Série de TD n°3 (À traiter en deux séances et demie)

Exercice N°1

Trois charges $q_1 = q_2 - q_3 = q_4 = q_5$, $q_3 = q_5 = q_5$ (q est une charge positive) sont placées dans le plan (OXY) suivant les coordonnées respectives : $A_1(-a,0)$, $A_2(0,0)$, $A_3(a,0)$.

- 1. Calculer le potentiel électrique V crée par ces charges au point (0,y) et y>0. En déduire le champ électrique total \vec{E} en ce point.
- 2. Calculer l'énergie potentielle interne du système *Usyst* composé de ces trois charges.
- 3. Calculer l'énergie potentielle électrique U d'une charge q = q placée en M (avec y=a).

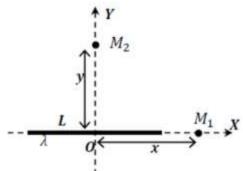
A.N: $a=6 \ cm$; $q=8\times10^{-10} \ C$

Exercice N°2

1. Trouver l'expression du champ $\vec{E}(x,y)$ électrique qui dérive du potentiel électrique suivant :

$$V(x,y) = x(y^2 - 4x^2)$$

2. Trouver le potentiel électrique V(x, y) associé au champ électrique suivant :

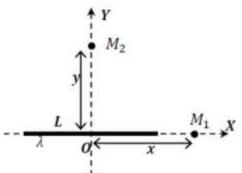

$$\vec{E}(x,y) = a(y\vec{i} + x\vec{j}); V(1,1) = 0$$

Exercice N°3

Considérons un segment de droite de longueur L chargée uniformément avec une densité linéique $(\lambda > 0)$. Figure ci-contre

- 1. Trouver le potentiel crée au point M_1 (V=0 à l'infini).
- 2. En déduire le champ électrique $\vec{E}_{M_1}(x)$ au point M_1 .
- 3. Que devient $\vec{E}_{M_1}(x)$ quand $x\gg L$.
- 4. Trouver le potentiel au point M_2 .

On donne: $\int dz/\sqrt{z^2 + c^2} = Ln (z + \sqrt{z^2 + c^2})$

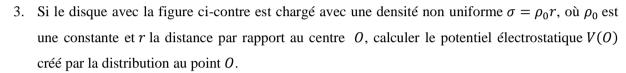


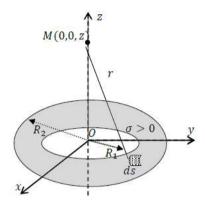
Exercice N°4

Un fil ayant la forme d'un arc de cercle de rayon R est contenue dans le plan (*XOY*) comme le montre la figure ci-contre. La densité de charge λ du fil en fonction de θ est donnée par la relation $\lambda = \lambda_0 \cdot \cos(\theta)$ tel que $\lambda_0 = \text{constante}$.

 θ est l'angle polaire (défini par rapport à l'axe OX) et l'angle $2\theta_0$ formé par le fil est centré sur l'axe *OX*.

- 1. Montrer que la densité de charge λ est symétrique par rapport à l'axe OX.
- 2. Trouver le potentiel électrostatique V(0) crée par cette distribution au point d'origine O.

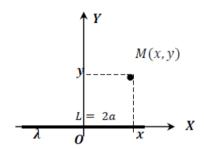



Année universitaire 2024/2025 Matière : Physique 2 1ère année LMD

Exercice 5:

On considère un disque de centre O et de rayons intérieur R_1 et extérieur R_2 . Ce disque est uniformément chargé avec une densité surfacique $\sigma > 0$ (Figure ci-contre).

- 1. Trouver, par un calcul direct, le potentiel V(M) créé par ce disque en un point M de son axe Z'OZ, tel que OM = z > 0. Déduire le champ électrique au point M.
- 2. Déduire le potentiel électrostatique dans le cas d'un disque plein et dans le cas d'un plan infini.


Année universitaire 2024/2025 Matière : Physique 2 1^{ère} année LMD

Exercices Supplémentaires

Exercice S1

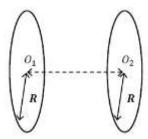
Considérons un segment de droite de longueur L=2a chargée uniformément avec une densité linéique λ

- 1. Trouvez le potentiel électrique produit par cette distribution au point (x_i) .
- 2. Trouvez le champ électrique en M quand la distance OM est très grande par rapport à L.

Exercice S2

I.

Soit un fil circulaire de centre O et de rayon R chargé positivement avec une densité uniforme λ .


- 1. Calculer le potentiel crée par cette distribution au centre du cercle.
- 2. Calculer le potentiel crée en un point M situé sur l'axe du cercle perpendiculaire à son plan et ayant une distance z par rapport à O. (V=0 à l'infini)

II.

Deux anneaux circulaires de *R*=5 *cm* chacune sont disposé comme le montre la figure ci-contre.

La distance $O_1O_2=12$. Et leurs charges respectives $q_1=8\times10-7$ C et $q_2=5,8\times10-7$.

- 1. Calculer la différence de potentiel entre les deux centre des cercles.
- 2. Calculer le travail nécessaire pour déplacer une charge ponctuelle $q=6\times10-9$ C du centre d'un anneau à l'autre.

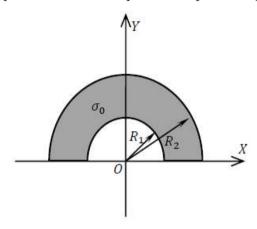
Exercice S3

Un disque, de centre O de rayon intérieur a et de rayon extérieur b, est chargée d'une densité surfacique non uniforme $\sigma = \rho_0 r$ et placé dans le plan (XOY).

 ρ_0 =constante et r est la distance par rapport au centre de la distribution O.

- 1. Trouver la charge totale Q en fonction de ρ_0 , a et b.
- 2. Trouver le potentiel électrostatique V_0 crée au point O.

Année universitaire 2024/2025 Matière : Physique 2 1^{ère} année LMD


Exercice S4

Une distribution surfacique uniforme de densité σ_0 ayant la forme d'un demi-disque de rayon intérieur R_1 et de rayon extérieur R_2 est placée dans le plan (OXY) (figure ci-dessous).

- Trouver le potentiel électrostatique V_0 crée par cette distribution au point O(0,0).

Soit un disque complet de rayon intérieur R_1 et de rayon extérieur R_2 centré en O(0,0) et portant une distribution surfacique $\sigma = \sigma_0 |y|/y$.

- Déduire de la question 1. le potentiel électrostatique $V_{0'}$ crée par ce disque en son centre O(0,0).

Exercice S5

Un dipôle électrique situé au centre des coordonnées et dirigé selon l'axe (Oz). Le potentiel électrique créé aux positions lointaines (r >> a) est :

$$V(r) = \frac{P\cos\theta}{4\pi\varepsilon_0 r^2}$$

1-Déduire l'expression du champ électrique.

2-Montrer qu'on peut écrire le moment dipolaire électrique et le champ électrique respectivement sous les formes : $\vec{P} = P(\cos\theta \ \vec{e_r} - \sin\theta \ \vec{e_\theta})$ et $\vec{E} = [3(\vec{p}.\vec{r})\frac{\vec{r}}{r^2} - \vec{P}]\frac{1}{4\pi\epsilon_0 r^2}$

Exercice S6

Le moment dipolaire électrique d'un dipôle électrique situé à l'origine des coordonnées est donné par la relation : $\vec{P} = (5\vec{\imath} + 2\vec{\jmath} - 5\vec{k})$ en $(\mu C. m)$

Trouver le champ et le potentiel électriques au point A(1,2,-3) m.