Année universitaire 2024-2025 Octobre 2024

Série de TD n°01 d'Algèbre1

Ensembles, Relations binaires et Applications

Exercice 1.

1. On considère les ensembles :

$$B = \{x \in \mathbb{Z}/|x| < 3\}, E = \{x \in \mathbb{Z}/-5 < x \le 5\}$$
 et $A = E \cap \mathbb{N}^*$.

Déterminer les ensembles suivants :

$$A\cap B,\quad \complement_E^{(A\cup B)}, A-B \text{ et } (A\cap B)\cap \complement_E^{(A\cap B)}.$$

- 2. Soient E un ensemble non vide et A, B, C et D quatre parties de E. Montrer que
 - a. $A \cap B = \emptyset \Rightarrow A \subset C_E B$.
 - b. $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.
 - c. $A \cap (B C) = (A \cap B) \cap (A C)$;
- 3. Soit $E = \{-1, 0, 1, 2\}$.
 - a) Donner l'ensemble $E \times E$.
 - b) Déterminer les ensembles $A = \{(i, j) \in E \times E/i < j\}$, $B = \{(i, j) \in E \times E/i > j\}$ et $C = \{(i, j) \in E \times E/i = j\}$.
 - c) Montrer que A, B et C forment une partition de $E \times E$.

Exercice 2.

Soit $E=\{0,1,2,3,4\}$, et R la relation binaire définie sur E par : xRy si et seulement si x+y est pair.

- 1. Dessiner le graphe représentatif de \mathbb{R} .
- 2. montrer que ${\cal R}$ est une relation d'équivalence sur ${\cal E}.$
- 3. Déterminer la classe de 0, et l'ensemble quotient E/R.

Exercice 3.

Dans \mathbb{R} on définit la relation binaire \mathcal{T} par :

$$\forall x, y \in \mathbb{R}, x\mathcal{T}y \iff \cos^2 x + \sin^2 y = 1$$

- 1. Montrer que \mathcal{T} est une relation d'équivalence.
- 2. Déterminer la classe d'équivalence de $\frac{\pi}{6}$.

Exercice 4.

1) Dans \mathbb{R} , on définit la relation binaire \mathcal{R} par :

$$\forall x, y \in \mathbb{R}, x\mathcal{R}y \iff x^2 - y^2 \le x - y.$$

Montrer que:

- a) R n'est pas symétrique.
- b) R n'est pas antisymétrique.
- 2) On définit sur $]\frac{1}{2}$, $+\infty$ [la relation binaire S par :

$$\forall x, y \in]\frac{1}{2}, +\infty [, xSy \iff x^2 - y^2 \le x - y.$$

- a) Montrer que S est une relation d'ordre.
- b) Cet ordre est-il total?

Exercice 5.

Soient f et g deux applications définies de \mathbb{R} dans \mathbb{R} telles que :

$$f(x) = 2x + 5$$
 et $g(x) = \frac{1}{x^2 + 1}$.

- 1. f, g sont- elle injective? surjective?
- 2. A- t- on $f \circ g = g \circ f$? Justifier.
- 3. Calculer $f(\{0,1\}), f^{-1}(\{5\}), f([0,1]), f(\mathbb{R}), f^{-1}([5,7]).$
- 4. Calculer $g^{-1}(\{1\})$, g([-4,4]), $g^{-1}([-4,-1])$ et $g^{-1}([0,4])$.

Exercice 6.

Soit h l'application de \mathbb{R} dans \mathbb{R} définie par : $h(x) = \frac{4x}{x^2+1}$.

- 1. Vérifions que pour tout réel a non nul on a: $h(a) = h\left(\frac{1}{a}\right)$. Que peut-on déduire ?
- 2. Soit f la fonction définie sur l'intervalle $I = [1, +\infty[$ par :

$$f(x) = h(x).$$

- a. Montrer que f est injective.
- b. Vérifier que : $\forall x \in I, f(x) \leq 2$.
- c. Montrer que f est une bijection de I sur]0,2] et déterminer la fonction réciproque f^{-1} .

1