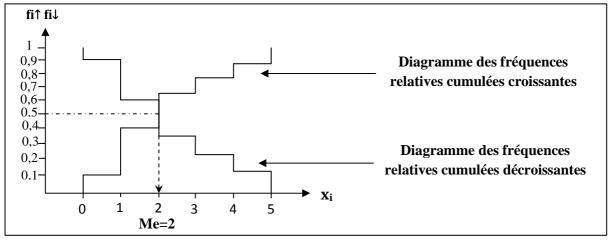

Corrigé série de TD n°2

Exercice1:


1) La population statistique : 100 jours ouvrables consécutifs, le caractère : le nombre de pièces défaillantes, sa nature : quantitatif discret.

Xi	ni	fi	fi↑	fi↓	ni↑	ni↓	ni xi	ni xi²	ni Ixi- $\bar{x}I$
0	10	0.1	0.1	1	10	100	0	0	22.1
1	30	0.3	0.4	0.9	40	90	30	30	36.3
2	25	0.25	0.65	0.60	65	60	50	100	5.25
3	12	0.12	0.77	0.35	77	35	36	108	9.48
4	10	0.1	0.87	0.23	87	23	40	160	17.9
5	13	0.13	1	0.13	100	13	65	325	36.27
total	100	1	-	-	-	-	221	723	127.3

2) Le diagramme en bâton

- 3) Le mode de la série : $M_0=1$ car il correspond à l'effectif le plus grand (ni=30)
- 4) Le diagramme des fréquences relatives cumulées

5) La médiane : Me =
$$\frac{x_2^n + x_2^n + 1}{2}$$

 $Me = \frac{X50 + X51}{2} = \frac{2+2}{2} = 2$

6) Les quantiles :

$$q_1=x_{n\alpha}$$
, $n=100$, $\alpha=\frac{1}{4}$

$$q_1 = x_{100\frac{1}{4}} = X_{25} = 1$$

•
$$q_3 = X_{75} = 3 (\alpha = \frac{3}{4})$$

•
$$D_1 = x_{10} = 0 \ (\alpha = \frac{1}{10})$$

•
$$q_2=Me=2$$
, $C_{75}=q_3=3$, $C_{25}=q_1=1$, $C_{50}=Me=2$,

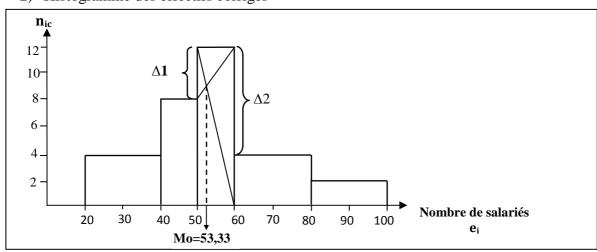
7) La moyenne :
$$\bar{x} = \frac{\sum ni \ xi}{N}$$

$$\bar{x} = \frac{221}{100} = 2.21$$

• La variance :
$$V(x) = \frac{\sum ni \times i^2}{N} - \bar{x}^2 = V(x) = \frac{723}{100} - 2.21^2 = 2.35$$

• L'écart-type :
$$\sigma = \sqrt{v(x)} = \sqrt{2.35} = 1.53$$

8) L'écart interquartile :
$$q=q_3-q_1=3-1=2$$

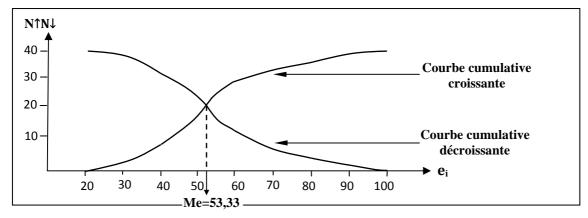

9) L'étendue :
$$x_{max}$$
- x_{min} =5-0=5

• L'écart absolu moyen :
$$EM = \frac{\sum \text{ni Ixi} - \bar{x}I}{N}$$
, $EM = \frac{127.3}{100} = 1.273$

Exercice2:

Nombre de salariés	ni	ai	ci	nic	N↑	N↓	nici	ni <i>ci</i> ²	ni Ici- $\bar{x}I$
[20 40[8	20	30	4	8	40	240	7200	196
[4050[8	10	45	8	16	32	360	16200	76
[50 60[12	10	55	12	28	24	660	36300	6
[60 80[8	20	70	4	36	12	560	39200	124
[80 100[4	20	90	2	40	4	360	32400	142
Total	40	-	-	-	-	-	2180	131300	544

- 1) La population statistique : 40 entreprises, le caractère : le nombre de salariés, sa nature : quantitatif continu.
- 2) Histogramme des effectifs corrigés



Le mode de la série : on corrige d'abord les effectifs

La classe modale est [50 60]

$$\begin{split} Mo &= X_{min} + \frac{\Delta 1}{\Delta 1 + \Delta 2} \, a_i \ , \\ Mo &= 50 + \frac{4}{4 + 8} \, 10 = \! 53.33 \, \approx 54 \end{split}$$

3) Les courbes cumulatives

4) La médiane : La classe médiane : [50 60]

Me=
$$X_{min}$$
 + ai $\frac{\frac{N}{2} - N \uparrow_{Me-1}}{ni_{Me}}$
Me= 50 + $10 \frac{20-16}{12}$ = $53.33 \approx 54$

4) Calcul des quantiles:

•
$$q_1 = X_{min} + ai \frac{\frac{N}{4} - N \uparrow_{q_1 - 1}}{ni_{q_1}} (q_1 \in [40\ 50])$$

 $q_{1=} 40 + 10 \frac{10 - 8}{8} = 42.5 \approx 43$

•
$$Q_3 = X_{min} + ai \frac{\frac{3N}{4} - N \uparrow_{q_3 - 1}}{ni_{q_3}} (q_3 \in [60 \ 80])$$

$$Q_3 = 60 + 20 \frac{30 - 28}{8} = 65$$

•
$$D_1 = X_{\min} + ai \frac{\frac{N}{10} - N \uparrow_{D_1 - 1}}{ni_{D_1}} (D_1 \in [20 \ 40[)$$

$$D1 = 20 + 20 \frac{4 - 0}{8} = 30$$

•
$$D_8 = X_{min} + ai \frac{\frac{8N}{10} - N \uparrow_{D8-1}}{ni_{D8}} (D_8 \in [60 \ 80])$$

$$D8 = 60 + 20 \frac{32 - 28}{8} = 70$$

 $q_2 \!\!=\!\! Me \!\!=\!\! 53.33,\, C_{75} \!\!=\! q_3 \!\!=\! 65,\, C_{25} \!\!=\! q_1 \!\!=\! 42.5,\, C_{50} \!\!=\! Me \!\!=\!\! 53.33$

5) La moyenne :
$$\bar{x} = \frac{\sum ni \ ci}{N}$$

$$\bar{x} = \frac{2180}{40} = 54.5 \approx 55$$

• La variance :
$$V(x) = \frac{\sum ni \text{ ci}^2}{N} - \bar{x}^2$$

$$V(x) = \frac{131300}{40} - 54.5^2 = 312.25 \approx 313$$

• L'écart-type :
$$\sigma = \sqrt{v(x)} = \sqrt{312.25} = 17.67$$

6) L'étendue : $x_{max}-x_{min}=100-20=80$

• L'écart absolu moyen : EM=
$$\frac{\sum \text{ni Ici} - \bar{x}I}{N}$$
 $EM = \frac{544}{40} = 13.6$

7) Le coefficient de variation : $Cv = \frac{\sigma}{\bar{x}} 100 = \frac{17.67}{54.5} 100 = 32.4\%$

Remarque: Chaque paramètre doit être interprété.