, the majority of
which encode resistance to antibiotics. In total, about 130 differ-
ent resistance gene cassettes have been identified, whose diverse
patterns of codon usage and heterogeneous attC sites strongly
suggest that they have been accumulated incrementally from di-
verse phylogenetic backgrounds (2, 21, 103). Cassette arrays in
mobile integrons are usually short, with the longest recorded array
having eight cassettes (126), presumably because cassette expres-
sion is driven from a single promoter, and proximal cassettes are
poorly expressed (5). The pool of cassettes carried by mobile in-

tegrons can confer resistance to most classes of antibiotics used in
medicine and agriculture (103).

Antibiotic resistance integrons have a number of features in
common. They are usually mobile, and their cassettes arrays are
short and normally encode antibiotic resistance. However, these
shared features are not intrinsic properties of their ancestor inte-
grons but have arisen as a result of convergent evolution, driven by
the strong selection pressures imposed during human antibiotic
use. Each of the major classes of integron now found in antibiotic-
resistant pathogens has a similar, and recent, evolutionary history.

Origin of Class 1 Integrons as Vectors for Antibiotic
Resistance

Chromosomal class 1 integrons have been found in a wide range of
nonpathogenic Betaproteobacteria, including members of the gen-
era Hydrogenophaga, Aquabacterium, Acidovorax, Imtechium,
Azoarcus, and Thauera. These chromosomal integrons carry gene
cassettes of unknown function and exhibit significant sequence
diversity in their IntI1 genes (30, 34, 127). All chromosomal class
1 integrons characterized from environmental sources have com-
mon terminal sequences. The conserved left-hand breakpoint oc-
curs exactly 107 bp beyond the IntI1 stop codon (34), at the same
position where the ISPa7 element inserts into class 1 integrons
carried by some P. aeruginosa isolates (128). The right-hand
breakpoint is also conserved, occurring 43 bp beyond the final
attC element (Fig. 4). The presence of such precise breakpoints in
a diversity of chromosomal landscapes and in a range of different
species is strong evidence that the chromosomal class 1 integron is
comparatively mobile, even over short evolutionary time frames,
and that site-specific recombination is involved (34). The mecha-
nism for mobilizing the integron is unknown.

Examination of bacteria from soil, freshwater, and biofilms sug-
gests that 1 to 5% of cells may carry a class 1 integron (129, 130). In
some environments, this proportion may rise to as high as 30%
(34). Class 1 integrons in the environment exchange gene cassettes
in a dynamic fashion (17), and the class 1 integron integrase is able
to access gene cassettes from other classes of chromosomal inte-
grons (89, 120). Class 1 integrons from biofilms and freshwater
often have cassettes carrying qac genes, a gene family that encodes
versatile efflux pumps (17, 129, 131).

In summary, the chromosomal class 1 integrons found in envi-
ronmental bacteria were preadapted and exquisitely positioned to
respond when humans attempted to control bacterial growth with
antibacterial agents: they were abundant in bacteria that occupy
diverse environments intersecting with the human food chain;
they were comparatively mobile, moving between chromosomal
locations and species; they were able to sample gene cassettes from
the extraordinarily diverse cassette arrays held by environmental
organisms; and they commonly carried gene cassettes for efflux
pumps capable of conferring resistance phenotypes.

While the actual sequence of events may never be precisely
known, we have enough information to reconstruct the likely evo-
lutionary history of the mobile class 1 integrons that are now a
major factor in the dissemination of antibiotic resistance (Fig. 5).
Examination of metagenomic DNA recovers diverse class 1 inte-
gron integrase genes, many with less than 95% nucleotide se-
quence identity (127). In contrast, the integron integrase genes in
all class 1 integrons from clinical sources are essentially identical,
strongly suggesting that all clinical class 1 integrons are recent
descendants of a single event involving just one representative of
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the diverse intI1 sequence variants present in natural environ-
ments. The fact that intI1 sequences identical to those now found
in clinical pathogens can also be found on the chromosomes of
nonpathogenic environmental Betaproteobacteria adds significant
weight to this conclusion (34).

The evolutionary history of the clinical class 1 integron is
thought to be as follows. An integron located in a betaproteobac-
terium from a biofilm or freshwater environment excised from its
host chromosome at the precise boundaries outlined in Fig. 4.
This integron was then captured by a Tn402-like transposon,
probably via site-specific recombination. Examples of candidate
Tn402-like elements, prior to the acquisition of a class 1 integron,
have been found in human commensal flora (34). The newly
formed hybrid element then consisted of a class 1 integron inte-
grase and attendant cassettes embedded within a typical trans-
poson, still carrying inverted terminal repeats and full transposi-
tion machinery (Fig. 5). Most clinical class 1 integrons have now
lost the Tn402 transposition functions, but it seems almost certain
that the original capture event involved a functional transposon.
In support of this idea, Tn402-type class 1 integrons that retain the

full Tn402 transposition machinery but lack any antibiotic resis-
tance gene cassettes can be recovered from environmental sources
(28, 29, 132). It is therefore probable that prior to human antimi-
crobial use there were any number of integron/transposon hy-
brids circulating in the environment, of which the Tn402-inte-
gron is the most successful descendant.

Part of the success of the Tn402-integron may lie in an unusual
and adaptive property of Tn402. It specifically targets and trans-
poses into the res sites of plasmids (133). Consequently, a class 1
integron embedded in a Tn402 transposon would soon find itself
on a diversity of different plasmid vectors, thus enhancing its abil-
ity to disseminate between bacterial cells and species. Indeed, one
of the most successful of these insertion events involved transpo-
sition of the Tn402-integron into a mobile element that contained
the mer operon, encoding resistance to mercury. The resulting
compound element, Tn21, has itself come to be widely distributed
in different plasmids and to spawn a series of complex and com-
pound derivatives (134, 135).

The selective forces that first fixed the Tn402-class 1 integron in
a human commensal or pathogen cannot be known with cer-

FIG 4 Conserved sequence boundaries of chromosomal class 1 integrons. Schematic maps of a chromosomal class 1 integron as found in betaproteobacteria and
after its insertion into a Tn402 transposon are shown. Symbols are as Fig. 1 and 2. Additional features: IRi and IRt are the 25-bp terminal inverted repeats of the
Tn402 transposon, and the tni module contains genes involved in Tn402 transposition activity. Both the left- and right-hand boundaries of the class 1 integron
demonstrate precise sequence breakpoints. Sequences in the top alignment, showing the left-hand boundary, include relevant regions from the chromosomal
class 1 integron from Hydrogenophaga PL2G6 (accession no. EU327989) (A), the chromosomal class 1 integron from Aquabacterium PL1F5 (accession no.
EU327988) (B), the chromosomal class 1 integron from Acidovorax MUL2G8 (accession no. DQ372710) (C), the chromosomal class 1 integron from Imtechium
PL2H3 (accession no. EU327990) (D), the IncP-1 beta multiresistance plasmid pB8, which also carries Tn402 (accession no. AJ863570) (E), plasmid R751 from
Enterobacter aerogenes, which carries Tn402, and a clinical-type class 1 integron contained within this transposon (accession no. U67194) (F), Tn6008 from
Enterobacter cloacae, which carries sequence typical of Tn402-like transposons up to the CGGCC motif shared with class 1 integrons but carries no class 1 integron
sequences beyond that point (accession no. EU316185) (G), and a blaVIM-1 clinical class 1 integron from Pseudomonas aeruginosa VR-143/97 that has an ISPa7
insertion element inserted at the Tn402/class 1 integron boundary (accession no. Y18050) (H).
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tainty. However, circumstantial evidence strongly points to a role
for qac gene cassettes. These genes encode versatile efflux pumps
that confer resistance to toxic cationic molecules such as quater-
nary ammonium compounds (131) and may have a role in de-
fending cells against toxins found in natural ecosystems (136).
They are found in about half the cassette arrays carried by class 1
integrons recovered from natural environments (113), and qac
cassettes are dynamically exchanged between integrons in fresh-
water biofilms (17). Consequently, there is a 50% chance that any
class 1 integron inserted into a Tn402 backbone would carry a qac
cassette. Such an integron would confer resistance to quaternary
ammonium compounds, providing a significant advantage to
cells carrying the Tn402-integron and driving them to fixation in
human-associated bacteria exposed to these disinfectants (34,
113). Quaternary ammonium compounds were first used as hos-
pital disinfectants in the early 1930s, predating the clinical use of
antibiotics (137). This would explain why the possession of the
qacE gene appears to be ancestral in clinical class 1 integrons (138).

The first true antibiotics were the sulfonamides, introduced
during the mid- to late 1930s (139). Selection for antibiotic resis-
tance begins from this point, so it is not surprising that the next
event in the evolution of clinical class 1 integrons involves a gene
for sulfonamide resistance. The sul1 gene encodes a drug-resistant
variant of the sulfonamide target enzyme, dihydropteroate syn-
thase. This gene was inserted into the Tn402-class 1 integron, de-
leting the end of the qacE gene and its attendant attC (140), gen-

erating the 3= conserved segment (3=-CS) that is characteristic of
many extant clinical class 1 integrons (Fig. 5) (141). Various fur-
ther deletions to the Tn402 element led to the loss of transposition
functions (142) and generated diversity in the 3= end of the Tn402-
class 1 integrons (135, 143).

The Tn402-class 1 integron was now firmly embedded in the
human microbiota and free to sample gene cassettes held on chro-
mosomal integrons. The class 1 integron integrase is readily able
to recruit gene cassettes from other classes of integron (46, 89,
120), and where these cassettes confer antibiotic resistance, there
is a strong selective pressure to fix the newly generated cassette
arrays. Over time, the Tn402-class 1 integrons have acquired gene
cassettes that confer resistance to the majority of antibiotic classes
used to control Gram-negative bacteria (2, 21, 144). In all, some
130 different antibiotic resistance gene cassettes from clinical class
1 integrons are now known, along with a few other gene cassettes
of unknown function (103).

The general ability of integrons to sample gene cassettes, cou-
pled with the linkage between a class 1 integron and a plasmid-
hunting transposon, has made the descendants of the original
Tn402-class 1 integron insertion event into an extraordinarily suc-
cessful family of mobile elements. They have readily spread by
conjugation and natural transformation (145, 146), such that they
are now found in some 40 to 70% of Gram-negative pathogens
from clinical contexts (147, 148). They are common in the patho-
gens and commensal flora of livestock and companion animals

FIG 5 Model for the origin and subsequent divergence of the mobile class 1 integrons that are now common in Gram-negative pathogens. (A) The common
ancestor of all clinical class 1 integrons was a member of a diverse group of class 1 integrons located on the chromosomes of Betaproteobacteria. (B and C) This
chromosomal class 1 integron was captured by the Tn402 transposon (B) to generate a transposon/integron hybrid carrying the qacE cassette, encoding resistance
to disinfectants (C). (D) A gene for resistance to sulfonamides, sul1, was then captured, deleting part of the qacE cassette and thus generating the 3= conserved
segment (3=-CS). (E) Deletions and insertions involving tni generated Tn402 transposition-incompetent integrons, while acquisition of further antibiotic
resistance cassettes took place, expanding the range of antibiotic resistance phenotypes conferred by integrons. (F) Acquisition of new cassettes continued, and
the Tn402-integron hybrid moved onto diverse plasmids and other transposons, such as the Tn21 family. These events generated further diversity and accelerated
the penetration of class 1 integrons into a wide variety of pathogens and commensals.
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(144, 149, 150). They have also made their way into plant patho-
gens (151) and Gram-positive organisms (152). Their general
abundance in human-dominated ecosystems and their release via
human waste streams means that clinical class 1 integrons are
increasingly being reported as “pollutants” of natural environ-
ments (144, 153).

The story of the class 1 integron is a salient lesson about the
immense power of natural selection, especially when applied to
organisms with large population sizes, rapid generation times, and
access to a vast pool of genetic novelty. The clinical class 1 integron
will continue to accumulate new gene cassettes encoding antibi-
otic resistance and other adaptive phenotypes and will continue to
participate in new rearrangements with transposons, plasmids,
and other mobile elements.

Origin of Class 2 Clinical Integrons

The class 1 integron is responsible for most reports of integron-
mediated antibiotic resistance. It is associated with the greatest
diversity of gene cassettes, is found in increasingly complex mo-
saic mobile elements, and is found in a very broad range of species.
Nevertheless, other classes of integron that confer antibiotic resis-
tance have also been described from clinical contexts. Class 2 and
class 3 integrons share their cassette pool with the class 1 integrons
but are distinguished by having divergent integron integrase se-
quences. Class 2 and class 3 integrons from clinical contexts also
share a similar evolutionary history with the Tn402-class 1 inte-
gron, as both have probably been recruited onto transposable el-
ements from a chromosomal ancestor. The history of these ele-
ments is outlined below.

Class 2 integrons are associated with the Tn7 transposon (154,
155), whose transposition activity is directed at specific attach-
ment sites on chromosomes or plasmids (156). Metagenomic
studies have detected potentially functional class 2 integron inte-
grase genes in agricultural habitats, associated with diverse Firmi-
cutes and Bacteroidetes (157), and a functional class 2 integron
from Providencia stuartii has been described. The latter integron
carried an array of gene cassettes of unknown function, as might
be expected for an environmental integron (158). In contrast, the
integron integrase genes of class 2 integrons isolated from clinical
contexts are inactivated by an internal stop codon (159), and their
associated cassette arrays encode antibiotic resistance determi-
nants. The fact that clinical class 2 integrons all carry the same
internal mutation in the gene for IntI2 strongly suggests that they
are all descendants of a single event.

Because the integron integrase gene of clinical class 2 integrons
is inactive, this restricts the ability of the integron to acquire and
rearrange gene cassettes. It is therefore not surprising that their
cassette arrays are highly conserved (160) and that their range of
cassette functions is much more limited than those of class 1 inte-
grons (161–163). There are some variant cassette arrays described,
and it is thought that these cassette rearrangements were mediated
by integrase activity in trans or by suppression of the internal stop
codon. It has been demonstrated that the class 1 integrase can
recognize the class 2 recombination site, attI2 (78, 159), so expo-
sure of clinical class 2 integrons to the activity of other integron
integrases might explain the observed diversity in class 2 cassette
arrays.

Like the class 1 clinical integrons, class 2 integrons from clinical
contexts have made their way into a diverse range of pathogens,
commensals, and environmental microorganisms (162, 164) and

have also been described from domesticated and wild animals
(144). It appears that a second variant of the class 2 integron inte-
grase might have been recently recruited onto an IncP plasmid in
uropathogenic Escherichia coli. This intI2 has six sequence differ-
ences from the intI2 found in association with Tn7, including a
glutamine codon (CAA) that removes the stop codon character-
istic of other clinical class 2 integrons. The IntI2 encoded by this
gene is capable of recombination reactions, and its cassette array
carries a gene for trimethoprim resistance, dfrA14, that is more
usually associated with class 1 integrons. In addition, it carries an
unusual cassette, potentially encoding a lipoprotein signal pepti-
dase, which may be of relevance for pathogenicity (165). Thus,
integrons are still being recruited from the environmental pool of
such elements and will continue to accumulate new gene cassettes
relevant to resistance, pathogenicity and virulence.

Origin of Class 3 Clinical Integrons

Class 3 integrons were first described from clinical contexts in
Japan (166) but, like the class 1 and 2 integrons, also had their
origins in environmental bacteria. Typical chromosomal inte-
grons with class 3 integrases have been characterized in two spe-
cies of Delftia (31). These integrons have related cassette arrays
that encode proteins of unknown function. They share features
with chromosomal class 1 integrons from Acidovorax, including
homology of a flanking recombinase gene and an identical end-
point at the boundary of insertion into chromosomal DNA (30,
31). Such chromosomal class 3 integrons can share gene cassettes
with environmental organisms that carry class 1 integrons, since
an identical gene cassette has been found in the Delftia integron
and in a chromosomal class 1 integron cassette array from Pseu-
domonas (29).

Class 3 integrons from clinical contexts are associated with
antibiotic resistance and have an evolutionary history similar
to that of the class 1 integrons. The class 3 integron platform
also appears to have been captured by a Tn402 transposon, but
in the reverse orientation to the class 1 capture event (167).
Such class 3 integrons are relatively common in Japan, where
they have spread into a number of human pathogens and com-
mensals (168, 169). They are not commonly recovered else-
where in the world (148, 170, 171) and do not carry a great
diversity of gene cassettes, perhaps because the class 3 integron
integrase is not as active as those of the other classes (78). The
class 3 clinical integron is continuing to evolve, colonizing new
species, acquiring novel resistance cassettes, and making its
way onto new plasmid vectors (168, 172, 173).

Summary of the Current State of Resistance Integrons

Mobile integrons have been a major driver in the spread of anti-
biotic resistance, particularly among Gram-negative bacteria
(174). Integrons have accumulated large numbers of resistance
genes from the environmental pool of these determinants (122).
They have also increased enormously in abundance, thus raising
the possibility of interactions with other DNAs and of generating
new and ever more complex mobile elements that carry resistance
to multiple antibiotic classes, disinfectants, and heavy metals
(175). Their evolution is ongoing, driven by the constant exposure
to selective agents in both human-dominated and natural envi-
ronments, with the result that they will continue to accumulate
genes that confer advantageous phenotypes (153). The potential
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outcomes of this evolution and its possible consequences for hu-
man welfare are discussed in the next section.

INTEGRONS IN THE FUTURE

Over the last 50 years, the widespread use of antibiotics has im-
posed strong selection for the assembly of mosaic DNA elements
carrying multiple resistance genes. These DNA elements have
made their way into diverse bacterial hosts, both commensals and
pathogens, which have, in turn, colonized humans, their compan-
ion animals, and their domesticates. The result is that integrons,
their antibiotic resistance genes, and the mobile DNA elements
they reside upon have become widely distributed, highly diverse,
and abundant in human-dominated ecosystems.

Understanding the natural activities and more recent evolu-
tion of integrons gives us some power to predict the likely future of
these elements and to explore how their properties might be ex-
ploited. Integrons are exquisitely positioned to sample and ex-
press potentially any gene in the biosphere and to do so without
perturbing existing genes. Consequently they have the power to
promote adaptation to changing environmental conditions by
rapidly generating genetic variation. This allows integron-con-
taining cells to overcome human strategies for controlling bacte-
rial growth, but it also offers rich opportunities for gene prospect-
ing and construction of new biosynthetic pathways.

Integrons and Resistance Genes as Pollutants

The ongoing use of antibiotics in clinical and agricultural practice
has made mobile resistance integrons extraordinarily abundant.
The class 1 clinical integrons are particularly widespread, occur-
ring in anywhere from 10 to 50% of commensal bacteria in healthy
human subjects (176–178), including infants who have not yet
been exposed to antibiotics (179). They are also present in the
commensal bacteria of farm animals, where the integron carriage
by commensal E. coli can rise to 80% (179–181). These commen-
sal bacteria house integrons with diverse structures and act as a
conduit for lateral gene transfer of resistance determinants be-
tween environmental bacteria, other commensals, and pathogens
(182, 183).

Because the rate of integron carriage is so high in humans and
their agricultural animals, large numbers of bacteria containing
integrons and resistance genes are shed into the environment via
waste streams. One estimate suggests that 1019 bacteria containing
class 1 integrons are released in the United Kingdom each year,
just via disposal of sewage sludge (184). As a consequence, inte-
grons can be readily detected in wastewater treatment plants (164,
185). Resistance genes and integrons are present in floc and sew-
age sludge (186, 187), and despite the growing use of methods to
remove such genes during wastewater treatment (188–191), con-
siderable quantities are released in reclaimed water (192) or di-
rectly into rivers (193, 194), where they eventually make their way
to estuaries and the ocean (171, 195, 196). Resistance genes and
integrons are also disseminated in effluent from hospitals and in
wastewater from tanneries (197, 198). Further, the use of animal
wastes as manure introduces resistance genes and integrons into
agricultural soils (199–202).

As a consequence, there is a zone of enrichment with clinical
integrons and resistance genes that spreads out from human set-
tlements (130, 132, 157, 203). This influence is so pervasive that
integrons and resistance genes can now be found in situations far
removed from antibiotic use, such as in remote communities

(204, 205), the Arctic (206), and endangered species (207). The list
of wild animals and natural environments where clinical integrons
have been detected continues to grow (144), and levels of antibi-
otic resistance genes in soils have been increasing since the 1940s
(208).

Antibiotic resistance genes and integrons are now viewed as
significant environmental contaminants and as markers for trac-
ing sources of pollution (209, 210). The resistance genes and inte-
grons emanating from human-dominated ecosystems can be re-
garded as xenogenetic pollutants, because these DNA elements
have been assembled under the continuous selection exerted by
human antibiotic use. However, unlike conventional pollutants,
integrons and resistance genes can replicate and therefore have
properties of both pollutants and invasive species (153, 175). The
human health implications of pollution with resistance genes has
been the subject of considerable scrutiny (211, 212), but less at-
tention has been paid to their potential effects on natural environ-
ments (153, 213).

Pollution with Selective Agents

When humans or animals are given antibiotic therapy, between 30
and 90% of the ingested compound is excreted to pollute waste-
waters (214). Antibiotics are also released in large quantities from
pharmaceutical plants (215, 216) and are spread during manuring
(217, 218). Like resistance genes, antibiotics are difficult to re-
move during water treatment, and some have long half-lives in the
environment (219, 220), resulting in pollution of both rivers and
the ocean (221, 222). The use of antibiotics in aquaculture adds
these compounds directly into water bodies (223, 224), raising
local antibiotic concentrations. The environmental and health
consequences of contaminating water bodies with antibiotics are
of significant concern (225–227), with calls to monitor and con-
trol antibiotic pollution (121, 228).

Selection in Natural Environments

Human waste streams release integrons simultaneously with the
antibiotics that select for carriage of integrons and resistance
genes. Waste streams also carry significant quantities of other se-
lective agents, such as disinfectants and heavy metals. Thus, resis-
tant bacteria, their mobile elements, and their resistance genes are
released into an environment containing significant quantities of
selective agents and environmental organisms. As a consequence,
wastewater treatment facilities and other water bodies become
giant reactors for interaction between bacterial species, mobile
elements, and their accessory genes (153). Transformation and
conjugation induce the SOS response and promote integron re-
combination events, thus coupling the generation of diversity
with lateral gene transfer (61, 62). Consequently, in such environ-
ments, lateral gene transfer is promoted and there are opportuni-
ties for complex interactions between various mobile elements.
These interactions can generate ever more complex mosaic mol-
ecules that carry a growing armory of genes encoding resistance to
diverse selective agents (229–232).

As the number of accessory genes linked to a particular mobile
element becomes larger, so the potential for positive selection also
increases. This is because exposure to any one selective agent pro-
vides an advantage for the whole DNA element, simultaneously
selecting for all genes on the element through “hitchhiking” by
simple linkage. As an example, selection for resistance to quater-
nary ammonium compounds is thought to have fixed the clinical
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class 1 integron in a human commensal bacterium (113), and
these disinfectants are known to coselect for elements carrying
antibiotic resistance genes (129). Similarly, exposure to heavy
metals can coselect for antibiotic resistance when resistance genes
are carried on mobile DNA elements that also carry genes for
resistance to those heavy metals (28, 233–235). In environments
containing diverse resistance elements and diverse selective
agents, plasmids can acquire genes for resistance to multiple anti-
biotics, disinfectants, and metals and at the same time assemble
genes for degradative pathways capable of acting upon other
xenobiotics (236). For these reasons, aquatic environments are
regarded as a natural reactor for the generation of novel xenoge-
netic DNA elements (146, 153, 228, 237).

Generation of New DNA Elements and Newly Resistant
Species

Pollution of natural environments with antibiotics and disinfec-
tants affects community structure and leads to increased carriage
of resistance genes in environmental organisms (238, 239). It is
now widely accepted that the natural environment is a recruit-
ment ground for resistant organisms and potential opportunistic
pathogens (121, 144, 213, 240).

Continued copollution with clinical integrons and selective
agents will lead to an increased abundance of resistant cells in the
general environment and place additional selective pressures on
environmental organisms. Two general trends might be predicted:
that new opportunistic pathogens with resistance to antibiotics
will arise and that their integrons will accumulate additional genes
with effects on transmission, pathogenicity, and virulence. These

trends can both be illustrated using recent observations of clinical
integrons detected in marine organisms (Fig. 6).

If resistant bacteria are shed into natural environments, one
might expect that they would be taken up by filter feeders. In light
of this prediction, the integron status of edible prawns along the
east coast of Australia was investigated. Over 75% of prawns col-
lected from retail outlets tested positive for class 1 integrons. De-
tailed characterization of these elements showed that they had all
the hallmarks of integrons originating from clinical contexts:
100% sequence identity to the clinical IntI1 gene, the presence of
the 3= conserved segment, and the presence of a typical gene cas-
sette containing the antibiotic resistance gene aadA2. These data
establish that the integron was ultimately derived from a human
pathogen or commensal organism (32).

However, during its dissemination back onto the environment,
the integron had undergone further evolutionary changes. It was
now resident in Acinetobacter johnsonii, a species not normally
associated with humans, and so must have undergone lateral gene
transfer into its current location. In addition, the integron had
acquired an unusual gene cassette that encoded two methionine
sulfoxide reductases. These enzymes repair proteins damaged by
oxidative stress and are likely to enhance colonization and survival
within animal tissues. Finally, the termini of the original integron
had been replaced by miniature inverted-repeat transposable ele-
ments (MITEs), potentially giving the integron a mechanism for
mobility (32). Consequently the predicted trends outlined above
have been confirmed: the class 1 integron had acquired additional
gene cassettes with relevance to pathogenicity and virulence and

FIG 6 Role of resistance gene pollution in generating novel, complex DNA elements. (A) A typical class 1 integron from human-pathogenic or commensal
bacteria. This type of DNA element commonly pollutes aquatic environments. It consists of inverted DNA repeats IRi and IRt, the class 1 integron integrase gene
intI1, and a gene cassette, aadA2, which confers streptomycin resistance. The 3= conserved segment consists of fused genes for disinfectant and sulfonamide
resistance (qacE�/sul1), ORF5, and the remnants of genes encoding transposition functions (tni�). (B and C) In an aquatic environment, such an integron was
modified by acquiring a novel gene cassette encoding two methionine sulfoxide reductases (msrB and msrA) (B) and replacing the inverted repeats IRi and IRt
with miniature inverted-repeat transposable elements (MITEs) (C). (D) This event generated a compound MITE/integron element. (E) Mobility conferred by
the MITEs allowed insertion of the compound integron into a genomic island. (F) This genomic island moved into at least three different species of the genus
Acinetobacter, carrying the integron with it. Consequently, resistance determinants released from human waste streams may interact with gene cassettes and
mobile DNA elements in aquatic ecosystems to generate new combinations of potential virulence genes in environmental bacteria. The presence of these bacteria
in food items provides a readily accessible route for contamination of the food chain and the emergence of novel, virulent pathogens.

Gillings

268 mmbr.asm.org Microbiology and Molecular Biology Reviews

 on O
ctober 31, 2017 by guest

http://m
m

br.asm
.org/

D
ow

nloaded from
 

http://mmbr.asm.org
http://mmbr.asm.org/


had made its way into the genus Acinetobacter, members of which
are emerging opportunistic pathogens (Fig. 6).

It also appears as if the MITE-integron complex is resident on a
large genomic island and that this island is highly mobile, since it
has now been detected in three different species of Acinetobacter,
all resident in the guts of prawns (241). The presence of the MITE-
integron within a bacterium found in a food item that is con-
sumed whole, and lightly cooked, suggests a clear pathway for
reentry into human hosts. Identical MITE sequences have been
detected at the termini of antibiotic resistance integrons in several
strains of clinical Acinetobacter baumannii and in Acinetobacter
bereziniae (242, 243), strongly suggesting that this kind of element
is readily transferrable between Acinetobacter species. In the case
of the Acinetobacter MITE-integron, mobility may be conferred by
the MITEs themselves or by residency on a genomic island. In
Enterobacter cloacae, integron mobility is associated with a differ-
ent, but functionally related, MITE (33).

Consequently, simultaneous pollution with integrons and se-
lective agents has the potential impose new selective forces on
environmental microorganisms (244). These secondary, unantic-
ipated effects of the antibiotic revolution will precipitate evolu-
tionary change among microorganisms across the globe and have
potentially adverse consequences for human welfare (153, 245).

Integrons as Tools for Biotechnology

Integrons have some significant advantages as a platform for bio-
technological applications. They have all the machinery for acqui-
sition, rearrangement, and expression of exogenous genes, in a
tractable in vivo system. Natural integron integrase activity can be
used to recover functional gene cassettes into a plasmid back-
ground for further downstream manipulation (246). Synthetic
and natural gene cassettes can readily be introduced into cells via
natural transformation. This potentially allows any gene to be
incorporated into an integron (247). Further, marker cassettes,
such as gene cassettes encoding green fluorescent protein, could
be used to naturally transform environmental bacteria with active
integron recombination systems. This would allow chromosomal
cassette arrays to be easily recovered from environmental samples
and would detect arrays in yet-to-be cultured organisms.

Chromosomal cassette arrays are a vast resource for discovery
of novel proteins (70, 97, 98) and for the discovery of protein folds
that might comprise building blocks for the flexible assembly of
new proteins (100). Such cassette arrays have already been sub-
jected to natural selection in the environment where they are
found and so are likely to encode proteins of adaptive relevance
(16, 98, 112). Consequently, the search for proteins with specific
properties and/or activities might be made more efficient by
searching natural environments that match the desired conditions
under which the protein needs to operate and then screening for
the appropriate gene cassettes. These cassettes need not be mem-
bers of any recognized protein family.

Once candidate genes have been assembled into a cassette array,
the natural activity of integrons could be used to generate diverse
arrangements of all the component genes. Selection for optimized
activity would then recover the variant cassette array with an op-
timum content and order of the component gene cassettes. Proof
of principle has already been demonstrated via optimization of the
tryptophan pathway using synthetic gene cassettes randomly re-
arranged via integron integrase activity (248, 249). Thus, integron
platforms could be used to generate new biochemical pathways for

bioremediation or biosynthesis through integron-mediated
operon engineering (20, 98).

Increasing Bacterial Evolvability

The use of antimicrobial compounds has driven the fixation of
ever more complex DNA elements containing integrons, resis-
tance genes, transposons, and other mobile DNAs within all hu-
man-dominated ecosystems. These xenogenetic DNA elements
are released back into the environment, simultaneously with the
antibiotics, disinfectants, and heavy metals that originally drove
their selection (175). Wastewaters and effluent then become a
giant reaction vessel for recombination and rearrangement of re-
sistance determinants (17, 229, 250) and for extensive lateral gene
transfer between clinical, commensal, and environmental bacteria
(145, 236). There is also considerable scope for coselection. As an
example, selection for resistance to disinfectants or heavy metals
fixes all the other genes linked on the same mobile element, and
the more resistance determinants that are present on an element,
the more likely coselection will become (28, 129, 175, 233–235).
Aquatic environments are likely to be major foci for complex in-
teractions between integrons, resistance determinants, and mo-
bile DNAs (146, 153, 228, 237), where biofilms in particular are a
hot spot for genetic exchanges (17, 58, 251).

Human use of selective agents will continue to drive the assem-
bly of complex mosaic elements that, increasingly, will capture
genes conferring virulence, transmissibility, and pathogenicity.
However, these same selective agents will also have much broader
effects on the whole microbial biosphere and on the general tempo
of microbial evolution (153). Genetic diversity in bacteria is gen-
erated by mutation, recombination, and lateral gene transfer. The
rate for each of these processes is under stabilizing selection, bal-
ancing the advantages of genetic innovation against the potential
for loss of genomic integrity. Not surprisingly, under stable con-
ditions, genetic change is suppressed. However, under conditions
of selection or stress, inherent rates of recombination, mutation,
and lateral transfer increase under the SOS response (252, 253).

Continued exposure to variable, subinhibitory levels of selective
agents creates a circumstance where lineages with higher rates of
genetic change have an advantage (254, 255). Thus, an unintended
consequence of the antibiotic revolution might be the fixation of
bacterial lineages with inherently higher basal rates of mutation,
recombination, and lateral gene transfer (153, 175). Clearly, we
need to monitor the environmental effects of bioactive pollutants
much more carefully.

CONCLUSIONS

Integrons are remarkable genetic platforms with the ability to ac-
quire, rearrange, and express diverse genes sampled from the mi-
crobial pangenome. Their facility for seamless acquisition of
adaptive phenotypes brought them to sharp attention when they
turned this activity toward disseminating antibiotic resistance
among clinical pathogens. Research over the last decade has re-
vealed that integrons are far more than a curious phenomenon of
clinical concern. They are an ancient, diverse, and widespread
mechanism for generating genomic novelty and triggering adap-
tive responses in bacteria. Understanding their evolution and bi-
ology will inform both clinical practice and our ability to manage
natural environments. However, there are still outstanding ques-
tions about integron function and biology.

First, there are questions about the size of the resource com-
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manded by integrons. How many different integron integrase
classes are there, and in which taxa do they occur? How many
different gene cassettes are available for acquisition by these inte-
grases, what functions do they encode, and what is their contribu-
tion to fitness? What factors regulate the acquisition and rear-
rangement of gene cassettes within arrays? Finally, how are
cassettes generated? The conservation of attC sites within chro-
mosomal arrays suggest a mechanism that operates within the
host cell, and the compact nature of the cassettes themselves sug-
gests that reverse transcription might be involved. However, for
the moment these are just speculations, and no integron-associ-
ated reverse transcriptase has ever been described. Certainly, un-
derstanding the processes that govern cassette generation, diver-
sity, and dynamics would help our management of antibiotic
resistance and provide a powerful platform for biotechnology,
where potentially any gene could be accessed, manipulated, and
expressed using integron activity.

A second set of questions relates to the role of integrons in
lateral gene transfer. It is clear that chromosomal integrons can
move between genetic locations and between cells. The conserva-
tion of breakpoints, for instance in chromosomal class 1 integrons
(34), suggests site-specific recombination or transposase activity,
but the mechanism(s) involved has not been identified. There are
also other unanswered questions about the lateral transfer of in-
tegron components. Are there pathways of integron and gene cas-
sette sharing between all taxa, or do cellular and recombination
barriers restrict gene cassette exchanges mainly to closely related
groups? What are the dynamics of lateral exchange, and how could
these rates be controlled? Understanding the processes that regu-
late integrase activity would aid our ability to control bacterial
growth and manage antibiotic resistance. It would also improve
the potential of using integrons as platforms for synthetic biology.

A final set of questions deals with human impacts on the mi-
crobial world. What is the fate of integrons and gene cassettes
released into the environment? What is the fate of the antibiotics,
metals, and disinfectants that pollute the same waste streams?
Does this copollution significantly affect the background rates of
evolution in the whole microbial world, not just the targets of
antimicrobial therapies? Can we reduce this potential impact by
controlling the release of DNAs and selective agents?

Understanding antibiotic resistance and integron activity at a
global scale has important payoffs. There is potential for better
health outcomes, better environmental management, and better
understanding of the broad sweep of microbial evolution. What-
ever approach is taken, it does need to be global, since recent
discoveries about integron activity suggest that these versatile el-
ements are potentially capable of sampling and expressing any
gene from the microbial biosphere.
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