
Série N°4, Structure de la Matière 

 

Exercice 1 : 

On éclaire une cellule photoélectrique dont la cathode est en césium (Cs) avec une radiation 

de longueur d’onde λ1 = 495 nm, puis avec une autre radiation de longueur d’onde λ2 = 720 

nm. L’énergie d’extraction d’un atome de césium est E0 = 3.10-19 J. 

1. C’est quoi l’effet photoélectrique ? 

2. Quel type de radiation permet d’observer l’effet photoélectrique ? 

3. Quel aspect de la lumière permet d’interpréter l’effet photoélectrique ? 

4. Quelle relation existe-t-il entre le seuil de fréquence d’un métal et l’énergie 

d’extraction d’un électron ? 

5. Calculer la longueur d’onde correspondant au seuil photoélectrique ? 

6. Vérifier que l’effet photoélectrique n’existe qu’avec une seule des deux radiations 

précédentes ? Justifier. 

7. Quelle est l’énergie cinétique maximale (en joule et en eV) d’un électron émis dans le 

cas de la radiation qui produit un effet photoélectrique ? 

Données : h = 6,62 10-34 J.s ; c =3 108 m/s ; e = 1,6 10-19 Coulomb. 

 

Exercice 2 

I- Une lampe de cadmium éjecte des électrons d’énergie de 2,7 eV qui sont éjectés 

d’une surface dont l’énergie d’extraction est de 4 eV. 

1. Calculer la fréquence de la lumière incidente. 

2. Les mêmes surfaces sont maintenant éclairées avec une lumière de 1500Å. En négligeant 

l’énergie cinétique des électrons expulsés, calculer l’énergie d’extraction de ces électrons. 

II- Un faisceau de lumière d’intensité I tombe sur un métal et provoque l’émission de 

photoélectrons : 

1. Faire le schéma énergétique des électrons éjectés si hν > E₀. 

2. Calculer la vitesse des électrons éjectés si hν = 4 eV, E0 = 2 eV. 

3. Calculer l’énergie cinétique des électrons éjectés si ν = 4.9 × 10¹⁵ Hz, E0 = 2.5 eV. 

Donnés : h = 6.63 × 10⁻³⁴ J.s ; 1 eV = 1.6 × 10⁻¹⁹ J ; m₀ = 9.11 × 10⁻³¹ Kg. 

 

 

 

 

 



Exercice3   

I.  Démontrer les formules de Bohr qui expriment le rayon de l'orbite (rn) et l'énergie (En) d'un électron 

dans une couche n pour un atome d'hydrogène et pour un ion hydrogénoïde déduire 
1

𝜆
. 

II. Le spectre d’émission d’hydrogène se compose de séries de raies dont les longueurs d’onde 

dans le spectre visible sont mesurées dans les unités d’Å : 

1.  Donner la valeur des longueurs d’onde des raies qui permettent le passage de l’électron : de 

l’état fondamental au premier état excité (première raie) et au deuxième état excité ainsi que 

celle de la raie limite. 

2. Calculer l’énergie du photon émis lors de la transition n=3 à n=2.  

3. Calculer le rayon de l'orbite au niveau (n=2 et n=3). 

4. Quelle est la nature du photon émis lors de cette transition (visible, UV ou IR) ? 

5.  Donner le schéma de transition correspondant. 

Exercice 4 

L’atome d’hydrogène se trouvant dans son état fondamental est excité par une décharge 

électrique. On observe l’émission de séries de raies dans le spectre d’émission. 

1. Calculez l’énergie absorbée par un atome si n=6 (l’énergie correspondant à n=6). 

2. Calculez la longueur d’onde du saut entre n=6 et n=2 (série de Balmer) ainsi que la 

fréquence et l’énergie du photon émis au cours de ce saut. 

3. Identifiez la raie correspondante à la première raie de la série de Balmer. 

4. Calculez l’énergie émise si un électron retombe dans la série de Balmer. 

Données : h = 6,62 \times 10-34 , J.s,  𝑐 = 3 × 108 𝑚/𝑠, RH = 1,09 \times 107 , m-1 , 𝐸𝑛 =

−13,6
1

𝑛2  𝑒𝑉, 1 𝑒𝑉 = 1,6 × 10−19 𝐽 

Exercice 5 : 

Un hydrogénoïde ZXy+ absorbe dans son état stable un rayonnement. Sachant que son énergie 

d’ionisation est égale à 54,4 eV. 

1. De quel hydrogénoïde s’agit-il? 

2. Calculer la longueur d’onde (en nm) de la radiation qui permettrait d’arracher cet 

électron. 

3. Calculer l’énergie totale de cet électron s’il est dans son second état d’excitation. 

4. Calculer le rayon de l’orbite de l’électron quand il se trouve au niveau n=3. 

5. Montrer que l’absorption d’un photon de nombre d’onde 𝜎 = 1,56·108 m-1 par 

l’hydrogénoïde Be3+ à l’état fondamental est possible. Préciser le niveau énergétique de 



l’électron dans l’ion excité résultant de cette absorption. 

Données: h=6,62·10-34J·s; c =3·108m/s; RH=1,097·107m-1; a0=0,53Å; 1 eV=1,6·10-19J 

 

Exercice 6 :  

1. Quelle est la longueur d’onde associée à: 

- Un électron dont l’énergie cinétique est de 54eV? 

- Un proton accéléré sous une différence de potentiel de 106 V ? 

- Un avion de chasse de 15tonnes volant à2800 km/h? 

2. Dans quel(s) cas les propriétés ondulatoires se manifestent-elles ? 

3. Appliquer le principe d’incertitude d’Heisenberg et calculer l’incertitude sur la vitesse 

ΔVx de : 

- Un électron se déplaçant en ligne droite (Δx= 1Å), 

- Une bille de masse 1g se déplaçant sur une droite dont la position est connue à 

1mm près. 

4. Quelle conclusion en tirez-vous? 

 

Exercice 7 :  

1) Rappeler les valeurs possibles des différents nombres quantiques. 

2) Quels sont les nombres quantiques associés aux électrons de la couche de valence du 

phosphore 15P et du calcium 20Ca ?  

3) Quels sont les nombres quantiques caractérisant la forme des orbitales d ? Préciser le nombre 

d'orbitales atomiques  d.  

4)  Quelle est le nombre d’électron maximale envisageable dans une sous-couche l = 2 ? 

Exercice 8 : 

Soient les éléments et ions suivants : 2He; 3Li; 5B; 19K
+; 26Fe; 30Zn; 34Se. 

1. Donner la configuration électronique à l’état fondamental des éléments ci-dessus.  

2. Représenter la couche de valence de chaque élément par les cases quantiques et 

préciser le caractère magnétique de chacun d’eux. 

3. Calculer Z*(charge nucléaire effective) relative à l’électron de la dernière orbitale de He, 

Li, B, Zn et Se. 

4. Calculer les énergies de 1ère et 2ème ionisation de l’Hélium. 

5. Calculer Z* de l’électron 4s du fer. Comparer la stabilité d’un électron de la sous-

couche 3d avec celle d’un électron de la sous-couche 4s. 

 



Exercice 9 

1. Calculer la charge effective  Z*  de chaque électron pour les atomes suivants : O (Z=8), 

Mg (Z=12), Ar (Z=18), Ca (Z=20). 

2. Calculer l'énergie totale de chaque atome. 

Exercice supplémentaires 

Exercice 1 

Une surface de cuivre (hν=246 kJ) est éclairée par une radiation lumineuse de longueur 

d’onde λ = 3800Å . Cette radiation lumineuse déclenche-t-elle une photoémission (effet 

photoélectrique) ? 

1. Rappeler le phénomène 

2. Calculer l’énergie d’un photon incident. 

3. Comparer le résultat avec l’énergie minimale requise pour arracher l’électron du métal. 

 

Exercice 2 : 

I- L’électron d’un hydrogène isolé a pour longueur d’onde (De Broglie) λ = 0,33 Å, et une 

impulsion p qui provient du niveau fondamental. 

Calculer la vitesse v de l’électron. 

II- Par effet photoélectrique, on détermine la longueur d’onde (en Å) et l’énergie (en eV) qui 

correspond à une énergie d’ionisation de 13,6 eV. 

1. À partir du photon incident, déterminer l’énergie du photon incident. 

2. Déterminer la longueur d’onde de la raie inconnue = 4861 Å. Sur quoi mesure-t-on 

l’électron ou le photon incident? 

Données : h = 6,63.10⁻³⁴ J.s; e = 1,6 . 10⁻¹⁹ C; mₑ = 9,1.10⁻³¹ kg; C = 3.10⁸ m/s; 1 Å = 

10⁻¹⁰ m 

 

 

 

 

 

 

 

 

 



Corrige de la série 4 

Exercice 1  

1. L'effet photoélectrique est la libération d’électrons d’une surface métallique lorsqu’elle est 

irradiée par des photons d’énergie suffisante (dépasse énergie d’extraction 𝐸0) 

2. Les radiations de photon dont l’énergie 𝐸 = ℎ𝜈 sont au-dessus du seuil limitesE0 , avec une 

fréquence suffisamment élevée (longueur d’onde suffisamment courte).(E>E0, ν>ν0 et <0) 

3. L’aspect de la lumière qui permet d’interpréter l’effet photoélectrique est l’aspect 

corpusculaire (énergie quantifiée des photons).  

 

4. La relation qui existe entre seuil de fréquence et énergie d’extraction est: 

                                                     Wextraction= E0=hν0 

où 𝜈0 est la fréquence du seuil pour laquelle les électrons sont juste éjectés, sans énergie 

cinétique. 

5. Calcul de la longueur d’onde de seuil : 

                                                     Wextraction= E0=hν0=ℎ
𝐶

𝜆0
⇒ 𝜆 =ℎ

𝐶

E0
               

𝜆0 =
6,62 × 10−34 × 3 × 108

3 × 10−19
= 662 × 10−9m = 662 nm 

6. Vérification de l’effet avec radiations : 

 𝜆 = 495 𝑛𝑚 < 662 𝑛𝑚 ⇒ <0 donc effet photoélectrique observé. 

Ou bien  

-E0=hν0=ℎ
𝐶

𝜆0
=

6,62×10−34×3×108

495×10−9
= 4,012 × 10−19J donc E > E0,  

- 𝜈0 =
𝑐

𝜆0
=

3×108

495×10−9
= 4,53 × 1014 𝐻𝑧   et  𝜈 =

𝐸

ℎ
=

3×10−19

6,62×10−34
= 4,53 × 1014 𝐻𝑧 donc ν > ν0  

 

 𝜆 = 720 𝑛𝑚 > 662 𝑛𝑚 ⇒ >0 donc effet non observé, car l’énergie du photon est 

insuffisante.  



Ou bien E0=hν0=ℎ
𝐶

𝜆0
=

6,62×10−34×3×108

720×10−9
= 2,76 × 10−19J  donc E < E0 

-  𝜈0 =
𝑐

𝜆0
=

3×108

720×10−9 = 4,16 × 1014 𝐻𝑧    donc ν < ν0  

7. Energie cinétique maximale de l’électron émis (𝜆 = 495 𝑛𝑚) 

E =  E0 + Ec⇒ 𝐸𝑐 = 𝐸 − 𝐸0 

𝐸𝑐𝑖𝑛 = 4,012 × 10−19 − 3 × 10−19 = 1,012 × 10−19J 

En eV : 

𝐸𝑐 =
1,01 × 10−19

1,6 × 10−19
= 0.63 𝑒𝑉 

Exercice 2 

a. La fréquence de la lumière incidente. 

L'énergie des électrons émis est liée à l'énergie photon incidente par : 

𝐸0 = ℎ𝜈 = 𝐸0 + 𝐸c 

Ici : 

𝐸c = 2.7 𝑒𝑉, 𝐸0 = 4 𝑒𝑉 

On a donc : 

E = 2.7 + 4 = 6.7 𝑒𝑉 

Convertir en joules : 

E = 6.7 × 1.6 × 10−19 = 1.072 × 10−18 𝐽 

La fréquence 𝜈 est : 

𝜈 =
E

ℎ
=

1.072 × 10−18

6.62 × 10−34
= 1.62 × 1015 𝐻𝑧 

b. Calcul  de l'énergie d'extraction de ces électrons. 

Longueur d'onde 𝜆 = 1500 Å = 1500 × 10−10 = 1.5 × 10−7 𝑚. 

L'énergie du photon : 



𝐸 =
ℎ𝑐

𝜆
=

6.62 × 10−34 × 3 × 108

1.5 × 10−7
= 1.324 × 10−18 𝐽 

Convertir en eV : 

𝐸 =
1.324 × 10−18

1.6 × 10−19
= 8.28 𝑒𝑉 

En négligeant l'énergie cinétique émise : 

𝐸0 = 𝐸 − 𝐸𝑐 = 8,28 − 0 = 8.28 𝑒𝑉 

2.  

a. Le schéma énergétique des électrons éjectés si ℎ𝜈 > 𝐸0. 

Le schéma énergétique montre que le photon incident d'énergie ℎ𝜈 doit être supérieur à l'énergie 

d'extraction 𝐸0 pour extraire un électron. L'excès d'énergie constitue l'énergie cinétique maximale des 

électrons éjectés. 

 

b. La vitesse des électrons éjectés si ℎ𝜈 = 4 𝑒𝑉, 𝐸0 = 2 𝑒𝑉. 

L'énergie cinétique maximale : 

𝐸𝑐 = ℎ𝜈 − 𝐸0 = 4 − 2 = 2 𝑒𝑉 

Convertir 𝐸𝑐 en joules : 

𝐸𝑐 = 2 × 1.6 × 10−19 = 3.2 × 10−19 𝐽 

La vitesse : 

𝐸𝑐 =
1

2
𝑚𝑣2 ⇒ 𝑣 = √

2𝐸𝑐

𝑚
= √

2 × 3.2 × 10−19

9.11 × 10−31
= √7.03 × 1011 = 8.38 × 105 𝑚/𝑠 



1 

a. L'énergie cinétique des électrons éjectés si 𝜈 = 4.9 × 1015 𝐻𝑧, 𝐸0 = 2.5 𝑒𝑉. 

Calcul de l'énergie photon : 

𝐸 = ℎ𝜈 = 6.63 × 10−34 × 4.9 × 1015 = 3.25 × 10−18 𝐽 

Convertir en eV : 

E =
3.25 × 10−18

1.6 × 10−19
= 20.3 𝑒𝑉 

L'énergie cinétique : 

𝐸𝑐 = E − 𝐸0 = 20.3 − 2.5 = 17.8 𝑒𝑉 

Exercice 3 

I- 

 

 

Postulats de Bohr 

 L’électron décrit un mouvement 

circulaire autour du noyau sous 

l’influence de la force électrostatique de 

Coulomb. 

 Le moment cinétique de l’électron est quantifié : 𝒎𝒗𝒓 =
𝒏𝒉

𝟐𝝅
 

 Seules certaines orbites (rayons) et énergies sont permises. 

 

 Pour l’hydrogène :  
 
a. Rayon de Bohr rn 
Force de Coulomb (attraction nucléaire) = Force centrifuge : 

L'hydrogène 1H est constitué d'un noyau de charge (+e) et d'un électron de charge (-

e) séparés par une distance r.    

𝑭𝒆⃗⃗⃗⃗  ⃗ =
𝒁𝒆𝟐

𝟒𝝅𝝐𝟎𝒓𝒏
𝟐 =

𝑲𝒒𝒒′

𝒓𝒏
𝟐 = 

−𝑲𝒆𝟐

𝒓𝒏
𝟐 . 



              𝑭𝒄 ⃗⃗ ⃗⃗  ⃗ =  
𝒎𝒗𝟐

𝒓
.  

𝐹𝑒⃗⃗⃗⃗ : Force d’attraction            𝐹𝑐 ⃗⃗ ⃗⃗  ⃗: Force centrifuge. 

Pour que l’électron soit stable sur une orbite circulaire, il faut que 

∥  𝑭𝒄 ⃗⃗ ⃗⃗  ⃗ ∥ ∥  𝑭𝒆⃗⃗ ⃗⃗ ∥

Par ailleurs on a :                                                                                                                                               

 

      
𝐾𝑒2

𝑟𝑛
2

= 
𝑚𝑣2

𝑟𝑛
 ⇒ 𝑣2 =

𝐾  𝑒2

𝑚𝑟𝑛
……………….(1) 

 

D’après le deuxième postulat de Bohr : 𝑚𝑣𝑟𝑛 =
𝑛ℎ

2𝜋
…………… . . (2) 

 

On remplaçant (1) dans (2) on obtient : 

  

𝑟𝑛 =
ℎ2𝑛2

4𝜋2𝑘𝑚𝑒2
… … … … … . . (3) 

 

On pose r1=ao= rayon de la première orbite de Bohr tel que : 

𝑟1 = 𝑎𝑜 =
ℎ2

4𝜋2𝑘𝑚𝑒2
 

 

𝑟1 = 𝑎𝑜 = 0.53𝐴𝑜 

 

 

On aura donc : 𝑟𝑛 = 𝑎𝑜𝑛
2 = 0,53 𝑛2 

où : 

 Z  = numéro atomique (Z=1 pour H) 

 e  = charge de l’électron 

 𝜖0 = permittivité du vide 

 rn = rayon de l’orbite 

 v = vitesse de l’électron à l’orbite n 



 m= masse de l’electron 

b-L’énergie totale d’un électron sur son orbite : 

ET = Ec + Ep 

Ec =
1

2
 𝑚𝑣2…………(4) 

En remplaçant (1) dans (4) on obtient on obtiendra l’expression de Ec : 

 

Ec =
1

2
 𝑚𝑣2 =

𝐾  𝑒2

2𝑟
  

L’énergie potentielle est définit comme la force qui ramène l’électron de l’in fini vers son 

orbite et aura comme expression :         𝐸𝑝 = ∫ ∥  𝐹𝑒⃗⃗⃗⃗ ∥
𝑟

∞
. 𝑑𝑟 = −

𝐾  𝑒2

𝑟
  

L’expression de ET s’écrit donc comme suit : 

 

𝐸𝑇 =
𝑘  𝑒2

2𝑟
−

𝐾  𝑒2

𝑟
=  

− 𝑘  𝑒2

2𝑟
…… . . (5)  

 

En remplaçant (3) dans (4) on aura :  

𝐸𝑇 =
−2𝑘2𝜋2𝑚  𝑒4

ℎ2
∗

1

𝑛2
 

 

On pose :                                                       𝐸1 =
−2𝑘2𝜋2𝑚  𝑒4

ℎ2
 

  

Tel que E1 est l’énergie de l’électron sur la première orbite (E1= -13,6eV). 

 

On obtient :         

𝐸𝑇 = 𝐸𝑛 = 𝐸1 ∗
1

𝑛2
= −13,6 ∗

1

𝑛2
 

 L’expression de ET montre bien que l’énergie totale de l’électron est quantifiée. 

Transition entre niveaux électroniques : 
𝟏

𝝀
 

 Le passage de l’électron d’un niveau supérieur m à un niveau inférieur n 

s’accompagne d’émission d’un rayonnement d’énergie 



                                               | E | = h = ℎ
𝐶

𝜆
 = | Einitia - Efinale |= | En – Em| 

                                               | E | = h = ℎ
𝐶

𝜆
 = | E1×

1

𝑛2
 – E1×

1

𝑚2
 | ⟹

1

𝜆
 =  

𝐸1

ℎ𝑐
× [ 

1

𝑛2
 –

1

𝑚2
 ]   

On pose : 𝑅𝐻 =
E1

hc
     ⟹          

1

𝜆
= 𝑅𝐻 × [ 

1

𝑛2
 –

1

𝑚2
 ]    

RH : constant de Rydberg 

h: constant de Planck  

C: Vitesse de la lumière  

 Pour un hydrogenoide : 

⟹ 
𝑍𝑒2

4𝜋𝜖0𝑟𝑛2
= m

𝑉2

𝑟𝑛
⇒

𝐾𝑍𝑒2

𝑟𝑛
= m𝑉2 

Quantification du moment cinétique : 

mV𝑟𝑛 = 𝑛
ℎ

2𝜋
 ⟹  V = 𝑛

ℎ

2𝜋m𝑟𝑛
  

V  dans l’équation de la force : 

m𝑉2 =
𝐾𝑍𝑒2

𝑟𝑛
→ m(

𝑛ℎ

2𝜋𝑚𝑟𝑛
)
2

=
𝐾𝑍𝑒2

𝑟𝑛
 

 ⟹  𝑟𝑛 =
𝑛2ℎ2

4𝜋2𝑘𝑚𝑍𝑒2
 

Donc, 

𝑟𝑛 = 𝑎0𝑛
2/𝑍 

-Lénergie de Bohr : 𝐸𝑛 = 𝐸𝐶 + 𝐸𝑃 =
𝑘 𝑍 𝑒2

2𝑟
−

𝐾 𝑍 𝑒2

𝑟
= 

− 𝑘 𝑍 𝑒2

2𝑟
 

En remplaçant rn par l’expression trouvée plus haut : 

𝐸𝑇 =
−2𝑍𝑘2𝜋2𝑚  𝑒4

ℎ2
∗

1

𝑛2
 

𝐸𝑛 = −13,6 eV  
𝑍2

𝑛2
 



 
𝟏

𝝀
 : 

| E | = h = ℎ
𝐶

𝜆
 = | E1×

𝑍2

𝑛2 – E1×
𝑍2

𝑛2 | ⟹
1

𝜆
 =  

𝐸1

ℎ𝑐
× 𝑍2 × [ 

1

𝑛2  –
1

𝑚2 ]   

On pose :    ⟹          
1

𝜆
= 𝑅𝐻 × 𝑍2 × [ 

1

𝑛2
 –

1

𝑚2
 ]    

 

II- 

1. Longueur d’onde d’une transition : 

1

𝜆
= 𝑅𝐻 (

1

𝑚2
−

1

𝑛2
), 

avec 𝑅𝐻 = 1,097 × 107 𝑚−1. 

 (premier état excite) Première  raie : 𝑛 = 1 → 𝑛 = 2: 

𝜆1→2 =
1

𝑅𝐻(
12

12−
12

22)
= 121.6 𝑛𝑚 (UV). 

 (deuxième état excite) Transition 𝑛 = 1 → 𝑛 = 3 : 

𝜆1→3 = 102,55 𝑛𝑚, 

 Raie limite 𝑛 = 1 → 𝑛 = ∞: 

𝜆1→3 =  50,76𝑛𝑚, 

 

2. Énergie de photon de la transition  

𝑛 = 3 → 𝑛 =  2  (pour la raie de la série Balmer, dans le visible)  

Δ𝐸 = 𝐸2 − 𝐸3 = 13.6 (
1

22
−

1

32
) = 13.6 × (0.25 − 0.111) = 13.6 × 0.139 = 1.89 𝑒𝑉 

 Rayon des niveaux : 



rn = 0.53 n2  

- pour 𝑛 = 2, 𝑟2 = 2.12 Å. 

- pour 𝑛 = 3, 𝑟3 = 4.77 Å. 

7. Nature du photon : La transition du niveau 3 à 2 émet dans le visible, de longueur d’onde 

≈ 656 nm, correspondant à la série de Balmer. 

 

Exercice 4 :  

1. Calcul de l’énergie absorbée par l’atome pour n=6  

L’énergie d’un électron dans un niveau n de l’atome d’hydrogène est donnée par la formule 

de Bohr : 

𝐸𝑛 = −13,6
1

𝑛2
  

Pour n=6 :         𝐸6 = −13,6 ×
1

62 = −13,6 ×
1

36
= −0,378 eV 

L’énergie absorbée par l’atome pour passer de l’état fondamental n=1 a n=6 : 

Δ𝐸 = 𝐸6 − 𝐸1 = (−0,378) − (−13,6) = 13,222 eV 

 

2. Calcul de :, fréquence et énergie d’un photon émis lors du saut  n=6 a n=2  (série de 

Balmer) 

La longueur d’onde 

1

𝜆
= 𝑅𝐻 (

1

𝑛𝑓
2 −

1

𝑛𝑖
2) 

1

𝜆
= 1,097 × 107 (

1

22
−

1

62
) = 1,097 × 107 (

1

4
−

1

36
) = 1,09 × 107 ×

8

36

= 1,09 × 107 × 0,222 = 2,422 × 106 m−1 

Donc : 

𝜆 =
1

2,422 × 106
= 4,12 × 10−7 𝑚 = 412 𝑛𝑚 

La fréquence est : 



𝜈 =
𝑐

𝜆
=

3 × 108

4,12 × 10−7
= 7,28 × 1014 Hz 

L’énergie du photon émis lors de cette transition est donnée par : 

𝐸 =
6,62 × 10−34 × 3 × 108

4,12 × 10−7
= 4,82 × 10−19 𝐽 

𝐸 =
5,41 × 10−19

1,6 × 10−19
= 3,38 eV 

 

3. Identification de la première raie de la série de Balmer 

La série de Balmer correspond aux transitions vers le niveau n=2 à partir de niveaux n > 2 . 

La première raie correspond à la transition n=3→n=2. 

4. Calcul de l’énergie émise si un électron retombe dans la série de Balmer 

L’énergie émise correspond à la différence d’énergie entre les niveaux de l’atome pour la 

transition en question. 

Par exemple, pour la transition  n=3→ n=2 : 

𝐸3 = −13,6 ×
1

9
= −1,51 eV 

𝐸2 = −13,6 ×
1

4
= −3,4 eV 

𝐸 = 𝐸2 − 𝐸3 = (−3,4) − (−1,51) = −3,4 + 1,51 = −1,89 eV 

 

Exercice 5: 

1. Identification de l’hydrogénoïde ZXy+ 

L’énergie d’ionisation d’un hydrogénoïde est donnée par : 

𝐸i = Δ𝐸 = 𝐸2 − 𝐸3 = −13.6𝑍2 (
1

m2
−

1

n2) = −13.6𝑍2 (
1

∞2
−

1

12
) = 𝑍2 × 13,6 eV 

On a : 

𝑍 = √
𝐸i

13,6
= 2 

Il s’agit donc de l’ion He+ . 

2. Longueur d’onde du rayonnement 



L’énergie du photon est :| E | = h = ℎ
𝐶

𝜆
  ⟹  𝜆 = ℎ

𝐶

E 
  

𝜆 = 6,62 × 10−34 3×108

54,4×1,6×10−19 
= 22,81 × 10−9 𝑛𝑚 

3. Énergie totale de l’électron au second état d’excitation 

𝐸𝑛 = −
13,6𝑍2

𝑛2
  

 n=3  : 

𝐸3 = −
13,6 × 42

32
 = −6,04𝑒𝑉 

 

4. Rayon de l’orbite  à n=3  

𝑟3 = 
𝑜, 53 × 𝑛2

Z
  

𝑟3 = 
0,53 × 32

2
 = 2,385𝐴𝑜  

5. Absorption d’un photon par Be3+ 

Z pour Be3+ :  

Énergie d’un photon avec nombre d'onde: 

𝐸photon = ℎ𝑐𝜎̃ 

Calcul : 

E = 6,62 × 10−34 × 3 × 108 × 1,56 × 108 = 3,098 × 10−17 J 

En eV : 



E =
3,098 × 10−17

1,6 × 10−19
= 193,6 eV 

L’énergie de l’état fondamental n=1 : 

𝐸1 = −𝑍2 × 13,6 = −16 × 13,6 = −217,6 eV 

La transition possible : 

Δ𝐸 = 𝐸𝑛𝑓
− 𝐸1 ≈ +193,6 eV 

Ce qui permet au électron d’être excité à un niveau nf dont l’énergie est près de : 

𝐸𝑛𝑓
= 𝐸1 + 193,6 = −217,6 + 193,6 = −24 eV 

En utilisant la formule : 

𝐸𝑛 = −
𝑍2 × 13,6

𝑛2
 

On peut approximer nf  par : 

𝑛𝑓 = √
𝑍2 × 13,6

24
= √

16 × 13,6

24
= √

217,6

24
= √9,07 ≈ 3 

 La transition est possible, et l’électron se trouve dans le niveau excité approximatif n=3. 

 

Exercice 6 :  

1. Calcul des longueurs d'onde de de Broglie 

La longueur d'onde de de Broglie associée à une particule est donnée par : 

𝜆 =
ℎ

𝑝
=

ℎ

𝑚𝑣
 



a) Pour un électron d'énergie cinétique 𝐸𝑐 = 54 𝑒𝑉 

L'énergie cinétique est reliée à la vitesse par : 

𝐸𝑐 =
1

2
𝑚𝑣2 

Convertir l'énergie en joules : 

𝐸𝑐 = 54 × 1,6 × 10−19 = 8,64 × 10−18 𝐽 

Calcul de la vitesse : 

𝑣 = √
2𝐸𝑐

𝑚
= √

2 × 8,64 × 10−18

9,1 × 10−31
= √1,897 × 1013 = 4,35 × 106 𝑚/𝑠 

Longueur d’onde : 

𝜆 =
ℎ

𝑚𝑣
=

6,63 × 10−34

9,1 × 10−31 × 4,35 × 106
=

6,63 × 10−34

3,96 × 10−24
= 1,67 × 10−10 𝑚 = 1,67 Å 

 

b) Pour un proton accéléré sous une différence de potentiel 𝑉 = 106 𝑉 

L'énergie cinétique acquise est : 

𝐸𝑐 = 𝑒𝑉 = 1,6 × 10−19 × 106 = 1,6 × 10−13 𝐽 

Masse du proton : 

𝑚𝑝 = 1,67 × 10−27 𝑘𝑔 

Calcul de la vitesse : 

𝑣 = √
2𝐸𝑐

𝑚𝑝
= √

2 × 1,6 × 10−13

1,67 × 10−27
= √1,916 × 1014 = 1,38 × 107 𝑚/𝑠 

Longueur d’onde : 

𝜆 =
6,63 × 10−34

1,67 × 10−27 × 1,38 × 107
=

6,63 × 10−34

2,31 × 10−20
= 2,87 × 10−14 𝑚 



 

c) Pour un avion de chasse de masse 15 tonnes,  V=2800 km/h 

𝑣 = 2800 ×
1000

3600
= 777,78 𝑚/𝑠 

Calcul de la quantité de mouvement : 

𝑝 = 𝑚𝑣 = 15 × 103 × 777,78 = 1,167 × 107 𝑘𝑔 ⋅ 𝑚/𝑠 

Longueur d’onde : 

𝜆 =
6,63 × 10−34

15 × 103 × 777,78
= 5,68 × 10−41 𝑚 

 

2. Les propriétés ondulatoires sont observables lorsque la longueur d’onde est de l’ordre de la 

taille atomique : 

 Pour l’électron : 𝜆 = 1,67 Å. 

 Pour le proton : 𝜆 = 2,87 × 10−14 𝑚. 

 Pour l’avion : 𝜆 = 10−41 𝑚 (extrêmement petit, phénomène non observable). 

3. Application du principe d'incertitude de Heisenberg 

Formule : 

Δ𝑥 ⋅ Δ𝑣 ≥
ℎ

2𝜋𝑚
 

 

a) Électron avec Δ𝑥 = 1 Å = 10−10𝑚 

Incertitude sur la vitesse : 

Δ𝑣 ≥
6,62 × 10−34

2 × 10−10 × 2 × 3,14 × 9,11 × 10−31
= 5,76 × 105 𝑚/𝑠 

b) Bille de masse 1 g avec Δ𝑥 = 1 𝑚𝑚 



Δ𝑣 ≥
6,62 × 10−34

2 × 10−10 × 2 × 3,14 × 10−3
= 5,25 × 10−29 𝑚/𝑠 

4. Conclusion 

Pour les particules lourdes et macroscopiques (exemple l’avion ou la bille), les incertitudes de 

vitesse sont pratiquement nulles, par contre pour les particules légères et petites (électron), les 

incertitudes sont importantes, et les propriétés ondulatoires doivent être prises en compte.  

Exercice 7 :  

1) Valeurs possibles des nombres quantiques 

 Nombre quantique principal 𝑛 : 

𝑛 = 1,2,3, … 

Il caractérise la couche électronique, indique le niveau d’énergie principal. 

 Nombre quantique secondaire ou azimutal 𝑙 : 

𝑙 = 0,1,2, . . . , 𝑛 − 1 

Il caractérise la forme de l’orbitale (s, p, d, f correspondent respectivement à 𝑙 =

0,1,2,3). 

 Nombre quantique magnétique 𝑚𝑙 : 

𝑚𝑙 = −𝑙,−(𝑙 − 1), . . . ,0, . . . , (𝑙 − 1), 𝑙 

Il indique l’orientation spatiale de l’orbitale. 

 Nombre quantique de spin S : 

S = ±
1

2
 

Il définit l’état de spin de l’électron (deux possibilités). 

2) Nombres quantiques des électrons de valence du 15P et du  20Ca  

 15P: 1𝑠2, 2𝑠22𝑝6, 3𝑠23𝑝3. 

o  Pour la dernière couche 𝑛 = 3, 𝑙 = 0 et 1 (orbitales S  et p). 

o Les électrons de valence : 

 
↑↓ 



𝑛 = 3, 𝑙 = 0,      𝑚𝑙 =  0 

                          𝑆 = +
1

2
, −

1

2
. 

 

                                                  3p 

𝑛 = 3, 𝑙 = 1, m =    −1      0     + 1,       S = +
1

2
. 

 Calcium (20Ca): 

 20Ca :1𝑠2, 2𝑠22𝑝6, 3𝑠23𝑝6, 4𝑠2 

configuration valence 4𝑠2.   

 

Dernière couche 𝑛 = 4, 𝑙 = 0 (orbitale 𝑠). 

Pour les électrons de valence : 𝑛 = 4, 𝑙 = 0, 𝑚𝑙 = 0, S = ±
1

2
. 

3) Nombres quantiques caractérisant la forme des orbitales 𝑑 

𝑙 = 2 définit les orbitales 𝑑. 

       Les valeurs de 𝑚𝑙 =                                       −2  − 1       0      + 1  + 2  

        donc 5 orbitales 𝑑 différentes possibles. 

 

  Le nombre d’OA associé à une sous-couche : 2l+1=2x2=5 

Chaque orbitale peut contenir deux électrons de spin opposé : ↑↓ 

4) nombre d’électrons maximale dans une sous-couche 𝑙 = 2 

Nombre d’orbitales 𝑑 : 5 

Nombre maximal d’électrons = nombre d’orbitales × 2 (spin) 

= 5 × 2 = 10 électrons. 

Exercice 8 : Configuration électronique, charge nucléaire effective, énergies d’ionisation 

et stabilité relative 

↑ ↑ ↑ 

↑↓ 

     



 

1, 2) Configuration électronique à l’état fondamental, couche de valence, et caractère 

magnétique :( Le caractère magnétique est déterminé par la présence ou non d’électrons 

célibataires). Pas d’électrons célibataires donc Diamagnétique ;  présence d’électrons 

célibataire donc Paramagnétique. 

2) Calcul de la charge nucléaire effective 𝑍∗ pour l’électron de la dernière orbitale 

La charge nucléaire effective peut être estimée par : 

𝑍∗ = 𝑍 − 𝜎 

où 𝜎 est la constante d’écran. 

Valeurs typiques pour 𝜎 sont données par des règles de Slater, adaptées par orbitale. 

Estimation approximative : 

(He), Z = 2:  1s²  donc l’électron ciblé : 1s 

 Électrons qui font écran : 1 autre électron 1s dans la même couche et même orbitale : 𝜎 =0,30  

 Charge nucléaire effective : 

𝑍eff = 𝑍 − 𝜎 = 2 − 0.30 = 1.7 

 (Li), Z = 3: 1s² 2s¹ donc l’électron ciblé : 2s  

 Electrons qui font écran : 2 électrons dans la couche sous-jacente (1s²) : 𝜎 =2 × 0,85 = 1,70 

𝜎 = 1.70 

Éléments/Ions Configuration électronique Couche de 

valence 

Caractère 

magnétique 

2 He 1𝑠2 1𝑠2 Diamagnétique  

3 Li 1𝑠22𝑠1 2𝑠1 Paramagnétique  

5 B 1𝑠22𝑠22𝑝1 2𝑠22𝑝1 Paramagnétique  

19𝐾+ 1𝑠22𝑠22𝑝63𝑠23𝑝6 3𝑝6 Diamagnétique  

26 Fe 1𝑠22𝑠22𝑝63𝑠23𝑝63𝑑64𝑠2 3𝑑64𝑠2 Paramagnétique  

30 Zn 1𝑠22𝑠22𝑝63𝑠23𝑝63𝑑104𝑠2 3𝑑104𝑠2 Diamagnétique  

34 Se 1𝑠22𝑠22𝑝63𝑠23𝑝63𝑑104𝑠24𝑝4 4𝑠24𝑝4 Paramagnétique  



Charge nucléaire effective : 

𝑍eff = 3 − 1.70 = 1.30 

(B), Z = 5: 1s² 2s² 2p¹ doc l’électron ciblé : 2p  

Électrons qui font écran : 2 Électrons dans la même couche (2s²),  

 2 Électrons dans la couche n-1 (1s²)  

Total d’écranage 𝜎 = 2 × 0,35 + 2 × 0,85 = 2,40 

Charge nucléaire effective : 

𝑍eff = 5 − 2,40 = 2,60 

(Zn), Z = 30 : [Ar] 3d¹⁰ 4s²      Électron ciblé : 4s  

Electrons qui font écran : électron dans la même couche (4s²) → 1 × 0.35 = 0.35 

10 électron dans la couche précédente 3d¹⁰ → 10 × 0,85 et 8 électron 3s², 3p⁶ →10 × 0,85 

 Électrons plus internes (1s², 2s², 2p⁶) total 10 électrons × 1.00 = 18 

Total d’écranage : 

𝜎 = 0.35 + 10 × 0,85 + 8 × 0,85 + 8 × 1 + 2 × 1 = 25,65 

Charge nucléaire effective : 

𝑍eff = 30 − 25,65 = 4.35 

(Se), Z = 34 :[Ar] 3d¹⁰ 4s² 4p⁴, Électron ciblé : 4p  

 Électrons dans la même couche (4s², 4p⁴) :  5  × 0,35  

 Électrons dans la couche  3d¹⁰ : 10 × 0,85 et Électrons dans la couches  3s², 3p⁶ : 8 × 0,85 

 Électrons encore plus internes (1s², 2s², 2p⁶) total 10 électrons × 1.00 = 18 

Total d’écranage : 

𝜎 = 5 × 0.35 + 10 × 0,85 + 8 × 0,85 + 8 × 1 + 2 × 1 = 27,05 

Charge nucléaire effective : 

𝑍eff = 34 − 27,05 = 6,95 

3) Énergies de première et deuxième ionisation de l’Hélium 



L’énergie de première ionisation correspond à arracher un électron de 1𝑠: 

𝐸𝑛 = −13.6 eV ×
𝑍effectif

2

𝑛2
 

avec 𝑛 = 1 pour l'état fondamental. 

Donc, 

𝐸1 = −13.6 × (1.7)2 = −39,3 eV 

La deuxième ionisation (de He+) correspond à ioniser un ion hydrogénoïde 𝑍 = 2, énergie 

approximée par la formule : Après avoir retiré un électron, le système est un ion 𝐻𝑒+ avec un seul 

électron ( hydrogénoïde) donc pas d’écran ( 𝜎 = 0). 

 L’énergie du niveau fondamental pour cet ion est : 

𝐸1 = −13.6 × 22 = −54.4 eV 

4) Charge effective 𝑍∗ de l’électron 4𝑠 du fer et stabilité comparée des électrons 3d et 4s 

 Fer 𝑍 = 26 

 Calcul approximatif : 

Pour l’électron sur 4𝑠 donc 

𝜎 = 1 × 0.35 + 6 × 0,85 + 8 × 0,85 + 8 × 1 + 2 × 1 = 22,5 

𝑍4𝑠
∗ = 26 − 22,25 = 3.75 

Pour l’électron sur 3d donc 

𝜎 = 5 × 0,55 + 8 × 1 + 8 × 1 + 2 × 1 = 22,5 

𝑍3𝑑
∗ = 26 − 19,75 = 6,25 

Selon Slater, l’électron 3d ressent un Zeff beaucoup plus élevé que l’électron 4s, ce qui signifie 

une attraction nucléaire effective plus forte. Ceci explique pourquoi, bien que les orbitales 4s 

soient occupées avant les 3d dans l’atome neutre, les électrons 4s sont généralement retirés en 

premier lors de l’ionisation : ils sont moins fortement liés. 

Exercice 9 

1 Pour l'oxygène (O, Z = 8) : 

Configuration électronique : 1𝑠2, 2𝑠22𝑝4. 



La charge nucléaire effective pour les électrons 2s, 2p est calculée par : 

𝑍2𝑠,2𝑝
∗ = 𝑍 − (3 × 𝜎2𝑠,2𝑝→2𝑠,2𝑝 + 2 × 𝜎1𝑠→2𝑠,2𝑝) 

avec 𝜎2𝑠,2𝑝→2𝑠,2𝑝 = 0.35 et 𝜎1𝑠→2𝑠,2𝑝 = 0.85, ce qui donne : 

𝑍2𝑠,2𝑝
∗ = 8 − (5 × 0.35 + 2 × 0.85) = 4.55 

Pour les électrons 1s : 

𝑍1𝑠
∗ = 8 − 0.3 = 7.7 

L'énergie totale de l'atome est donnée par : 

𝐸 = −13.6 × (
𝑍∗

𝑛∗
)
2

 

Donc, 

𝐸2𝑠,2𝑝 = −13.6 × (
4.55

2
)
2

= −70.39 eV 

𝐸1𝑠 = −13.6 × (7.7)2 = −804.25 eV 

L'énergie totale de l'oxygène : 

𝐸tot(𝑂) = 2 × 𝐸1𝑠 + 6 × 𝐸2𝑠,2𝑝 = −2030.84 eV 

2. Magnésium (Mg, 𝑍 = 12) 

Configuration :  1𝑠2, 2𝑠22𝑝6, 3𝑠2 

Charge nucléaire effective : 

 𝑍3𝑠3𝑝
∗ = 12 − (0.35 + 8 × 0.85 + 2 × 1) = 2.85 

 𝑍2𝑠,2𝑝
∗ = 12 − (7 × 0.35 + 2 × 0.85) = 7.85 

 𝑍1𝑠
∗ = 12 − 0.3 = 11.7 

Énergie par sous-niveau : 

𝐸 = −13.6 (
𝑍∗

𝑛∗
)
2

 

 𝐸3𝑠3𝑝 = −13.6 × (2.85/3)2 = −12.27 eV 

 𝐸2𝑠2𝑝 = −13.6 × (7.85/2)2 = −209.52 eV 

 𝐸1𝑠 = −13.6 × (11.7)2 = −1858.52 eV 

Énergie totale : 

𝐸tot = 2 × 𝐸1𝑠 + 8 × 𝐸2𝑠2𝑝 + 2 × 𝐸3𝑠3𝑝 = −5417.74 eV 



 

3. Argon (Ar, 𝑍 = 18) 

Configuration :  :  1𝑠2, 2𝑠22𝑝6, 3𝑠23𝑝6, 

Charge nucléaire effective : 

 𝑍3𝑠3𝑝
∗ = 18 − (7 × 0.35 + 8 × 0.85 + 2 × 1) = 6.75 

 𝑍2𝑠,2𝑝
∗ = 18 − (7 × 0.35 + 2 × 0.85) = 13.85 

 𝑍1𝑠
∗ = 18 − 0.3 = 17.7 

Énergies : 

 𝐸3𝑠3𝑝 = −13.6 × (6.75/3)2 = −68.85 eV 

 𝐸2𝑠2𝑝 = −13.6 × (13.85/2)2 = −652.20 eV 

 𝐸1𝑠 = −13.6 × (17.7)2 = −4255.93 eV 

Énergie totale : 

𝐸tot = 2 × 𝐸1𝑠 + 8 × 𝐸2𝑠2𝑝 + 8 × 𝐸3𝑠3𝑝 = −14280.26 eV 

 

4. Calcium (Ca, 𝑍 = 20) 

Configuration : 1𝑠2, 2𝑠22𝑝6, 3𝑠23𝑝6, 3d2 

Charge nucléaire effective : 

 𝑍3𝑑
∗ = 20 − (1 × 0.35 + 18 × 1) = 1.65 

 𝑍3𝑠3𝑝
∗ = 20 − (7 × 0.35 + 8 × 0.85 + 2 × 1) = 8.75 

 𝑍2𝑠,2𝑝
∗ = 20 − (7 × 0.35 + 2 × 0.85) = 15.85 

 𝑍1𝑠
∗ = 20 − 0.3 = 19.7 

Énergies : 

 𝐸3𝑑 = −13.6 × (1.65/3)2 = −4.11 eV 



 𝐸3𝑠3𝑝 = −13.6 × (8.75/3)2 = −115.69 eV 

 𝐸2𝑠2𝑝 = −13.6 × (15.85/2)2 = −854.15 eV 

 𝐸1𝑠 = −13.6 × (19.69)2 = −5272.67 eV 

Énergie totale : 

𝐸tot = 2 × 𝐸1𝑠 + 8 × 𝐸2𝑠2𝑝 + 8 × 𝐸3𝑠3𝑝 + 2 × 𝐸3𝑑 = −18312.28 eV 


