Corrigé type de l'EMD de stat 1

Corrigé de l'exercice n°01:

Collige de l'exercice il vi .										
X_{i}	n_{i}	$n_i \uparrow$	$n_i \times x_i$	$n_i \times x_i^2$						
0	40	40	0	0						
1	35	75	35	35						
2	18	93	36	72						
3	6	99	18	54						
4	1	100	4	16						
Total	100	-	93	177						

1) La population statistique est les 100 jours. (0,5)

Le caractère est : le nombre de plaintes (0,5)

Sa nature est: quantitatif discontinu. (0,5)

2) Le Mode est Mo= 0 plainte (1 point)

3) La médiane : On est dans le cas où N est pair, donc : (1 point)

$$Me = \frac{X_{\frac{n}{2}} + X_{\frac{n+1}{2}}}{2} = \frac{X_{50} + X_{51}}{2} = \frac{1+1}{2} = 1 \text{ plainte}$$

4) Le nombre moyen de plainte par jour : (1 point)

$$\bar{X} = \frac{\sum ni \times xi}{N} = \frac{93}{100} = 0.93 \approx 1 \text{ plainte}$$

5) La variance : (1,5 point)

$$V(X) = \frac{\sum n_i \times x_i^2}{N} - \bar{X}^2 = \frac{177}{100} - (0.93)^2 = 0.9051$$

6) Le nombre de jours dans lesquels on a enregistré au moins 4 plaintes (4 et plus) est :

 $N(X \ge 4) = 1 jour$ (1 point)

7) Le pourcentage de jours dans lesquels on a enregistré moins d'une plainte

$$P(X < 1) = \frac{40}{100} \times 100 = 40\%$$
 (1 point)

Corrigé de l'exercice n°02:

Dépenses en (MDA)	n_{i}	C_{i}	a_{i}	n_{ic}	ni ↑	$n_i \times c_i$	$n_i \cdot c_i^2$
[0 - 50[10	25	50	4	10	250	6250
[50 - 70[48	60	20	48	58	2880	172800
[70- 90[52	80	20	52	110	4160	332800
[90-110[34	100	20	34	144	3400	340000
[110-130[28	120	20	28	172	3360	403200
[130-150[22	140	20	22	194	3080	431200
[150-200[6	175	50	2.4	6	1050	183750
Total	200	_	_	-	_	18180	1870000

1- La population statistique : est l'ensemble des ménages. (0,5)

Le caractère : est la dépense mensuelle des ménages. (0,5)

Sa nature: quantitative continue. (0,5)

2- La dépense de consommation moyenne correspond à la moyenne arithmétique :

$$\bar{X} = \frac{\sum n_i c_i}{N} = \frac{18180}{200} = 90,9 MDA.$$
 (1 point)

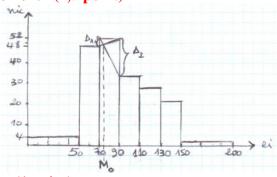
3- La dépense de consommation médiane correspond à la médiane. La médiane est dans la classe [70-90[; Donc on a : (1 point)

$$M_e = X_{min} + \frac{\frac{N}{2} - n_{iMe_{-1}}^{\uparrow}}{n_{iMe}} \times a_i$$
 $M_e = 70 + \frac{100 - 58}{52} \times 20 = 86,154 \, MDA$

Interprétation : 50% des ménages ont une dépense mensuelle inférieure à 86154DA.(0,5)

4- Calcul du mode

Le Mode graphiquement (1,5 point)



Le mode par le calcul (1 point)

La classe modale correspond à la classe de plus grand effectif, c'à d à la classe [70-90[. On a la relation :

$$M_0 = X_{\min} + \frac{\Delta_1}{\Delta_1 + \Delta_2} \times ai$$
 $M_0 = 70 + \frac{(52 - 48)}{(52 - 48) + (52 - 34)} \times 20 \approx 73,64 \text{ MDA}$

5- Calcul de l'écart interquartile

Le premier quartile est dans la classe [50-70[. On a la relation : (0,5)

$$Q_1 = X_{min} + \frac{\frac{N}{4} - n_{iQ1_{-1}}^{\uparrow}}{n_{iO1}} \times a_i$$
 $Q_1 = 50 + \frac{50 - 10}{48} \times 20 = 66,66 \, MDA$

Le troisième quartile est dans la classe [110-130[. On a la relation : (0,5)

$$Q_3 = X_{min} + \frac{N \times \frac{3}{4} - n_{iQ3-1}^{\uparrow}}{n_{iQ3}} \times a_i$$
 $Q_3 = 110 + \frac{150 - 144}{28} \times 20 = 114,28 \, MDA$

L'écart interquartile vaut donc : $Q = Q_3 - Q$ (0,5)

$$Q = 114280 - 66660 = 47620DA (0,5)$$

Calcul de l'écart interdécile

Le premier décile est dans la classe [50-70[. On a la relation : (0,5)

$$D_1 = 50 + \frac{0.10 - 0.05}{0.24} \times 20 = 54{,}166$$

$$D_1 = X_{min} + \frac{N \times \frac{1}{10} - n_{iD_{1-1}}^{\uparrow}}{n_{iD_1}} \times a_i \quad D_1 = 50 + \frac{20 - 10}{48} \times 20 = 54,166 \, MDA$$

Le troisième quartile est dans la classe [130-150[. On a la relation : (0,5)

$$D_9 = X_{min} + \frac{N \times \frac{9}{10} - n_{iD_{9-1}}^{\uparrow}}{n_{iD_9}} \times a_i \quad D_9 = 130 + \frac{180 - 172}{22} \times 20 = 137,272MDA$$

L'écart interdécile vaut donc : $D = D_0 - D_1$ (0,5)

$$D = 137272 - 54166 = 83106DA (0,5)$$

6- Calcul de la variance (1 point)

$$V(X) = \frac{\sum n_i c_i^2}{N} - \bar{X}^2 = \frac{1870000}{200} - (90.9)^2 = 9350 - 8262.81 = 1087.19(MDA)^2$$
7. La proportion d'individus dont la dépense est supérieure ou égal à 90000DA est de la proportion d'individus dont la dépense est supérieure ou égal à 90000DA est de la proportion d'individus dont la dépense est supérieure ou égal à 90000DA est de la proportion d'individus dont la dépense est supérieure ou égal à 90000DA est de la proportion d'individus dont la dépense est supérieure qui égal à 90000DA est de la proportion d'individus dont la dépense est supérieure qui égal à 90000DA est de la proportion d'individus dont la dépense est supérieure qui égal à 90000DA est de la proportion d'individus dont la proportion d'individus d'i

7- La proportion d'individus dont la dépense est supérieure ou égal à 90000DA est égal

à:
$$P = \frac{(34+28+22+6)}{200} \times 100 = 45\%$$
. (0,5)