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Opioids mediate their effects via opioid receptors: mu, delta, and kappa. At the neuronal
level, opioid receptors are generally inhibitory, presynaptically reducing neurotransmitter
release and postsynaptically hyperpolarizing neurons. However, opioid receptor-
mediated regulation of neuronal function and synaptic transmission is not uniform in
expression pattern and mechanism across the brain. The localization of receptors
within specific cell types and neurocircuits determine the effects that endogenous and
exogenous opioids have on brain function. In this review we will explore the similarities
and differences in opioid receptor-mediated regulation of neurotransmission across
different brain regions. We discuss how future studies can consider potential cell-type,
regional, and neural pathway-specific effects of opioid receptors in order to better
understand how opioid receptors modulate brain function.
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INTRODUCTION

Opioid drugs, which include both prescription painkillers, such as morphine and oxycodone, and
illicit substances, such as heroin, are widely used and frequently misused (Kosten and George, 2002;
Von Korff, 2013). An increase in prescription of opioid analgesics has precipitated an opioid crisis
characterized by widespread opioid misuse, related complications, and opioid overdose (Kosten
and George, 2002; Von Korff, 2013; Dahlhamer et al., 2016). This crisis presents a severe health
exigency and makes salient a crucial scientific initiative to better understand the effects of opioid
drugs and the mechanisms and opioid receptor systems on which these drugs act.

Classically, opioid receptors can be categorized into one of three subtypes: mu (MOR), delta
(DOR), and kappa (KOR) (Le Merrer et al., 2009). Endogenous signaling peptides activate opioid
receptors: endorphins (MOR), enkephalins (primarily DOR, MOR), and dynorphins (KOR).
Opioid peptides or synthetic opioid peptide derivatives are often utilized as selective opioid
receptor agonists and antagonists in research. The pharmacology of these diverse ligands is
reviewed elsewhere (Rasakham and Liu-Chen, 2011; Gendron et al., 2016; De Neve et al., 2021).
Some commonly studied opioid receptor agonists include DAMGO (MOR), DPDPE (DOR),
U69,593 or U50,488 (KOR), and the endogenous opioid peptides, met-enkephalin (MetEnk), leu-
enkephalin (LeuEnk) (DOR, MOR), and dynorphin (KOR). Commonly used opioid receptor
antagonists include CTAP/CTOP (MOR), naltrindole (DOR), and nor-binaltorphimine (KOR)
or less selective antagonists such as naloxone. Many opioid drugs, including morphine, fentanyl,
and heroin primarily activate MORs (Pasternak, 2012). Opioid receptors are Class A G protein
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coupled receptors (GPCRs) that couple to inhibitory Gi/o
proteins (Figure 1; Stein et al., 2003; Allouche et al., 2014).
These receptors transduce extracellular messages using G protein
(Gαi and Gβγ), mitogen-activated protein kinase (MAPK),
and arrestin signaling pathways (Rosenbaum et al., 2009;
Al-Hasani and Bruchas, 2011). Opioid receptors generally
decrease neurotransmission through inhibiting voltage-gated
calcium channels and activating inwardly rectifying potassium
channels (Yamada et al., 1998; Al-Hasani and Bruchas, 2011).
Opioid receptors can be located postsynaptically in neuronal
soma and presynaptically in axon terminals (Olive et al., 1997).
Postsynaptic opioid receptors inhibit neurotransmission by
directly hyperpolarizing neurons, while presynaptic opioid
receptors can indirectly reduce or enhance neural activity
by reducing excitatory or inhibitory neurotransmission,
respectively. The opioid receptors and their endogenous ligands
are differentially expressed throughout the brain (Le Merrer et al.,
2009; Erbs et al., 2015). Because of their widespread expression,
opioid receptors are involved in a diverse array of physiological
and behavioral functions, including nociception, drug reward
and consumptive behavior, social memory, fear learning, stress
and emotion, immune activation, and various physiological
processes, such as respiration and gastrointestinal tract motility
(Shippenberg et al., 1998; Drews and Zimmer, 2010; Van’t Veer
and Carlezon, 2013; Leroy et al., 2017; Eisenstein, 2019; Patel
et al., 2019; Toubia and Khalife, 2019; van Steenbergen et al.,
2019; Robble et al., 2020; Galaj and Xi, 2021).

The expanding understanding of opioid receptor
functionality, distribution, and modulation of neurotransmission
has demonstrated an important role for opioids in modulating
neuroplasticity. Neuroplasticity refers to the ability of the brain
to change structure and function across life and in response to
experience (Voss et al., 2017). The phenomenon is multi-level
and can occur across networks, isolated circuits, and amongst
cell populations (Citri and Malenka, 2008; Voss et al., 2017). This
manifests as changes in functional and structural connectivity,
the formation, migration, and elimination of neurons and
glia, alterations of neuronal processes, and through synaptic
plasticity (Kays et al., 2012; Kelly and Castellanos, 2014).
Synaptic plasticity may be persistent with activity-dependent
strengthening (long-term potentiation, LTP) and weakening
(long-term depression, LTD) of connections between neurons,
although there are abundant forms of short-term plasticity as
well (Citri and Malenka, 2008; Atwood et al., 2014a; Motanis
et al., 2018). Activity-dependent neuroplasticity is mediated
by endogenous neurotransmitter systems (Viveros et al., 2007;
Bliss and Cooke, 2011; Pitchers et al., 2014). Exposure to
exogenous substances (e.g., neurotransmitter receptor agonists,
antagonists) can also induce “chemical” plasticity (Atwood
et al., 2014a). Neuroplasticity underlies many crucial processes,
including learning, cognition, and neurodevelopment, and is
implicated in the development of neuropathology, including
mood disorders, addiction, and neurodegenerative diseases.
Therefore, it is important to elucidate the role of opioid receptors
in neuroplasticity (Johansson, 2004; O’Brien, 2009; Kays et al.,
2012; Schaefers and Teuchert-Noodt, 2016; Voss et al., 2017).
Due to their ability to modulate different neurotransmitter

FIGURE 1 | Summary of potential mechanisms of opioid receptor-mediated
modulation of neurotransmission. Opioid receptor activation enhances
potassium channel (KV) and inhibits calcium channel (CaV) function, reducing
neurotransmitter release or producing changes in postsynaptic excitability.
Opioid receptors may modulate adenylyl cyclase (AC) function to reduce
cAMP levels, thereby impacting protein kinase A (PKA) and type 1
hyperpolarization-activated cyclic nucleotide-gated (HCN1) channel activity.
Beta-arrestin2 (Barr2), phospholipase A2 (PLA2), as well as kinases such as
p38, ERK, protein kinase C (PKC), and cSrc have been implicated in
mediating opioid receptor effects on neurotransmission. Opioid
receptor-mediated G protein signaling could also directly affect
neurotransmitter release machinery. Figure created with BioRender.com.

systems, as well as directly influencing cellular function, opioid
receptors are positioned to modulate both activity-dependent
plasticity and opioid drug-induced chemical plasticity (Lüscher
and Malenka, 2011; Beltrán-Campos et al., 2015; Hearing et al.,
2018; Hearing, 2019; Puryear et al., 2020).

The goal of this review is to demonstrate how opioid receptors
modulate neurotransmission. While opioid receptors modulate
a variety of neurotransmitter systems, we have limited the
scope of this review to excitatory (glutamatergic) and inhibitory
(often GABAergic) transmission and postsynaptic modulation
of neuronal excitability. We have focused on brain regions
where much work on opioid receptor-mediated regulation of
neurotransmission has been performed. A summary of the
literature reviewed below is provided in Table 1 and illustrated in
Figure 1 as a reference for the reader. Figure 1 also illustrates how
opioid receptors differentially impact neurotransmission pre-
and postsynaptically. In this review, we focus on the role of opioid
receptors themselves, rather than the impact of opioid drugs
on general synapse and brain function. The studies reviewed
herein utilized electrophysiology techniques in combination
with pharmacological manipulation of opioid receptors. Studies
investigating subpopulations within brain regions (i.e., input
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regions, cell types, projection targets) have utilized many
techniques, including targeted expression of optogenetic tools,
tracing strategies, and reporter animal models. We will discuss
potential generalizable principles regarding opioid receptor-
mediated neuroplasticity, point out broad knowledge gaps, and
suggest areas of future research to advance the field, especially as
it relates to cell type- and synapse-specific explorations of opioid
receptor function.

AMYGDALA

The amygdaloid complex is involved with emotional processing
and consists of 13 nuclei, categorized as basolateral (basal,
lateral, and accessory basal nuclei; BLA), cortical-like (cortical
and lateral olfactory tract nuclei, periamygdaloid complex),
centromedial [medial (CeM) and central nuclei (CeA)], bed
nucleus of stria terminalis (BNST), or other (intercalated nuclei,
anterior amygdala area, amygdalohippocampal area) (Sah et al.,
2003). The amygdaloid complex has extensive connectivity across
the brain, including local connectivity between amygdala nuclei
(Pitkänen et al., 1997). MORs in the amygdala are involved
with analgesia, fear and anxiety responses, and social behavior
(Good and Westbrook, 1995; Wilson and Junor, 2008; Zhang
et al., 2013; Lebow and Chen, 2016). Amygdala DORs play a
role in modulating ethanol’s effects; however, a functional role
of amygdala DORs may not occur until after exposure to drugs
of abuse, such as ethanol and morphine (Kang-Park et al., 2007;
Bie et al., 2009a,b). Amygdala KORs are involved with anxiety
and fear conditioning (Knoll et al., 2011). KOR activation in
the amygdala increases anxiety-like behaviors and enhances the
rewarding effects of nicotine, possibly due to nicotine’s anxiolytic
effect (Smith et al., 2012).

Basolateral Amygdala
The basolateral amygdala (BLA) is the primary input region
of the amygdaloid complex and receives inputs from across
the brain, including hippocampus, nucleus accumbens (NAc),
prefrontal cortex (PFC), thalamus, and other amygdala nuclei
(Huang et al., 2021). In the lateral nucleus, MORs hyperpolarize
about 50% of neurons (Sugita and North, 1993). However, a
later study found MORs do not directly hyperpolarize BLA
neurons, but the activity of BLA neurons is modulated by
presynaptic MORs (Blaesse et al., 2015). In the lateral nucleus,
MORs and DORs presynaptically inhibit GABAergic input
(Sugita and North, 1993). A later study found that MOR
enhances voltage-gated potassium channel (Kv) 1.2 currents and
enhances action potential (AP) spike adaptation via G protein
PLA2 signaling in lateral amygdala (Faber and Sah, 2004).
MetEnk inhibits GABAergic input to the BLA from intercalated
cells, presumably through MORs (Gregoriou et al., 2019). It
is unknown whether MORs regulate GABA transmission from
other GABAergic inputs. MOR activation reduces GABAergic
input to ∼75% of CeA-projecting BLA neurons via activation
of Kv1.1/1.2 channels. Very few CeA-projecting BLA neurons
have glutamate input that is inhibited by MOR activation
(Finnegan et al., 2006). On the other hand, MOR activation

produces a long-lasting depression of dorsal midline thalamic
glutamatergic input to BLA neurons. MOR inhibition of midline
thalamic input to BLA neurons is sufficient to reduce feedforward
excitation of the CeM (Goedecke et al., 2019). These studies
suggest MORs may primarily modulate BLA projections to the
centromedial amygdaloid nuclei; however, additional studies
are needed investigating MOR modulation of BLA projections
to other regions.

Kappa activation in BLA enhances presynaptic GABA
transmission in a tetrodotoxin (TTX)-sensitive manner with no
effect on postsynaptic responses in adolescent, but not adult
rats (Przybysz et al., 2017). KORs have no effect on glutamate
transmission in BLA in rats. Further exploration of the effects of
KOR activation on GABA transmission in adolescent rats showed
that KOR activation has a variable effect on GABA transmission
with subsets of cells showing potentiation, no responses, or
depression (Varlinskaya et al., 2020). Further research is needed
to determine if these subsets represent sub-populations with
distinct afferents/efferents. In mice, KOR activation reduces
synaptic transmission from the lateral amygdala to the BLA and
blocks LTP induction in the BLA (Huge et al., 2009). Overall,
these studies demonstrate KORs modulate neurotransmission in
the BLA and these effects demonstrate species, age, input, and
output specificity.

Bed Nucleus of the Stria Terminalis
MORs presynaptically inhibit GABAergic transmission to
Ventral Tegmental Area (VTA)-projecting neurons in the
ventrolateral BNST (Dumont and Williams, 2004). It is
unknown whether MORs inhibit GABA transmission to non-
VTA-projecting BNST neurons. MOR’s effect on glutamate
transmission in the BNST is also unknown. KORs presynaptically
inhibit GABAergic input from CeA to BNST via extracellular
signal-related kinases (ERK), but not p38 (Li et al., 2012). KOR
activation induces presynaptic LTD via p38 (not PKA or MAPK)
and calcium signaling in BNST at BLA, but not PFC inputs.
Despite KOR-mediated inhibition of GABA transmission, the
net effect of KOR activation is to reduce AP firing of BNST
neurons. This may be caused by KOR-induced inhibition of
glutamate transmission in the BNST. KOR inhibits glutamate
onto both dynorphin-positive and dynorphin-negative neurons
but has a larger effect on dynorphin-positive neurons (Crowley
et al., 2016). Overall, presynaptic MORs and KORs modulate
neurotransmission in the BNST; however, while KORs inhibit
both GABA and glutamate transmission, MORs have only been
shown to inhibit GABA transmission.

Centromedial Amygdala
MORs inhibit about 60% of CeA neurons, particularly those
with bipolar morphology (Chieng et al., 2006). CeA neurons
can be characterized as Type A or B based on the absence
or presence of spike accommodation in response to prolonged
depolarization current. MORs hyperpolarize a subset of Type A
neurons through activation of potassium currents, whereas KORs
only hyperpolarize Type B neurons (Zhu and Pan, 2004). Separate
subpopulations of MOR-inhibited neurons were also inhibited
by KORs or DORs. When the investigators looked at projection
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TABLE 1 | Summary of effects of mu (MOR), delta (DOR), and kappa (KOR) opioid receptor activation on neuronal excitability (postsynaptic effects), presynaptic GABA
release, and presynaptic glutamate release.

Postsynaptic effects Presynaptic GABA Presynaptic Glutamate

MOR DOR KOR MOR DOR KOR MOR DOR KOR

Amygdala

BLA – + ± ± –

BNST + + ±

CeA ± ± ± + ± + + ± ±

MICR + ± ± –

Brainstem/Midbrain

DVM ± +

LC + + +

MVN – + –

NTS + – – ± + +

PAG ± ± + ± ± + – –

Pons + – – + + + + – –

Raphe ± ± + – – + +

RVM ± ± ± ± ± ±

SN + + + + +

VTA/RMTg ± ± ± + ± + + +

Cortex

ACC ± ± – + ± +

AIC ± ± ±

mPFC + ± ± ±

OFC ±

S1 ± ± ±

Hippocampus

CA1 ± ± ± ± ± – –

CA2 +

CA3 ± ± + – – ± +

DG + + + + + + ± – ±

Hypothalamus

AN ± ± ± + ± + + – +

LH +

PO + +

PVN + + +

SON ± ± ± ± ± + ±

VMH + – – + – +

Habenula

LHb ± ± + ± +

Pallidum

GP + – ± + ± + –

EPN + +

VP + + + + +

Striatum

DS – – ± ± ± ± +

NAc ± ± ± + ± ±

Thalamus

Thalamus + – ±

+, Identified effects of opioid receptor activation.
–, Identified null effect of opioid receptor activation.
±, Identified effects in a subpopulation of neurons or inconsistent results between studies.
Blanks indicate untested areas. Note that future studies may reveal heterogenous responses to opioid receptor activation where past studies have either observed
widespread effects or null effects.
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targets they found that MORs hyperpolarize parabrachial nucleus
(PBN)-projecting neurons (Chieng et al., 2006). It is possible
MOR-sensitive Type A neurons may specifically project to the
CeA, although additional studies are needed to confirm this.

MORs appear to play a role in tonically inhibiting GABA
release from synaptic terminals in the CeA. In vivo opioid
exposure can also induce postsynaptic MOR-mediated inhibition
of GABA current amplitudes (Kang-Park et al., 2009; Bajo
et al., 2011). Specifically, periaqueductal gray (PAG)-projecting
CeA neurons receive MOR-sensitive GABAergic input (Finnegan
et al., 2005). Additional studies are needed to identify MOR-
sensitive GABAergic inputs in the CeA. Like MORs, KOR
activation inhibits GABA release in CeA in rats (Przybysz et al.,
2017) and KORs may also tonically inhibit GABA release (Gilpin
et al., 2014; Bloodgood et al., 2021; Khom et al., 2021). Similarly,
DORs also inhibit GABA release in the CeA, but there is evidence
for species differences. In one study in mice, DOR activation
was shown to reduce GABA release; whereas, in another study
in rats, DORs did not have an effect on GABA transmission
under normal conditions, but gained the ability to do so in
ethanol-treated rats (Kang-Park et al., 2007; Bie et al., 2009a).
Similar to the CeA, MORs inhibit GABA transmission in the
CeM; MetEnk, presumably through MORs, inhibits GABergic
input from the nearby intercalated cell region of the amygdala
(Gregoriou et al., 2019). MORs on the intercalated cells prevent
feedforward inhibition from the BLA to the CeM (Blaesse et al.,
2015). Future studies are needed to determine whether KORs or
DORs inhibit GABA transmission in the CeM.

In contrast to opioid receptor-mediated effects on GABA
transmission, MOR, but not DOR or KOR, activation reduces
glutamate input in the CeA but not CeM (Zhu and Pan,
2005; Blaesse et al., 2015). Specifically, a small subpopulation
of PAG-projecting neurons in the CeA receive MOR-sensitive
glutamate input (Finnegan et al., 2005). A later study determined
that MORs inhibit glutamate input to CeA neurons from the
parabrachial nucleus and BLA (Kissiwaa et al., 2020), but another
study found MORs do not inhibit BLA inputs to CeM neurons
(Blaesse et al., 2015). Another study found MOR activation
produces a transient depression of dorsal midline thalamic
glutamatergic input to CeA neurons (Goedecke et al., 2019).
Similar to some studies of CeA GABA transmission, DOR-
mediated inhibition of glutamate release may be inducible (Bie
et al., 2009a,b). A subset of BLA inputs are dually regulated
by KORs and DORs, suggesting that there may be some CeA
synapses that are sensitive to KORs and DORs that may not
be distinguished when glutamate transmission is probed more
broadly, as done previously (Zhu and Pan, 2005; Kissiwaa et al.,
2020). In CeA neurons, direct parabrachial glutamatergic input
to corticotropin-releasing factor (CRF) neurons is insensitive to
KORs; however, KOR activation presynaptically inhibits local
GABA neurons that receive parabrachial glutamatergic input,
resulting in disinhibition of the CRF neurons (Hein et al., 2021).

Medial Intercalated Cell Region
GABAergic neurons of the medial island of intercalated cells send
inhibitory projections to the BLA and CeM. MORs hyperpolarize
these neurons in both rats and mice (Blaesse et al., 2015;

Winters et al., 2017). In rats, both MOR and DOR, but not
KOR, activation can reduce glutamate release from BLA inputs
to intercalated neurons. Endogenous opioid peptide release in
the intercalated cell region produces presynaptic inhibition of
glutamate release via DORs and postsynaptic hyperpolarization
via MORs (Winters et al., 2017). On the other hand, one study
found that MORs do not inhibit glutamate input from BLA to
the medial intercalated cell region in mice, suggesting possible
species differences (Blaesse et al., 2015). MORs also inhibit
GABA transmission to intercalated neurons in rats. Direct MOR
activation via exogenous agonist application greatly decreases
local GABA transmission, although endogenous opioid peptide
release has only a minor effect on this inhibitory transmission
(Winters et al., 2017).

BRAINSTEM AND MIDBRAIN

The brainstem connects the cerebrum to the spinal cord
and cerebellum. It regulates respiration, consciousness, blood
pressure, heart rate, and sleep (Angeles Fernández-Gil et al.,
2010). The midbrain plays key roles in sensory and motor control
and has received much attention for its role in reward processing
and decision making (Ruchalski and Hathout, 2012). Brainstem
and midbrain express the three opioid receptors (Mansour et al.,
1987; Le Merrer et al., 2009) and play major roles in drug reward,
pain, and respiration (Le Merrer et al., 2009; Dahan et al., 2018;
Bagley and Ingram, 2020).

Dorsal Motor Nucleus of the Vagus
MOR activation presynaptically inhibits glutamate input, but
not GABAergic input, consistent with MOR expression in
terminals of glutamate, but not GABA neurons of the Dorsal
Motor Nucleus of the Vagus (DVM) (Browning et al., 2002).
Under normal conditions, opioid agonists fail to influence
GABAergic input to these neurons; however, when cAMP
signaling is engaged, MOR is trafficked to the synapse and inhibits
GABA transmission. This is inhibited by disrupting cAMP
and PKA signaling, suggesting that the cAMP-PKA pathway
regulates trafficking of MORs into the cell surface of GABAergic
nerve terminals (Browning et al., 2004). Conversely, another
study found that MOR activation reduces both AP-dependent
glutamate and GABA transmission in rat and mouse DVM GABA
neurons. MOR activation reduces GABAergic input to DVM
neurons from the nucleus of the solitary tract (NTS), potentially
due to MORs on the NTS neurons (Glatzer et al., 2007). These
data suggest that opioid actions may depend on the state of
activation of vagal circuits.

Locus Coeruleus
The Locus Coeruleus (LC) has a long history of studies of
the impact of opioid receptor-mediated regulation of cellular
function due to its high expression of MORs that inhibit
LC neuron excitability (Bird and Kuhar, 1977). Recording
opioid effects on ion channel function in these neurons is a
common methodology for exploring opioid receptor signaling
and testing hypotheses regarding receptor desensitization and
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opioid tolerance (for review, see Allouche et al., 2014). However,
a detailed discussion of the many studies of opioid receptor
desensitization and tolerance in the LC are beyond the scope
of this review. In addition to MOR-mediated regulation of
LC neuron excitability, KORs also function in the LC to
inhibit glutamate input to LC neurons without affecting
postsynaptic currents/membrane potential (McFadzean et al.,
1987; Pinnock, 1992b). Local KORs within the LC are targeted
by dynorphinergic neurons from other brain regions (Al-Hasani
et al., 2013). LC neurons that project to the spinal cord are
excited by DOR agonists via inhibition of presynaptic DORs
on GABAergic inputs, but without an effect on glutamate input
(Pan et al., 2002).

Nucleus of the Solitary Tract
MOR, but not KOR or DOR, agonists hyperpolarize neurons
in the medial, dorsomedial and dorsolateral regions of the
NTS through increasing potassium conductance (Rhim et al.,
1993; Glatzer et al., 2007; Poole et al., 2007). In addition
to increasing potassium conductance in these neurons, MORs
are able to inhibit N- and P/Q-type voltage-gated calcium
channels (VGCCs) in NTS neurons (Rhim et al., 1996;
Endoh, 2006). While KORs were not found to hyperpolarize
neurons, KORs and MORs were found to inhibit N- and
P/Q-type, but not L-type VGCCs via Gβγ, but not PKA
signaling (Rhim et al., 1993; Endoh, 2006). These data
suggest that opioid receptors use different pathways to induce
inhibition in the NTS.

MORs also inhibit synaptic transmission in the NTS.
Presynaptic MORs reduce inhibitory input to NTS GABA
neurons from solitary tract stimulation (Glatzer et al., 2007).
Within the medial NTS, MOR activation blocks tonic GABA
currents and reduces GABA release (Herman et al., 2012).
Another study found that MOR-mediated local inhibition
of GABA transmission was AP-dependent, suggesting
MORs on cell bodies may modulate local GABA neurons
(Glatzer and Smith, 2005).

Solitary tract glutamatergic input to NTS neurons is inhibited
strongly by MOR and weakly by DOR and KOR agonists
(Rhim et al., 1993; Glatzer and Smith, 2005; Poole et al.,
2007; Boxwell et al., 2013). MOR inhibition is presynaptically
localized (Glatzer and Smith, 2005). MORs equally inhibit
solitary tract glutamate input to both GABAergic and non-
GABAergic NTS neurons (Boxwell et al., 2013). Interestingly,
MOR activation is less efficacious when GABA and glycine
receptors are blocked (Boxwell et al., 2013). One study
specifically recorded from NTS pro-opiomelanocortin (POMC)
neurons and found that glutamate input was presynaptically
regulated by MORs (Appleyard et al., 2005). On the other
hand, in recordings from NTS neurons that project specifically
to the PBN, DORs, but not MORs, inhibited solitary tract
glutamatergic inputs (Zhu et al., 2009). One study specifically
looked at tyrosine hydroxylase (TH)-positive and TH-negative
neurons of the NTS (Cui et al., 2012). Like other studies
they found that MORs presynaptically inhibited solitary tract
input to both of these classes of neurons, but the effect
was larger in TH-positive neurons. These data suggest that

presynaptically expressed opioid receptors may differentially
affect neurotransmitter release.

Periaqueductal Gray
The PAG is a hot spot for opioid signaling in the brain.
MORs hyperpolarize and activate G protein-couple inwardly
rectifying potassium channels (GIRKs) in a subpopulation of
neurons within the PAG, mostly in lateral and dorsal regions of
ventrolateral PAG (vlPAG) (Chieng and Christie, 1994; Vaughan
and Christie, 1997; Chiou and Huang, 1999; Vaughan et al.,
2003; Chen et al., 2016). Some report that KORs have no effect
on GIRK in rat PAG, while the same group report that they
do in mice (Chieng and Christie, 1994; Vaughan et al., 2003),
suggesting that the animal model used for studying the opioid
receptor effects is important. MOR inhibits about half of lateral
rostral ventromedial medulla (RVM)-projecting PAG neurons
and less than a quarter of RVM-projecting vlPAG neurons
through activating an outward current (Osborne et al., 1996).
An investigation of the specific responses within different types
of PAG neurons shows that MOR activation hyperpolarizes
ventral PAG GABA neurons and reduces AP firing (Chen et al.,
2016). In serotonergic (5-HT) neurons however, MOR activation
hyperpolarizes the neurons but enhances AP firing. In addition
to their effects on GIRKs, MORs, but not DORs or KORs, inhibit
calcium channels in PAG neurons (Kim et al., 1997; Connor et al.,
1999). Some CeA inputs to ventrolateral PAG are sensitive to
MOR and DOR activation, responding with both excitation (20%
of responses) and inhibition (25% of responses). The identities
and types of responses are not clear from this study (da Costa
Gomez and Behbehani, 1995). This could be due to changes
in neuronal excitability described above or changes in synaptic
function described below.

MORs, but not KORs or DORs, presynaptically inhibit
glutamate transmission to some degree in all regions of the PAG
(Vaughan and Christie, 1997; Chiou and Huang, 1999). Looking
at identified cellular targets, MOR decreases glutamate input
to both GABA and 5-HT neurons (Chen et al., 2016). MORs
presynaptically regulate GABA in all regions of the PAG to both
GABAergic and 5-HT neurons, through presynaptic activation
of potassium channels and PLA2 (Vaughan and Christie, 1997;
Vaughan et al., 1997; Chen et al., 2016). MORs also inhibit
GABA input to ventral PAG TH-expressing neurons that project
to the BNST and co-release dopamine and glutamate (Li et al.,
2016). Interestingly, this involves a short-term reduction in
GABA release accompanied by a more persistent inhibition of
GABA transmission via a postsynaptic mechanism. Regarding
other opioid receptors that modulate GABA transmission, there
may be species differences. In rats, only MORs inhibit GABA
release; whereas, in mice, KORs, but not DORs, also inhibit
GABA release (Vaughan et al., 2003; Li and Kash, 2019). MORs
inhibit GABA input to a greater extent than glutamate input
in the PAG. The greater inhibition of GABA input overcomes
MOR’s effects on glutamate input, as well as hyperpolarization,
to increase AP firing of ventral PAG neurons (Chiou and
Huang, 1999). The ability of DORs to inhibit GABA release
in the PAG is plastic. DOR agonists have no effect on PAG
GABAergic transmission in naïve mice but may be induced
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to do so with chronic morphine treatment (Vaughan et al.,
2003; Hack et al., 2005). DOR activation may also inhibit
GABA reuptake via GABA transporter type 1 in the PAG (Pu
et al., 2012). Overall, presynaptic opioid receptors modulate
neurotransmission in the PAG; however, while MORs and KORs
inhibit GABA, only MORs inhibit glutamate transmission. DORs
have only been shown to inhibit GABA transmission, likely using
a different mechanism.

Raphe Nuclei
There are two types of cells in the nucleus raphe magnus (NRM)
that have differential responses to opioids. Primary 5-HT neurons
are hyperpolarized via KOR-mediated GIRK activation (Pan
et al., 1997; Li and Wang, 2001). Secondary GABAergic neurons
are hyperpolarized by MORs also via GIRK activation (Pan et al.,
1997; Li and Wang, 2001). MORs disinhibit primary cells through
inhibiting GABA input to these KOR-sensitive cells (Pan et al.,
1997). KORs also presynaptically inhibit glutamate input to both
primary and secondary NRM cells (Bie and Pan, 2003).

MOR activation hyperpolarizes around 80% of non-5-HT
DRN neurons and around 30% of 5-HT neurons, likely through
enhancing potassium conductance. MOR activation reduces
spontaneous GABA release and NMDA-induced activation
of GABA release from local neurons, as well as neurons
in the PAG onto 5-HT DRN neurons. As in the PAG,
MORs also inhibit GABAergic input to DRN TH-expressing
dopaminergic/glutamatergic neurons that project to BNST (Li
et al., 2016). DOR and KOR activation have no effect on GABA
transmission in these cells. One study found that MOR activation
has no effect on glutamate input to 5-HT cells; whereas, a later
study found that MORs are able to inhibit glutamate release
and suggested this was due to experimental conditions (Pinnock,
1992a; Jolas and Aghajanian, 1997). In the positive study, they
found that MORs were able to inhibit local glutamate release as
well as glutamate input from the PAG (Jolas and Aghajanian,
1997). KORs are also able to inhibit glutamate input to DRN
5-HT neurons (Pinnock, 1992a). Therefore, MOR and KOR are
capable of inhibiting both GABA and glutamate release, however
up to the present time there is no evidence that DORs have a role
in the Raphe nuclei.

Rostral Ventromedial Medulla
In RVM there are three different cell types that show differential
responses to noxious stimuli: ON cells increase firing, OFF
cells decrease firing, and NEUTRAL cells show no responses
(Sikandar and Dickenson, 2011). MORs and DORs inhibit ON
cell responses, increase activity of OFF cells, and have no effect on
NEUTRAL cells (Cheng et al., 1986; Harasawa et al., 2000). MOR
activation in RVM directly inhibits ON cells. In OFF cells, there
are no effects of direct MOR agonist application, suggesting that
opioid-mediated excitation of OFF cells is indirect (Heinricher
et al., 1992, 1994).

In measures of direct cellular responses, there are two major
cell types in RVM that respond to opioids: primary cells and
secondary cells. Primary cells have a wider action potential, more
negative resting membrane potential, and are not inhibited by
MOR agonists. Secondary cells are generally presumed to be

inhibitory interneurons that serve only to regulate the activity
of the output neurons, have a shorter action potential, are
often firing spontaneously, and are mostly hyperpolarized by
MOR agonists (Pan et al., 2000; Cleary et al., 2008). Also,
primary cells are responsive to KOR activation, producing
outward currents (Pan et al., 1990, 2000). Subpopulations of
secondary cells are responsive to MOR activation, also producing
outward currents. Almost all spinally projecting RVM neurons
respond to opioids in some fashion. Subpopulations of these
neurons show outward current responses to either only MOR,
only KOR, or both receptor activations (Marinelli et al., 2002).
Interestingly, MOR responsive secondary cells are similar to
ON cells in vivo, and KOR responsive primary cells are similar
to OFF cells (Pan et al., 1990). Non-5-HT spinally projecting
neurons are almost exclusively MOR responders; whereas, 5-HT
neurons have equal proportions of MOR, KOR, and MOR/KOR
responders (Marinelli et al., 2002; Zhang et al., 2006; Zhang
and Hammond, 2010). About two thirds of TH-expressing and
TH-negative bulbospinal neurons are hyperpolarized by MOR
via GIRK activation (Hayar and Guyenet, 1998). DORs produce
outward currents in subpopulations of RVM neurons (Marinelli
et al., 2005). They specifically act in a subpopulation of MOR-
regulated non-5-HT spinal cord-projecting neurons, as well as
subpopulations of 5-HT spinal cord-projecting neurons that have
differential sensitivities to MOR and KOR activation.

MOR activation reduces GABA, but not glutamate input
to primary cells (Pan et al., 1990, 2000). MOR activation
reduces GABA input likely via inhibition of presynaptic calcium
channels, but not glutamate input to RVM neurons; however, it is
not clear whether these are primary or secondary neurons due to
the recording conditions (Vaughan et al., 2001). Glutamatergic
input to secondary cells is presynaptically inhibited by KORs
(Ackley et al., 2001). MORs inhibit GABA and glutamate
input to bulbospinal TH-expressing and TH-negative neurons
through presynaptic mechanisms (Hayar and Guyenet, 1998).
In spinal cord-projecting rat RVM neurons MORs inhibit
evoked glutamate inputs in ∼50% of cells, miniature excitatory
postsynaptic currents (mEPSCs) in 55% of cells, evoked
inhibitory inputs in about 70% of cells, and miniature inhibitory
postsynaptic currents (mIPSCs) in 100% of cells (Finnegan et al.,
2004). MORs agonists frequently activate output neurons in the
brain via disinhibition. Thus, direct inhibition of “secondary
cells” disinhibits “primary cells” or output neurons, allowing
them to become active (Cleary et al., 2008).

Substantia Nigra
MORs, DORs, and KORs, have all been reported to modulate
substantia nigra GABA release (Starr, 1985). KOR activation
presynaptically inhibits glutamate transmission in Substantia
Nigra (SN) pars reticulata (Maneuf et al., 1995). KORs can
inhibit type-2 dopamine receptor (D2R)-mediated IPSCs in
dopamine neurons of the SN pars compacta (Ford et al.,
2007). The mechanism is unclear, given that KORs can both
hyperpolarize and prevent IPSCs in the same neuron and
this is not due to modulation of cAMP, kinases, calcium, or
potassium channels. Overall, opioid receptors may play a role
in regulating neurotransmitter release, however, more research
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is needed to clarify the specific actions of each of the different
opioid receptors.

Ventral Tegmental Area and
Rostromedial Tegmental Nucleus
MORs hyperpolarize local GABA neurons within VTA, but not
dopamine neurons, leading to greater excitation of dopamine
neurons (Johnson and North, 1992). MORs can hyperpolarize
secondary VTA cells, that are largely GABAergic as well as
tertiary VTA cells that are NAc-projection neurons (Cameron
et al., 1997). MOR-induced hyperpolarization of local GABAergic
neurons rapidly desensitizes (Lowe and Bailey, 2015). In the
Rostromedial Tegmental Nucleus (RMTg), also known as the
tail of the VTA, neuron firing rate is reduced by MOR
activation and RMTg neurons are hyperpolarized by MOR
agonists, but not DOR or KOR (Lecca et al., 2011; Matsui
and Williams, 2011). Contrary to other studies that find that
MORs do not hyperpolarize dopamine neurons, there may
be some dopamine neurons that express MORs. MORs can
hyperpolarize some VTA dopamine neurons via increasing
potassium conductance or exciting them via P/Q type calcium
channel (Cav2.1) inhibition (Margolis et al., 2014, 2017). DPDPE-
sensitive and deltorphin II-sensitive DORs are differentially
expressed in different types of VTA neurons and produce a
heterogeneous response: hyperpolarizing neurons via increasing
potassium conductance or exciting neurons via Cav2.1, similar
to MOR (Margolis et al., 2017). Interactions between the two
different functional forms of DOR and MOR is not consistent
between neurons, although receptor antagonist experiments
reveal that functional interactions between the two different
receptors do occur. KORs hyperpolarize VTA dopamine neurons
via increasing potassium conductance (Margolis et al., 2003;
Ford et al., 2007). Interestingly, only a subset of these neurons
are disinhibited by MOR activation. KORs hyperpolarize VTA
neurons that project to medial PFC (mPFC), but not to NAc
(Margolis et al., 2006). Consistent with this, infusion of KOR
agonist into VTA decreases dopamine levels in the mPFC, but
not the NAc. Amygdala-projecting dopamine neurons within the
VTA are also hyperpolarized by KOR activation (Margolis et al.,
2008b). VTA dopaminergic neurons that project to NAc are more
inhibited by KOR activation that produces outward currents
(Ford et al., 2006). In contrast, VTA neurons that project to BLA
(which are mostly dopaminergic) are more inhibited by MOR
activation, also producing outward currents (Ford et al., 2006).

MORs reduce GABA transmission in VTA via inhibition of
GABA release (Bergevin et al., 2002; Xiao and Ye, 2008; Matsui
et al., 2014; Bull et al., 2017). MOR activation silences GABAergic
VTA neuron firing and reduces evoked and spontaneous TTX-
sensitive GABA release (Xiao and Ye, 2008). Knockout of MORs
from NAc medium spiny neurons (MSN) reduces the ability of
MORs to inhibit GABA input to local VTA GABA interneurons
in VTA (Charbogne et al., 2017). Mechanisms for MOR-mediated
GABA release inhibition implicate presynaptic potassium
channels, beta-arrestin2, and proto-oncogene tyrosine-protein
kinase Src (Bergevin et al., 2002; Bull et al., 2017). Contrary
to postsynaptic MOR effects, presynaptic MORs on GABA

terminals are resistant to desensitization, except when PKC is
activated (Lowe and Bailey, 2015). MetEnk, presumably though
MOR activation, reduces GABAergic input equally onto NAc-
and BLA-projecting dopamine neurons (Ford et al., 2006). MOR
regulates VTA GABAergic transmission at local interneuron
synapses as well as at GABAergic inputs from the NAc, PAG,
RMTg, and ventral pallidum (Matsui and Williams, 2011; Xia
et al., 2011; Matsui et al., 2014; St Laurent et al., 2020). Comparing
inputs to VTA dopamine neurons, one study found that MOR
activation produces the greatest inhibition RMTg inputs, with
very low inhibition of local interneuron input and moderate
inhibition of NAc inputs (Matsui et al., 2014). A different
study however concluded that MOR-modulated NAc inputs to
VTA targeted VTA GABA neurons and not VTA dopamine
neurons (Xia et al., 2011). MORs inhibit GABAergic input from
the ventral pallidum onto both dopamine and non-dopamine
neurons (Hjelmstad et al., 2013). Various forms of GABAergic
plasticity occur at many of these synapses. Inhibitory LTD at
RMTg-VTA dopamine neuron synapses occurs independently of
MOR activation, however LTP at PAG-VTA neuron synapses is
blocked by MOR activation (St Laurent et al., 2020). A variety of
in vivo drug exposures and painful conditions shift the ability of
MORs to regulate VTA GABA transmission (Shoji et al., 1999;
Margolis et al., 2008a; Xiao and Ye, 2008; Guan and Ye, 2010;
Madhavan et al., 2010; Graziane et al., 2013; Polter et al., 2014;
Hipolito et al., 2015).

MORs and KORs non-occlusively reduce GABA input to
VTA dopamine neurons (Shoji et al., 1999). GABAergic inputs
from RMTg to VTA dopamine neurons are insensitive to KOR
activation (Matsui and Williams, 2011). KOR activation has
little effect on fast, GABAA-mediated IPSCs recorded in NAc-
projecting cells, but inhibits fast, GABAA-mediated IPSCs in
BLA-projecting cells (Ford et al., 2006). On the other hand, KOR
activation inhibits GABAB-mediated slow IPSCs: KORs inhibit
GABAergic input to both BLA- and NAc-projecting cells, but this
effect is stronger in NAc-projecting cells.

There is a minor role for DORs in regulating VTA GABA
transmission under normal conditions, but as in other brain
regions, DOR-mediated inhibition of GABA transmission is
inducible by in vivo drug exposure (Margolis et al., 2008a;
Mitchell et al., 2012; Bull et al., 2017). Following stress
exposure, DORs gain the ability to produce postsynaptic
insertion of GABAA receptors in a subset of neurons, via
phosphoinositide 3-kinase (PI3K) and Akt signaling (Margolis
et al., 2011). DORs do not regulate RMTg GABA synaptic inputs
(Matsui and Williams, 2011).

Presynaptic MOR activation in VTA reduces glutamate
transmission onto dopamine and non-dopamine neurons (Bonci
and Malenka, 1999; Manzoni and Williams, 1999). In principal
VTA neurons, which are primarily dopaminergic, KOR activation
produces a small inhibition of glutamate input, whereas MORs
produce a larger inhibition; these are non-occlusive indicating
inhibition of separate populations of inputs (Margolis et al.,
2005). In secondary neurons, KORs and MORs produce similar
inhibition of glutamate input and the responses to each receptor
activation are positively correlated. In tertiary neurons, of which
a small percentage are dopaminergic, KOR and MORs similarly
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inhibit glutamate input, but the magnitudes of inhibition are not
correlated when dually tested in each cell. These effects are largely
presynaptic, although neurons with postsynaptic KOR effects are
more sensitive to MOR inhibition of glutamate input and vice
versa (Margolis et al., 2005). MORs also inhibit glutamate input
to RMTg neurons (Lecca et al., 2011). The LTPGABA described
above can be acutely blocked by glutamatergic presynaptic
MOR activation, removing the glutamate necessary for plasticity
induction (Nugent et al., 2007). The role of MOR-mediated
regulation of glutamate as part of the local VTA microcircuit is
important to not overlook. For example, in order for morphine
to activate VTA dopamine neurons, there must be a VTA
glutamatergic tone for MOR-mediated inhibition of RMTg inputs
to have an effect (Jalabert et al., 2011).

Altogether, these studies indicate that opioid receptor
activation has a broad effect on the VTA, targeting GABA,
glutamate and dopamine transmission. Therefore, VTA opioid
receptors have a key clinical relevance on the control of dopamine
modulation. Although there has been much investigation of
opioid receptor function in VTA, there is certainly more discover
regarding the cell type- and synapse-specific function of the
different opioid receptors in the VTA.

CORTEX

The cortex is involved with many higher functions, including
planning, processing sensory information, memory, decision
making, and emotional processing (Lamotte et al., 2021; Nadeau,
2021; Kolk and Rakic, 2022). All three opioid receptors are found
in the cortex; the presence, modulation of neural activity, and
behavioral role of cortical opioid receptors varies across different
cortical areas, and these are involved with analgesia, morphine-
induced locomotor sensitization, reducing anxiety, and with the
rewarding and locomotor stimulation effects of opioids (Saitoh
et al., 2018; Wang et al., 2020; Jiang et al., 2021).

Many early studies of opioid receptor responses in cortex
failed to identify which specific cortical regions were being
explored or looked across regions non-specifically. In rat
cortical brain slices MOR, DOR, and KOR agonists inhibit
evoked glutamate and GABA release (Bradford et al., 1986).
In addition, extracellular recordings show that MOR, DOR,
and KOR agonists reduce glutamate-evoked neuronal firing
(Janiri et al., 1988). However, in contrast, potassium-evoked
glutamate release in rat cerebral cortex brain slices is inhibited
by MOR and KOR agonists, but not DOR agonists (Nicol et al.,
1996). Cultured mouse neocortical neurons express postsynaptic
MORs that co-localize with AMPARs (Liao et al., 2005).
Activation of these MORs inhibits glutamate transmission and
induces dendritic spine retraction. Similarly, morphine inhibits
glutamate release from cortical synaptosomes via inhibition of
voltage-gated calcium channels (Yang et al., 2004). GABAergic
cortical interneurons are inhibited by MORs via membrane
hyperpolarization through increased potassium conductance
(Ferezou et al., 2007). Unlike cortical GABAergic interneurons,
MOR mRNA was not found in pyramidal neurons and
MOR activation had no postsynaptic effects in these neurons.

There was nearly a complete overlap in interneurons that
responded to DAMGO and to nicotinic acetylcholine receptor
(nAChR) agonist, DMPP. nAChR activation induced AP firing
in interneurons and IPSCs in pyramidal neurons that were both
inhibited by MOR activation. nAChR-induced GABAergic input
to pyramidal cells was multiphasic, with an initial increase in
IPSCs and a subsequent decrease below baseline levels. The
decrease was blocked by a MOR antagonist, suggesting that
nAChR activation induces enkephalin release as a form of
feedback control.

Anterior Cingulate Cortex
The Anterior Cingulate Cortex (ACC) is involved with emotion
and reward processing, learning, and memory (Rolls, 2019). Met-
Enk inhibits spontaneous, acetylcholine-evoked, and glutamate-
evoked neuronal activity in the ACC (Palmer et al., 1978). In
a subset of rat layer 5 ACC pyramidal neurons, DOR, but not
MOR, activation produces direct hyperpolarization, presumably
through a postsynaptic increase in potassium conductance
(Tanaka and North, 1994). In comparison, MOR, but not DOR,
activation hyperpolarizes a subset of non-pyramidal neurons.
Met-Enk inhibits glutamate and GABA transmission in ACC
neurons. This effect is mimicked by DOR, but not MOR agonist,
suggesting the effect is mediated by DORs. However, a later
study found MORs specifically inhibit midline thalamus inputs
to layers 2/3 and layer 5 anterior cingulate cortex pyramidal
neurons and parvalbumin (PV)-expressing interneurons. DORs
inhibit interneurons that receive MOR-positive medial thalamic
input to regulate feedforward inhibition to pyramidal neurons.
Ultimately, DORs function to disinhibit thalamocortical circuits
(Birdsong et al., 2019).

Insular Cortex
The insular cortex is involved with interoception, emotion,
cognition, and motivation (Namkung et al., 2017). Anterior
agranular insular cortex GABAergic neurons express KORs that
function to disinhibit L5 pyramidal cell inputs to the SN (Pina
et al., 2020). Dynorphin decreases GABA release, but increases
glutamate release, leading to disinhibition. In L5 of rat insular
cortex, paired recordings between nearby GABA neurons and
other GABA neurons or pyramidal cells revealed the role of
MOR in regulating these synapses (Yokota et al., 2016). MOR
activation reduces fast-spiking interneurons (FSI) input to other
FSIs, but not to pyramidal neurons. MOR activation also reduced
GABAergic input to FSIs from non-FSI neurons. In contrast,
DOR activation reduced FSI input to both other FSIs and
pyramidal neurons but had no effect on inhibitory transmission
from non-FSI GABA neurons. All inhibition is presynaptically
localized. KOR activation has no impact on FSI inputs to other
insular cortex neurons.

Medial Prefrontal Cortex
The Medial Prefrontal Cortex (mPFC) is involved with many
cognitive functions and is comprised primarily of excitatory
pyramidal neurons and a smaller population of inhibitory
interneurons (Xu et al., 2019). MORs inhibit both non-
pyramidal and pyramidal mPFC neurons, but through different
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mechanisms. In non-pyramidal neurons, MORs inhibit sodium
conductance through a G protein, PKA, and PKC pathway
(Witkowski and Szulczyk, 2006). In pyramidal neurons, MORs
inhibit N-type VGCCs through a cAMP-PKA pathway (Rola
et al., 2008). DORs can both inhibit and disinhibit pyramidal
neuron activation. Presynaptic DORs inhibit prelimbic mPFC
principal neurons through inhibiting glutamate release onto
these neurons (Yamada et al., 2021). On the other hand, DORs
increase GABA transmission from somatostatin-expressing
interneurons to PV-expressing interneurons, which disinhibits
pyramidal neurons, which MORs do not do (Jiang et al., 2021).
KORs also inhibit neurotransmission in mPFC. KOR activation
reduces glutamate release onto mPFC pyramidal neurons (Tejeda
et al., 2013). Specifically, BLA glutamatergic inputs to mPFC are
inhibited by KOR activation in in vivo extracellular recordings in
anesthetized rodents (Tejeda et al., 2015).

Orbitofrontal Cortex
MORs presynaptically inhibit GABA release onto pyramidal
neurons of the rat ventrolateral Orbitofrontal Cortex (OFC)
(Qu et al., 2015), consistent with identified expression of
MOR in these GABA cells (Huo et al., 2005). MOR-LTD of
presynaptic FSI PV-expressing neurons inhibit GABAergic input
to pyramidal neurons of medial, but not lateral OFC. Stimulating
cAMP production shifts MOR activation to produce short-term
depression rather than LTD. Endogenous opioid LTD can be
induced via moderate frequency stimulation in the presence
of peptidase inhibitors, but not low frequency stimulation
(Lau et al., 2020).

Sensorimotor Cortices
MetEnk and LeuEnk inhibit a subset of sensorimotor cortical
neurons, some of which are hyperpolarized by MOR agonists
(Stanzione et al., 1989). In the somatosensory cortex, MORs
and DORs inhibit spontaneous neuronal firing and glutamate-
induced firing activity. In a subset of cells, dynorphin inhibits
firing and in some recordings where dynorphin had little effect
alone, it attenuated the effects of MOR and DOR activation
(Janiri et al., 1988).

Overall, these studies indicate opioid receptor effects on
neurotransmission and neural activity within cortical areas show
great diversity across region, cell type, and neural pathways. As
discussed, in some cortical regions, opioid receptor effects have
been shown to occur via different mechanisms than in other
regions. Additional studies are needed to evaluate circuit-specific
opioid receptor regulation of neurotransmission throughout the
cortex in order to more fully understand the impact of opioids on
higher brain function.

HIPPOCAMPUS

The hippocampus is a brain region crucial to facilitating
memory, learning, and spatial processing (Bird and Burgess,
2008). All three opioid receptors are heterogeneously distributed
throughout the entire hippocampus and are regulated by the

endogenous opioids dynorphin and enkephalin (Simmons and
Chavkin, 1996).

CA1
In measures of population spike (PS) amplitudes in CA1,
both MOR and DOR enhance amplitudes in CA1 (Lee, 1978;
Dunwiddie et al., 1980; French and Zieglgansberger, 1982;
Valentino and Dingledine, 1982; Dingledine et al., 1983; Bostock
et al., 1984; Vidal et al., 1984; Dunwiddie and Su, 1988; Neumaier
et al., 1988; Moudy et al., 1989; Wimpey et al., 1989; Pieretti et al.,
1994). Morphine increases hippocampal activity in CA1 in slice
and in freely moving animals (Linseman and Corrigall, 1982).
MORs, but not DORs or KORs, increase the duration of CA1 field
potentials (Pieretti et al., 1994). The timing of MOR activation
can also determine whether it can enhance CA1 function. MOR
activation prevents the inhibitory effects of temporo-ammonic
pathway stimulation on Schaffer collateral inputs to CA1 when
the timing of stimulation of the two pathways was further apart
than one theta cycle, but had no effect when timing was less than
one theta cycle (McQuiston, 2011).

The effects of MOR and DOR activation are likely not due to
effects on pyramidal cells themselves, although KORs might have
some effects on pyramidal cell potassium currents (Madamba
et al., 1999). Rather, opioid receptor-induced enhancement of
population spike amplitudes is due to disinhibitory mechanisms
(Zieglgansberger et al., 1979; Corrigall and Linseman, 1980;
Dunwiddie et al., 1980; Neumaier et al., 1988; Lupica and
Dunwiddie, 1991; Miller and Lupica, 1994; McQuiston, 2007,
2008; Tian et al., 2015). Specifically, opioids hyperpolarize
GABAergic interneurons within CA1 and reduce GABA input
to pyramidal neurons (Madison and Nicoll, 1988; Lupica and
Dunwiddie, 1991; Lupica et al., 1992; Lupica, 1995; Capogna
et al., 1996; Lafourcade and Alger, 2008; Krook-Magnuson et al.,
2011; Banghart et al., 2018; Fan et al., 2019). Although DORs
can inhibit GABA transmission, they do not appear to be the
primary mediators of these effects (Watson and Lanthorn, 1993;
Lupica, 1995). MORs can reduce feedforward and feedback
inhibition, whereas DORs do not. However, both MORs and
DORs are able to inhibit spontaneous GABA transmission,
but not monosynaptic inhibitory postsynaptic potentials (IPSPs)
(Lupica et al., 1992). However, some of the complexity may
be attributable to how MORs and DORs individually regulate
GABA transmission in local circuits. In CA1, MORs inhibit
interneuron input to the soma, whereas DORs inhibit input
to dendrites of pyramidal neurons (Svoboda et al., 1999). In
support of this, one study showed that MORs inhibit FSI
GABA, but not regular spiking GABA basket cell input to
CA1 pyramidal neurons (Glickfeld et al., 2008; Shao et al.,
2020). However, a very recent study showed that both MORs
and DORs independently activate GIRK in PV neurons as
well as inhibit GABA release on to pyramidal neurons (He
et al., 2021). MORs hyperpolarize FSI basket cell neurons,
but not regular spiking basket cell neurons. FSIs typically
synapse on to somas, whereas regular spiking neurons synapse
on to dendrites (Straub et al., 2016). MORs also inhibit
neuropeptide Y (NPY)-expressing neurogliaform interneurons
through membrane hyperpolarization (Krook-Magnuson et al.,
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2011). In addition, MOR specifically reduces tonic firing of the
Ivy class of neurogliaform cells in CA1, reducing GABAergic
input to pyramidal neurons (Krook-Magnuson et al., 2011).

The ability of MORs and DORs to disinhibit CA1 pyramidal
cell function can be pathway and layer specific and may explain
some of the confusing results regarding DOR activation and the
broader effect of MOR activation. MORs, but not DORs, mediate
feedforward inhibition from Schaffer collateral input (Rezai et al.,
2013). However, DORs are expressed in interneurons within CA1
that receive input from the temporo-ammonic pathway, but not
the Schaffer collateral pathway. Both MOR and DOR mediate
feedforward inhibition from the temporo-ammonic pathway.
While MOR enhances excitatory transmission in all layers, it is
most effective at enhancing propagation through CA1 output
layers (McQuiston, 2007, 2008). Stimulating CA2 pyramidal
neuron input to CA1, MOR activation prevented feedforward
inhibition of CA1 pyramidal neurons in deep layer and excitatory
radiatum giant cells layers, but not pyramidal neurons in
superficial layers through its inhibition of FSI interneurons
(Nasrallah et al., 2019). MORs can also enhance excitation
of pyramidal cells through enhancing excitatory responses to
acetylcholine receptor activation (Kearns et al., 2001). Along
with this, MOR activation can inhibit cholinergic receptor-
induced cholecystokinin-expressing basket cell-mediated theta
oscillations in CA1 (Nagode et al., 2014).

Opioid receptors can also have an inhibitory effect on CA1
function. LTD in CA1 is blocked by naloxone and enhanced
by MOR, but not DOR or KOR activation (Francesconi et al.,
1997; Wagner et al., 2001). Prior fentanyl exposure enhances LTD
expression in CA1 as well (Tian et al., 2015).

CA2
KOR and DOR activation in CA2 increases the PS following
stratum radiatum stimulation (Vidal et al., 1984). Presynaptic
DORs produce GABAergic LTD at FSI PV-expressing basket
cell inputs to pyramidal neurons of CA2, but only short-term
depression in CA1 (Piskorowski and Chevaleyre, 2013). The
DOR effects enable long-lasting potentiation of CA2 transmission
following high frequency stimulation of Schaffer collateral inputs
that prevents the strong feedforward inhibition of CA3-CA2
transmission through DOR-mediated inhibitory LTD (iLTD)
(Nasrallah et al., 2015). DOR-mediated iLTD acts as a gate for
feedforward inhibition in CA2 to allow for greater activation
of CA2 pyramidal neurons in response to both distal and
proximal glutamatergic synaptic drive (Nasrallah et al., 2017).
DOR antagonists block input timing-dependent plasticity in
CA2, likely preventing the iLTD of PV-expressing inputs to
pyramidal neurons (Leroy et al., 2017).

CA3
Mossy fiber stimulation induces a potentiation of glutamate
transmission in stimulated pathway of guinea pig CA3, but
inhibition of nearby mossy fiber synapses (Weisskopf et al.,
1993). Dynorphin presynaptically inhibits these other mossy fiber
pathways; inhibiting KOR signaling allows for LTP induction in
this other pathway. Dynorphin is more effective at inhibiting
synapses that had undergone LTP induction than those that did

not. KOR effects on CA3 LTP are mediated by a non-voltage-
gated channel, calcium-dependent process (Castillo et al., 1996).
KORs inhibit NMDAR-mediated currents in CA3 of guinea
pig hippocampus, but DORs and MORs do not (Caudle et al.,
1994). KOR modulation of mossy fiber signaling within CA3
does not occur in Sprague-Dawley rats, but does occur in other
rodents. MORs equally inhibit mossy fiber transmission in rats
and guinea pig (Salin et al., 1995). Species differences could be
due to differential KOR expression. KOR activation enhances the
voltage-dependent potassium current known as the M-current
[I(M)] in rat CA3 pyramidal neurons, whereas DOR activation
reduces I(M) (Moore et al., 1994). DOR antagonists inhibit IPSCs
in CA3, but do not block LTP (Krug et al., 2001; Leroy et al.,
2019).

MOR activation has no effect on excitatory postsynaptic
potentials, but instead reduces IPSPs (Capogna et al., 1993).
Activation of DORs and KORs does not inhibit IPSPs. MOR-
mediated presynaptic inhibition of GABA transmission produces
disinhibition that is G protein mediated and blocked by
PKC activation but does not involve potassium or calcium
conductance changes (Capogna et al., 1993, 1996). Later studies
show that opioid analgesics that activate MORs can inhibit
glutamate transmission in CA3, contrary to earlier studies (Lu
et al., 2020, 2021).

Dentate Gyrus
Morphine increases hippocampal activity in dentate gyrus in
slice and in freely moving animals (Linseman and Corrigall,
1982). Within the dentate gyrus, MOR activation enhances
LTP induction and naloxone prevents LTP induction of the
lateral, but not medial perforant pathway (Bramham et al., 1991;
Xie and Lewis, 1991; Sagratella et al., 1996; Ito et al., 2001).
Interestingly, electrophysiological studies of MOR knockout mice
demonstrated an inability to form LTP in the DG but not in CA1,
indicating that MOR activation was crucial to LTP in the DG, but
not in CA1 (Matthies et al., 2000). LTP of synaptic transmission
is blocked by a DOR antagonist, without affecting potentiation
of the population spike (Bramham et al., 1991; Krug et al.,
2001). Perforant pathway stimulation-induced opioid peptide
release with a resultant MOR- and DOR-mediated disinhibition
is crucial to facilitating LTP in the dentate gyrus (Bramham
and Sarvey, 1996; Ito et al., 2001). In contrast to their lack of
effect in CA1, KOR activation in dentate gyrus prevents LTP
induction, in contrast to MOR-induced enhancement of LTP
(Sagratella et al., 1996).

MORs and DORs hyperpolarize granule cells in the dentate
gyrus (Piguet and North, 1993). A study showed that activation
of KORs in dentate gyrus produces hyperexcitable granule
cells through a postsynaptic G protein-Kv4.2 A-type potassium
current mechanism, but without a change in resting membrane
potential or input resistance (McDermott and Schrader, 2011).

As in CA1–CA3 areas of hippocampus, opioid receptors in
the dentate gyrus also produce disinhibition via their actions on
GABAergic neurons; although, it appears that this disinhibition
has less of an effect on LTP induction at dentate gyrus synapses.
Consistent with this, MOR, DOR, and KOR activation enhance
excitatory transmission in dentate gyrus granule cells, likely
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due to disinhibition. MOR activation is the most efficacious
(Neumaier et al., 1988). MORs and DORs inhibit GABA
transmission in the dentate gyrus (Piguet and North, 1993).
In granule cells, MORs inhibit GABAA and GABAB-mediated
IPSCs (Shao et al., 2020). Dentate gyrus population spikes are
potentiated by morphine through disinhibition, but morphine
does not affect LTP induction itself (Akaishi et al., 2000).

While some studies show that KORs can enhance excitatory
transmission in dentate gyrus, other studies demonstrate that
KOR has more of an inhibitory effect due to effects on
glutamate transmission (Neumaier et al., 1988). In guinea pig
dentate gyrus, KOR activation reduces PS amplitude, while DOR
and MOR had no effect. KOR activation inhibits glutamate
transmission from perforant path inputs, without affecting
GABA transmission (Wagner et al., 1992). A combination
of brain slice electrophysiology, pharmacological probing, and
anatomical lesioning revealed that KOR activation in dentate
gyrus presynaptically inhibits glutamate release (Simmons et al.,
1994). Activation of KORs inhibits LTP formation between the
perforant path and granule cells of the guinea pig dentate gyrus
(Terman et al., 1994). KORs inhibit hilar mossy fiber collateral-
based LTP of guinea pig dentate gyrus granule cells, the latter of
which likely occurs in a GABAA-dependent mechanism (Terman
et al., 2000). A recent study showed MORs can inhibit glutamate
transmission in dentate gyrus, specifically, NMDAR-mediated,
but not AMPAR-mediated, EPSCs (Shao et al., 2020).

HYPOTHALAMUS

The hypothalamus coordinates the neuroendocrine system
(Swaab et al., 1993) and regulates metabolism, reproduction,
and parental behavior (Travaglio and Ebling, 2019; Evans et al.,
2021; Orikasa, 2021). Hypothalamic neurons release several
neurotransmitters and peptides, including GABA, glutamate,
dopamine, growth hormone-releasing hormone, gonadotropin-
releasing hormone, oxytocin, and vasopressin (Kim et al., 2020).
All three opioid receptors are expressed in the hypothalamus
(Tavakoli-Nezhad and Arbogast, 2010; Chu Sin Chung and
Kieffer, 2013).

Arcuate Nucleus
In the Arcuate Nucleus (AN), MORs most likely inhibit only
oxytocin cells, not vasopressin cells (Wakerley et al., 1983).
MOR activation hyperpolarizes a subset of neurons by inducing
outward current with inward rectification with no effect of TTX.
Some of these MOR-sensitive cells are POMC neurons (Loose
et al., 1991; Pennock and Hentges, 2011). MOR activation induces
outward potassium currents in POMC neurons within the AN
(Ibrahim et al., 2003). MORs act as autoreceptors, having direct
effects and reducing AP firing within the recorded neuron, but
can have similar effects in non-POMC neurons (Kelly et al., 1990,
1992; Lagrange et al., 1994). MORs also inhibit gonadotropin-
releasing hormone-expressing neurons (Lagrange et al., 1995).
DORs specifically hyperpolarize non-POMC AN neurons, while
KORs do not appear to hyperpolarize AN neurons (Loose
and Kelly, 1990; Pennock and Hentges, 2011). Interestingly,

POMC neurons are directly inhibited by dynorphin A through
activation of potassium conductance (Zhang and van den Pol,
2013; Pennock and Hentges, 2014). Previously it was considered
that was due to KOR activation (Zhang and van den Pol, 2013).
However, follow up studies found that this was likely due to
actions of dynorphin A on MORs (Pennock and Hentges, 2014).
Later studies determined KORs do hyperpolarize a subset of
AN neurons, specifically NPY neurons (Zhang and van den
Pol, 2013). In the AN, KOR activation reduces AP firing of
neurons that express dynorphin, indicating that these receptors
serve as autoreceptors (Ruka et al., 2013, 2016). Looking at
synaptic transmission, in AN, MORs and KORs, but not DORs,
presynaptically reduce glutamate input (Emmerson and Miller,
1999). Presynaptic MORs and KORs inhibit glutamate and
GABA input to POMC neurons (Pennock and Hentges, 2011;
Zhang and van den Pol, 2013). In comparison, a DOR agonist
was unable to inhibit evoked GABA release but had a modest
inhibitory effect on basal GABA transmission; although, it was
not clear what the cause of this discrepancy was (Pennock
and Hentges, 2011). MOR-mediated inhibition of GABA input
is more sensitive than that of postsynaptic hyperpolarization,
suggesting there may be opioid peptide concentration-dependent
local circuit dynamics at play (Pennock and Hentges, 2011).

Preoptic Hypothalamus
The preoptic hypothalamus plays a role in thermoregulation,
where the neurons can be characterized by their
thermosensitivity (impulses s–1◦C–1) by the thermal coefficient
(TC). Preoptic area neurons are hyperpolarized by MOR
activation (Wagner et al., 2000). MOR activation-induced
hyperpolarization reduces tonic firing activity of all types of
neurons and reduces the temperature sensitivity of warm-
sensitive neurons (neurons with a TC ≥ 0.8 impulses s–1◦C–1)
(Yakimova, 2006). In the ventrolateral preoptic area, morphine
reduces the firing rate and hyperpolarizes sleep-promoting
neurons (as assessed by sensitivity to norephinephrine treatment)
but has no effect on non-sleep-promoting interneurons (Wang
et al., 2013). The investigators found that this was due to dually
activated MORs and KORs.

Paraventricular Nucleus
In the Paraventricular Nucleus (PVN), LTD of glutamate
input to vasopressin neurons is induced by paired stimulation
that combines metabotropic glutamate receptor (mGluR) 1/5
activation with postsynaptic activity to cause somatodendritic
dynorphin release that acts at presynaptic KORs (Iremonger
et al., 2011). Presynaptic KOR activation mediates synaptic
depression via inhibition of glutamate release downstream of
calcium channel opening that the investigators predict is due
to actions on release machinery (Iremonger and Bains, 2009).
PVN parvocellular neurons can undergo LTD of GABAergic
input via mGluR5-driven L-type calcium channel-dependent
somatodendritic enkephalin release to act on presynaptic MORs.
This iLTD requires ongoing MOR activation, as it is reversible
by naloxone (Wamsteeker Cusulin et al., 2013). The released
enkephalin can spread to other nearby GABA and glutamate
synapses to produce pathway-independent LTD as well.
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Supraoptic Nucleus
KORs inhibit both oxytocin and vasopressin neurons of the
Supraoptic Nucleus (SON), whereas MORs and DORs primarily
inhibit oxytocin neurons (Inenaga et al., 1990). KORs inhibit
neuron function by limiting calcium entry to reduce AP
firing (Inenaga et al., 1994). In magnocellular neurons of the
SON, MORS, but not KORs or DORs, inhibit postsynaptic
N- and P/Q-type voltage-gated calcium channels (Soldo and
Moises, 1998). In oxytocin neurons of the SON, naloxone
treatment increases post spike excitability in vivo, suggesting
an endogenous MOR tonic activation. The authors discovered
that morphine treatment likely engages potassium conductances
that are relieved during naloxone-precipitated opioid withdrawal,
resulting in hyperexcitable oxytocin neurons, with no effects in
nearby vasopressin neurons (Brown et al., 2005). MOR effects on
magnocellular neurons are weak, due to inhibition of glutamate
input (presynaptic), with no effects on GABA or postsynaptic
effects (Liu et al., 1999). Glutamatergic and GABAergic input
to magnocellular neurons is decreased presynaptically by MOR
activation, with no apparent postsynaptic effects. MOR-mediated
inhibition appears to be independent of inhibition of calcium
channels or activation of potassium channels. KORs are also able
to inhibit GABAergic input to a subpopulation of magnocellular
neurons (Honda et al., 2004). Vasopressin magnocellular SON
neurons were recorded in organotypic slice cultures to measure
rhythmic firing patterns. KOR-mediated inhibition of glutamate
release is part of the mechanism that governs the rhythmic firing
of these neurons (Israel et al., 2010). This is supported by in vivo
measures that show that KOR activation influences rhythmic
firing of vasopressin, but not oxytocin, neurons of the SON
(Brown et al., 1998). Dynorphin is co-released with vasopressin
from the dendrites of these neurons (Brown and Bourque, 2004).

The hypothalamus is a region of great cell-type heterogeneity
across hypothalamic nuclei. Both presynaptic and postsynaptic
MORs and KORs have been shown to regulate hypothalamus
neurons; although, the effect and mechanism varies across nuclei
and cell-type. The role of DORs in the hypothalamus is less
clear, as studies have found conflicting results. This may be due
to a limited effect of DORs in subpopulations of hypothalamic
neurons, but additional studies are needed to understand how
DORs regulate neurotransmission in the hypothalamus. Most
research of opioid receptor regulation of neurotransmission in
the hypothalamus has focused on only a handful of hypothalamic
nuclei, leaving much to be discovered. Interestingly, MORs and
KORs have been shown to act as autoreceptors in multiple
hypothalamic nuclei. Future studies will reveal if these opioid
receptors also act as autoreceptors in other hypothalamic nuclei.

LATERAL HABENULA

The lateral habenula (LHb) regulates reward, aversion, motor
and cognitive function, sleep and circadian rhythms, pain,
navigation, and maternal behaviors (Hu et al., 2020). It is not
clear if DOR is expressed in this area, however, MORs and
KORs are expressed, suggesting a role in reward, analgesic and
stress responses (Gardon et al., 2014; Simmons et al., 2020).

In the LHb, MOR activation has subpopulation effects: some
neurons show hyperpolarization, some neurons show reduced
glutamate synaptic input, and some neurons show reduced
GABA input (Margolis and Fields, 2016). KOR activation in
LHb presynaptically inhibits glutamate transmission, but has
both inhibitory and enhancing effects on GABA transmission
(Simmons et al., 2020). The net impact of KOR on regulating
glutamate and GABA transmission produces KOR-mediated
hyperexcitability of neurons that express hyperpolarization-
activated cation currents (Ih) and decreases the excitability of
Ih-negative neurons. Additional studies are needed to identify
which specific LHb inputs are regulated by MORs and KORs.

PALLIDUM

The pallidum is composed of the globus pallidus, entopeduncular
nucleus, and ventral pallidum. Together, the pallidum has
important roles in hedonic actions, motivation, and cognition
(Smith et al., 2009; Saga et al., 2017). All three opioid receptor
are highly expressed in the pallidum (Le Merrer et al., 2009).

Globus Pallidus
Presynaptic MORs inhibit GABA input from dorsal striatum and
from local GABAergic neurons (Stanford and Cooper, 1999).
In contrast, DORs inhibit evoked local GABA transmission, but
do not inhibit striatal inputs. DOR activation has no effect on
AP-dependent spontaneous IPSCs, but inhibits mIPSCs. MORs,
but not DORs or KORs, postsynaptically inhibit N-type VGCCs
in dissociated Globus Pallidus (GP) neurons (Stefani et al.,
2001). Similar to MOR, KOR activation in GP hyperpolarizes
about 25% of cells and presynaptically inhibits GABAergic input
from striatum and local GABAergic collaterals (Ogura and
Kita, 2000). KORs have no effect on glutamate transmission,
and it is unknown if DORs or KORs regulate glutamate
transmission in GP.

Entopeduncular Nucleus
A subpopulation of Entopeduncular Nucleus (EPN) neurons
were hyperpolarized by dynorphin-mediated KOR activation
via increasing potassium conductance. Electrical stimulation
of the (GP) evokes GABA release from striatal and pallidal
inputs to the EPN. Dynorphin equally inhibited IPSCs from
both sources (short- and medium-latency IPSCs) presynaptically.
Dynorphin released from striatal inputs could be an autofeedback
mechanism, heterosynaptic (targeting pallidal input), or directly
inhibit EPN neurons (Ogura and Kita, 2002).

Ventral Pallidum
MORs hyperpolarize a subpopulation of Ventral Pallidum (VP)
neurons, presumably through activation of potassium currents
(Napier and Mitrovic, 1999). Looking at specific regional targets
of VP neurons, MORs hyperpolarize GABAergic VP neurons
that project to the VTA (Hjelmstad et al., 2013). In vivo
electrophysiological recordings reveal that MOR activation
reduces inhibitory GABAergic input, and excitatory substance
P input from the NAc within the VP and enhances glutamate
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input from amygdala (Napier and Mitrovic, 1999). MOR
activation produces LTD of GABA release in VP (Kupchik et al.,
2014). In in vivo electrophysiological recordings, stimulation
of VTA inputs to VP reduces firing of VP neurons. KOR
and MOR activation block this, either due to direct inhibition
of dopamine inputs or inhibition of non-dopaminergic VTA
input (Napier and Mitrovic, 1999; Mitrovic and Napier, 2002).
MORs also antagonize NAc-induced inhibitory transmission
in VP (Chrobak and Napier, 1993). KORs postsynaptically
inhibit GABAergic transmission from both direct pathway MSN
(dMSN) and indirect pathway MSN (iMSN) inputs to VP
GABA neurons. KORs generally increase GABAergic input to VP
vGluT2-expressing neurons, but they could not determine if this
was pre- or postsynaptically mediated and did not test specific
GABAergic synaptic inputs (Inbar et al., 2020).

In summary, subpopulations of pallidal neurons are
hyperpolarized by postsynaptic MORs and KORs. Presynaptic
opioid receptors also modulate neural activity of pallidal neurons
by inhibiting GABA release from striatal terminals and local
GABAergic collaterals; although, the effect varies across opioid
receptor and neurocircuit. Excitatory neurotransmission in VP
is regulated by MORs and KORs, but excitatory transmission
in other pallidal areas has not been shown to be modulated
by opioid receptors. Most studies investigated circuit and
subpopulation effects of opioid receptors in pallidum have
focused on VP, therefore future studies are needed to identify
specific subpopulation effects in GP and EPN.

STRIATUM

The striatum is divided into dorsal and ventral regions. The
dorsal striatum (DS) is heavily involved in motor control,
learning, reward, and decision making (Balleine et al., 2007). The
dorsal striatum is further divided into the dorsolateral (DLS)
and dorsomedial striatum (DMS). The DMS is involved with
goal-directed behaviors, while the DLS is involved with habitual
behaviors (Lovinger, 2010; Corbit and Janak, 2016). The ventral
striatum, also known as the nucleus accumbens (NAc) plays a
critical role in establishing reward-associated memories to the
effects of drugs and natural cues (Hyman et al., 2006). All 3
opioid receptors are highly expressed in the striatum and regulate
synaptic plasticity (Le Merrer et al., 2009; Atwood et al., 2014b).

Dorsal Striatum
Aside from an early study of opioid effects on neuronal function
in dorsal striatum, there is very little indication that opioid
receptors alter membrane properties of the principal dorsal
striatal MSNs. One early study found that MORs slightly
hyperpolarize a subset of MSNs (Jiang and North, 1992). They
also found that DORs hyperpolarize a subset of non-MSN,
tonically active neurons, ablating AP firing. Later studies suggest
that these are likely tonically active interneurons that release
acetylcholine and glutamate and their firing is inhibited by
both MORs and DORs (Ponterio et al., 2013; Laurent et al.,
2014). MORs reduce the firing of these cholinergic interneurons

through postsynaptic G protein signaling (Ponterio et al., 2013,
2018). MOR modulation of these neurons may be circadian
(Jabourian et al., 2005).

It was initially thought that opioid receptors do not inhibit
GABA release in dorsal striatum(Jiang and North, 1992).
However, later work found opioid receptors regulate GABA
transmission in a subregion and synapse-specific manner that
could be missed using more non-specific measures. MORs
only inhibit GABAergic transmission within striosome
subcompartments. MOR-mediated inhibition of GABA
transmission within striosomes is mediated by presynaptic
cAMP-PKA signaling, likely modulating presynaptic potassium
channel function, and MOR inhibition is enhanced by PKC
inhibition (Miura et al., 2007; Inoue et al., 2012). MORs inhibit
spontaneous and TTX-insensitive GABAergic inputs in both
cell types (dMSN and iMSN) (Ma et al., 2012). An elegant
dissection of specific GABAergic synapses within striosomes
that MORs and DORs regulate found that MORs inhibit dMSN
and iMSN input to dMSNs, although inhibition of dMSN-
dMSN transmission is stronger than iMSN-dMSN transmission
(Banghart et al., 2015). DORs selectively inhibit iMSN input to
dMSNs. Neither MOR nor DOR inhibit somatostatin-expressing
interneuron input to dMSNs. DOR-mediated disinhibition of
dMSNs is slightly more efficacious than MOR. MOR and DOR
have little effect on GABA transmission in matrix of dorsal
striatum. DOR activation produces iLTD at FSI-MSN synapses
(Patton et al., 2016).

It has been known for some time that MORs and
DORs inhibit glutamate release in dorsal striatum (Jiang and
North, 1992). Despite MORs being enriched in striosome
subcompartments of striatum, MORs equally inhibit glutamate
transmission in both striosomes and matrix (Miura et al.,
2007). One study that explored differences in MOR effects
in dMSNs and iMSNs found that MORs reduce spontaneous
glutamate release onto iMSNs in DLS, but not dMSNs (Ma
et al., 2012). However, these data do not align with data
from other laboratories that found more widespread MOR-
mediated inhibition of glutamate release (Atwood et al., 2014b).
They also reported that MORs have minimal effect on TTX-
insensitive glutamate transmission in either type of MSNs in
the DLS (Ma et al., 2012). MOR and DOR activation in
the DLS and DMS produce antagonist-irreversible LTD in
young rats and mice as well as adult mice (Atwood et al.,
2014b; Fritz et al., 2018; Munoz et al., 2018, 2020). In
the DLS, MOR and DOR LTD are not mutually occlusive,
indicating that they inhibit different inputs. In the presence
of peptidase inhibitors, electrical stimulation of glutamate
release produces opioid receptor antagonist-sensitive LTD that
is mGluR5 dependent. Antagonists for both MOR and DOR
each partially prevent this LTD, while naloxone fully prevents
this LTD. KORs may also play a role in this LTD (see
below). Others have found that antidromic stimulation within
the globus pallidus induces opioid peptide release (presumably
enkephalins) within dorsal striatum that is sufficient to inhibit
glutamate input from cortex. This was mediated by MORs,
but not DORs. Paired recordings showed MSN firing could

Frontiers in Molecular Neuroscience | www.frontiersin.org 14 June 2022 | Volume 15 | Article 919773

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-15-919773 June 15, 2022 Time: 8:5 # 15

Reeves et al. Opioid Receptor Synaptic Plasticity

produce corticostriatal inhibition in a nearby MSN with a
subpopulation showing reciprocal inhibition of cortical input
(Blomeley and Bracci, 2011).

More recent work has attempted to dissect which specific
glutamate synapses in the dorsal striatum are sensitive to MOR
and DOR activation. In the DLS, the only cortical input that is
sensitive to MOR activation are those that arise from anterior
insular cortex in a mechanism that involve the activation of
presynaptic HCN1 channels (Munoz et al., 2018, 2021). MORs
also produce LTD in the DMS, but in this subregion the LTD
is mediated by inputs from BLA, mPFC, and ACC (Munoz
et al., 2020). In contrast, another recent study concluded that
MORs do not inhibit ACC or mPFC inputs to DMS MSNs
(Birdsong et al., 2019). The two studies were both done in mice,
so it is not clear why the results are not aligned. DOR inhibits
prelimbic mPFC input to DMS MSNs and motor cortex inputs
to DLS MSNs (Atwood et al., 2014b; Birdsong et al., 2019).
There has not been an exhaustive study of DORs effects on
other cortical inputs to date. Interestingly, MORs also produce
LTD of glutamate release from tonically active “cholinergic”
interneurons in the DLS (Munoz et al., 2018). MORs also inhibit
glutamatergic inputs from thalamus, albeit with a transient
suppression rather than LTD in both DLS and DMS (Atwood
et al., 2014b; Munoz et al., 2018; Birdsong et al., 2019; Reeves
et al., 2021). It does not appear that DORs inhibit glutamate
input from thalamus (Atwood et al., 2014b; Birdsong et al.,
2019).

The early study of opioid effects on neurotransmission
in dorsal striatum concluded that KORs have no effect on
glutamate release (Jiang and North, 1992). However, a more
recent study found that KORs can inhibit glutamate release in
brain slices from young rats, specifically in dorsolateral striatum
(DLS) (Atwood et al., 2014b). Activation of KORs produces an
irreversible, long-lasting synaptic depression, which is similar to
plasticity produced by DORs, but not MORs, in dorsal striatum.
A KOR antagonist could also fully block endogenous opioid
LTD in DLS, similar to the effects of naloxone, whereas MOR
and DOR antagonists individually only partially blocked LTD
(Atwood et al., 2014b). Given that KORs also inhibit dopamine
release in dorsal striatum, it will be important to disambiguate in
the future if this is due to direct activation of KORs on glutamate
terminals or due to its actions on dopamine terminals which
could account for the KOR antagonist on endogenous opioid
LTD (Schoffelmeer et al., 1997; Szabo et al., 1999; Mamaligas
et al., 2016; Hawes et al., 2017). For example, activation of Pdyn-
containing dMSNs in DMS induces release of dynorphin that
acts on presynaptic KORs on dopamine terminals to prevent
theta burst stimulation-induced glutamatergic LTP in MSNs
(Hawes et al., 2017). Similar mechanisms could account for
the effects of KOR on inhibiting glutamate transmission under
certain conditions.

Ventral Striatum (Nucleus Accumbens)
The NAc can be subdivided into shell and core regions. Many
studies specifically state whether measures were made in shell
or core, and some provide even greater specificity. However,
plenty of other studies make no distinction. Therefore, in this

section where there is no specific subregion mentioned we
are only able to generalize the role of opioid receptors on
the specific measures discussed. There is very little evidence
that opioid receptors have postsynaptic effects that influence
AP firing in NAc, but much evidence that they do modulate
synaptic transmission (Yuan et al., 1992; Martin et al.,
1997).

As in dorsal striatum, there are some discrepant data regarding
the role of MOR in regulating GABA transmission in NAc. One
report demonstrates that MORs inhibit GABAergic transmission
in both NAc shell and core, however, MORs have a larger effect
on GABA transmission in the shell (Brundege and Williams,
2002). Another study shows that MORs inhibit GABA release
in NAc shell equally in control and in forskolin-enhanced
GABA release conditions (Chieng and Williams, 1998). A third
study shows that MORs inhibit spontaneous GABA release
similarly in D1 and D2 MSNs of the NAc core and NAc
shell. Measures of TTX-insensitive GABA release show that
GABA input is only inhibited in D1 MSNs in the core and
D2 MSNs of the shell (Ma et al., 2012). However, a different
study of the NAc shell showed that MOR activation has no
effect on GABAergic input (Hoffman and Lupica, 2001). In
contrast, about 50% of MSNs received input that was presumably
regulated by DOR as a mixed DOR/MOR agonist was effective
at blocking GABA transmission, but a MOR agonist was
ineffective in these neurons. KOR activation strongly inhibits
GABAergic output from D1 MSNs, but more weakly inhibits
GABA output from D2 MSNs (Tejeda et al., 2017). KORs also
inhibit GABA release, but with a different mechanism. KOR-
mediated inhibition of GABA release is at the level of calcium
entry through N-type VGCCs (Hjelmstad and Fields, 2003).
Potassium channel blockade had no effect on KOR actions. Due
to KOR expression on VTA dopamine neuron inputs, KORs
could theoretically inhibit CIN-driven GABA co-release from
VTA dopamine inputs (Britt and McGehee, 2008; Nelson et al.,
2014).

MORs presynaptically inhibit glutamate release in NAc core
and shell (Martin et al., 1997; Hoffman and Lupica, 2001;
Brundege and Williams, 2002; Hoffman et al., 2003; James et al.,
2013). Postsynaptic MOR activation was reported to enhance
NMDAR, but reduce AMPAR currents (Martin et al., 1997).
Regarding spontaneous glutamate release, MORs equally inhibit
glutamate input to D1 MSNs in NAc core and NAc shell, but
have a much larger effect on D2 MSNs of the NAc shell. MORs
inhibit TTX-insensitive glutamate inputs to D1 and D2 MSNs in
NAc core and NAc shell, although the effect is most robust in D1
MSNs of the shell (Ma et al., 2012). MOR’s effects on glutamate
transmission in NAc may not always be neuronal in origin. MOR
activation on astrocytes in NAc core induces glutamate release,
producing slow inward currents via extrasynaptic NMDARs in
nearby neurons (Corkrum et al., 2019). DOR has a minor effect
on inhibiting glutamate transmission in NAc shell, perhaps only
in a subset of glutamate inputs (Brundege and Williams, 2002).
KORs presynaptically inhibit glutamate release on to MSNs of
NAc shell without having any postsynaptic effects (Hjelmstad
and Fields, 2001). KOR inhibition of glutamate transmission
persist in the presence of N- and P/Q-type calcium and potassium
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channel blockers (Hjelmstad and Fields, 2003). Strong PFC
input to NAc can produce heterosynaptic inhibition of weaker
ventral hippocampal inputs, a process that is in part mediated
by KORs (Brooks and O’Donnell, 2017). KOR inhibits glutamate
input from BLA, but not ventral hippocampus, to D1 MSNs
of the NAc shell and core, but not D2 MSNs (Tejeda et al.,
2017). This effect was stronger in NAc shell than core, but was
independent of D1 MSN projection target. The net effect of
KOR activation at the GABA and glutamate synapses allows
for KORs to decrease D1 MSN firing and disinhibit D2 MSN
firing in response to BLA input. In contrast, KOR has no effect
on ventral hippocampal drive of D1 MSNs, but still allows for
disinhibition of D2 MSNs. The authors conclude that KOR
acts as a pathway-specific filtering mechanism for BLA versus
ventral hippocampal control of NAc function. KOR inhibition
of glutamate transmission in NAc MSNs is lost in animals
with 5 days of repeated cocaine exposure with at least up to
2 weeks of withdrawal (Mu et al., 2011). KORs also regulate
glutamatergic input to PV-expressing FSIs in NAc, however, this
is specific to thalamic, but not cortical inputs (Coleman et al.,
2021). In addition, activation of KORs produces a postsynaptic
LTD plasticity, wherein AMPARs are internalized via a PKA-
calcineurin signaling pathway.

Altogether, these studies indicate that opioid receptor
activation has little effect on membrane properties of both
dorsal and ventral striatal neurons, with the exception of
cholinergic interneurons. A growing body of evidence indicates
that each type of opioid receptor is capable of inhibiting
glutamate transmission and MORs and DORs regulate
GABA transmission, although not universally at all striatal
synapses. The biological relevance of synapse- and opioid
receptor subtype-specific regulation of striatal excitatory
and inhibitory transmission is currently unclear. Refined
approaches for manipulating the expression of these receptors
at specific synapses will help decipher the interplay between
receptors in controlling striatal-mediated behaviors and
circuit function.

THALAMUS

The thalamus acts as a relay hub for cortical sensory and motor
functions, controlling perception, action and mentation (Schmitt
and Halassa, 2017). MORs are highly expressed, but DORs
and KORs are sparsely expressed, throughout the thalamus (Le
Merrer et al., 2009; Chu Sin Chung and Kieffer, 2013; Chen et al.,
2015; Bengoetxea et al., 2020).

In the thalamic reticular nucleus there are two predominant
types of neurons that are both GABAergic, but display different
firing properties (bursting and non-bursting). MOR activation,
but not DOR or KOR, hyperpolarizes subpopulations of
each class of neurons, revealing further subpopulations of
neurons in this nucleus. The mechanism of hyperpolarization
is due to increased potassium conductance (Brunton and
Charpak, 1997). MOR activation hyperpolarizes dorsal
midline thalamus neurons that project to the BLA and CeA
(Goedecke et al., 2019). In the centrolateral thalamus, MOR

activation, but not DOR or KOR, hyperpolarized neurons
via increased GIRK function, independent of synaptic input.
The investigators explored MOR hyperpolarization of other
thalamic neurons (principal relay, midline, and intralaminar
nuclei) and found widespread MOR-mediated inhibition of
thalamic neurons, suggesting that the thalamus is a highly
sensitive region to MOR-mediated neuronal hyperpolarization
(Brunton and Charpak, 1998).

In contrast to MORs, KOR effects in the thalamus appear to
be restricted to specific thalamic nuclei. KOR activation produces
direct hyperpolarization of anterior paraventricular thalamic
neurons through GIRKs that peak around the ages of puberty and
then decrease at later ages. MOR activation hyperpolarizes these
neurons; although, the effect of the MOR agonist desensitizes and
produces heterologous desensitization of KOR responses (KOR
responses do not desensitize independent of MOR activation)
(Chen et al., 2015). Additional studies are needed to investigate
potential KOR effects in other thalamic nuclei.

OTHER REGIONS

In the above sections, we opted to review brain regions that
have received the most attention. However, in our survey of the
literature there are, in the context of opioid receptor-mediated
regulation of neurotransmission, some other less studied brain
regions or subregions that deserve further investigation and we
briefly review them here.

Lateral Hypothalamus
In the Lateral Hypothalamus (LH), local GABA neurons within
the perifornical region inhibit the activity of orexin neurons. KOR
activation specifically reduces this GABAergic input, as revealed
by optical probing of these local GABA neurons (Ferrari et al.,
2018). No studies to date have investigated MOR or DOR effects
on neurons in the LH.

Medial Vestibular Nucleus
Also known as the nucleus of Schwalbe is located in the
brainstem (Highstein and Holstein, 2006). DORs, but not MORs
or KORs inhibit Medial Vestibular Nucleus (MVN) neurons.
DOR inhibition is via activation of an outward potassium current
(Sulaiman and Dutia, 1998).

Pons
Located in the brainstem, parabrachial nucleus neurons are
hyperpolarized by MORs, but not DORs or KORs, likely
through enhancing potassium currents (Christie and North,
1988; Cramer et al., 2021). Pontine Kölliker-Fuse nucleus neurons
are hyperpolarized by MOR activation via GIRK activation
(Levitt et al., 2015; Levitt and Williams, 2018). MORs and KORs
inhibit GABA release in PBN, but only MORs regulate glutamate
release (Cramer et al., 2021).

Ventromedial Hypothalamus
Very few studies have investigated the role of opioid receptors in
modulating neural function in the Ventromedial Hypothalamus
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FIGURE 2 | Summary of opioid receptor-mediated modulation of neurotransmission. Opioid receptor activation-mediated modulation of neurotransmission can have
differential effects on neurocircuit function depending on the localization of the receptors. (A) Opioid receptors found on glutamatergic terminals will reduce
glutamate release upon activation, thus inhibiting a postsynaptic neuron. Opioid receptors on postsynaptic neurons will generally reduce neuronal excitability.
(B) Opioid receptors found on inhibitory neuron (e.g., GABAergic) terminals or postsynaptically will reduce inhibitory transmission, disinhibiting a postsynaptic neuron.
Alternatively, opioid receptors on glutamate neurons that impinge on inhibitory neurons will reduce excitatory drive of these neurons, thus reducing inhibitory
transmission and producing disinhibition through a polysynaptic mechanism. (C) Opioid receptors localized to different synaptic terminals can produce differential
outcomes upon activation. As an example from our own work, MORs are localized to cortical and thalamic glutamatergic inputs to dorsal striatum (DS). (D) Upon
activation by the MOR agonist, DAMGO, MORs reduce the amplitude of glutamate-mediated excitatory postsynaptic currents (EPSCs). Activation MORs on
glutamate inputs from cortex produces a long-lasting reduction in EPSC amplitudes. However, activation of MORs on thalamic inputs only produces a transient
reduction, despite also being a glutamatergic input to the same neurons that express the long-lasting reduction in glutamate transmission from cortical inputs.
Adapted from data from Munoz et al. (2018). Figure created with BioRender.com.

(VMH) or LH. In the VMH, MORs hyperpolarize neurons to
reduce cellular excitability, including those that express the leptin
receptor, via enhancing GIRK currents (Emmerson and Miller,
1999). DORs and KORs do not appear to hyperpolarize neurons
in the VMH. Presynaptic MORs strongly inhibit glutamate input
to VMH neurons, whereas DORs have no effect, and KORs have
only a small effect on glutamate release (Emmerson and Miller,
1999; Devidze et al., 2008). It is unknown which glutamatergic
inputs to the VMH are modulated by MORs and KORs.

GENERAL PRINCIPLES, KNOWLEDGE
GAPS, AND FUTURE DIRECTIONS

Across brain regions opioid receptors play major roles in
regulating glutamate and GABA release through presynaptic
mechanisms and neuronal excitability through postsynaptic
mechanisms. There is heterogeneity in the precise mechanisms
whereby opioid receptors regulate neurotransmitter release, even
within any given brain region (Figure 1). At some synapses
this appears to involve inhibition of calcium channels, while
at others it involves activating potassium channels. There is
also evidence that diverse kinase signaling pathways may be
involved at distinct synapses. These divergent mechanisms do
not appear to be due to the specific identity of the opioid
receptors, but rather due to the specific synaptic terminals on
which the receptors are expressed. On the other hand, all three
opioid receptor types appear to generally modulate neuronal

excitability through their actions on potassium channels, such
as GIRKs. However, local circuit effects must be considered
when deciphering pre- versus postsynaptic localization of opioid
receptor actions, as postsynaptic hyperpolarization can reduce
local circuit neurotransmitter release (Figures 2A,B).

In order to better understand how opioid receptors modulate
neurocircuit function, there is a need to identify the specific cell
types that express these receptors and the subcellular localization
of the receptors. Conditional knockout and fluorescent reporter
transgenic mice are useful for identifying the cell types that
express the various opioid receptors and how the expression
of receptors within those cell types affects neurotransmission
(Gaveriaux-Ruff et al., 2011; Weibel et al., 2013; Ehrich et al.,
2015; Erbs et al., 2015; Chen et al., 2020). Another important
consideration is identifying specific circuits that are modulated by
opioid receptors. In many brain regions, opioid receptor effects
on neurotransmission differ according to localization within the
region, projection targets, or input regions. Optogenetic methods
are increasingly accessible and are useful for identifying the
specific synapses at which opioid receptors reside and how they
specifically modulate neurotransmission.

It is not common for assessments of long-term opioid
receptor-mediated synaptic plasticity to be performed. For
many investigators, it is sufficient to determine whether a
synapse is regulated by opioid receptors. However, there are
missed opportunities to observe the diversity in ways in which
opioid receptors modulate neurotransmission. At some synapses,
activation of opioid receptors produces long-lasting effects
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on neurotransmission that persist even once opioid receptor
antagonists are applied, which argues against persistent receptor
activation. At other synapses, opioid receptor activation only
produces transient responses, only lasting while the receptors are
engaged (Figures 2C,D). Opioid receptors display desensitization
at some synapses, while other synapses appear to be resistant
to receptor desensitization. Whether a particular type of
receptor in a given synapse or cell type produces long-lasting
or short-term effects upon activation or desensitizes or not
is a fascinating area of study that will yield rich insights
into how opioids affect cognition, behavioral output, and
physiological functions. Comparisons between mechanisms of
synapse- and cell type-specific opioid receptor modulation of
neurotransmission could also reveal novel opportunities for
targeted combinatorial therapeutics. There is clearly much
left to discover regarding how opioid receptors can utilize

such a diverse array of mechanisms to precisely modulate
neurotransmission.
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