Notes for Numerical Analysis Math 5466 by S. Adjerid
 Virginia Polytechnic Institute and State University

(A Rough Draft)

Contents

1 Polynomial Interpolation 5
1.1 Review 5
1.2 Introduction 6
1.3 Lagrange Interpolation 7
1.4 Interpolation error and convergence 11
1.4.1 Interpolation error 12
1.4.2 Convergence 15
1.5 Interpolation at Chebyshev points 19
1.6 Hermite interpolation 26
1.6.1 Lagrange form of Hermite interpolation polynomials 26
1.6.2 Newton form of Hermite interpolation polynomial 28
1.6.3 Hermite interpolation error 30
1.7 Spline Interpolation 32
1.7.1 Piecewise Lagrange interpolation 32
1.7.2 Cubic spline interpolation 34
1.7.3 Convergence of cubic splines 46
1.7.4 B-splines 55
1.8 Interpolation in multiple dimensions 58
1.9 Least-squares Approximations 58

Chapter 1

Polynomial Interpolation

1.1 Review

Mean-value theorem: Let $f \in C[a, b]$ and differentiable on (a, b) then there exists $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Weighted Mean-value theorem: If $f \in C[a, b]$ and $g(x)>0$ on $[a, b]$, then there exists $c \in(a, b)$ such that

$$
\int_{a}^{b} f(x) g(x) d x=f(c) \int_{a}^{b} g(x) d x
$$

Rolle's theorem: If $f \in C[a, b]$, differentiable on (a, b) and $f(a)=f(b)$, then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Generalized Rolle's theorem: If $f \in C[a, b], n+1$ times differentiable on (a, b) and admits $n+2$ zeros in $[a, b]$, then there exists $c \in(a, b)$ such that $f^{(n+1)}(c)=0$.

Intermediate value theorem: If $f \in C[a, b]$ such that $f(a) \neq f(b)$, then for each y between $f(a)$ and $f(b)$ there exists $c \in(a, b)$ such that $f(c)=y$.

1.2 Introduction

From the Webster dictionary the definition of interpolation reads as follows: "Interpolation is the act of introducing something, especially, spurious and foreign, the act of calculating values of functions between values already known"

Our goal is approximate a set of data points or a function by a simpler polynomial function. Given a set of data points $x_{i}, i=0,1, \cdots n, x_{i} \neq$ x_{j}, if $i \neq j$ we would like to construct a polynomial $p_{m}(x)$ such that

$$
p_{m}^{(k)}\left(x_{i}\right)=f^{(k)}\left(x_{i}\right), i=0,1, \cdots m, k=0,1, \cdots n_{i}, \text { with } n=\sum_{i=0}^{m} n_{i}-1
$$

Lagrange Interpolation: $n_{i}=0, m \geq 1, p_{n}\left(x_{i}\right)=f\left(x_{i}\right), i=0,1, \cdots, n$
Taylor Interpolation: $n_{0}>1, m=0, p_{n}^{(k)}\left(x_{0}\right)=f^{(k)}\left(x_{0}\right), k=0,1, \cdots, n_{0}$.
Hermite Interpolation: $n_{i} \geq 1, m \geq 1, p_{n}^{(k)}\left(x_{i}\right)=f^{(k)}\left(x_{i}\right), \quad i=0,1, \cdots, m$, $k=0,1, \cdots n_{i}$.

Why Interpolation? For instance interpolation is used to approximate integrals

$$
\int_{a}^{b} f(x) d x \approx \int_{a}^{b} p_{m}(x) d x
$$

derivatives

$$
f^{(k)}(x) \approx p_{m}^{(k)}(x)
$$

and plays a major role in approximating differential equations.

Taylor interpolation:

We first study Taylor polynomials defined as
$p_{n}(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} f^{(2)}\left(x_{0}\right)+\cdots+\frac{\left(x-x_{0}\right)^{n}}{n!} f^{(n)}\left(x_{0}\right)$.

The interpolation error or remainder formula in Taylor expansions is written as

$$
f(x)-p_{n}(x)=\frac{\left(x-x_{0}\right)^{n+1}}{(n+1)!} f^{(n+1)}(\xi)
$$

Example: $f(x)=\sin (x), x_{0}=0$

$$
p_{2 n+1}(x)=\sum_{k=0}^{n}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}
$$

The interpolation error can be written as

$$
\left|\sin (x)-p_{2 n+1}(x)\right|=\frac{|x|^{2 n+3}}{(2 n+3)!}|\cos (\xi)|<\frac{|x|^{2 n+3}}{(2 n+3)!}
$$

On the interval $0<x<1 / 2$ the interpolation error is bounded as

$$
\left|\sin (x)-p_{2 n+1}(x)\right|<\frac{1}{2^{2 n+3}(2 n+3)!}
$$

1.3 Lagrange Interpolation

Lagrange form:

Given a set of points $\left(x_{i}, f\left(x_{i}\right)\right), i=0,1,2, \cdots n, x_{j} \neq x_{i}$ we define the Lagrange coefficient polynomials $l_{i}(x), i=0,1, \cdots n$. such as

$$
l_{i}\left(x_{j}\right)= \begin{cases}1, & \text { if } i=j \\ 0, & \text { otherwise }\end{cases}
$$

and is defined as

$$
l_{i}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \cdots\left(x-x_{n}\right)}{\left(x_{i}-x_{0}\right)\left(x_{i}-x_{1}\right) \cdots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \cdots\left(x_{i}-x_{n}\right)} .
$$

The Lagrange form of the interpolation polynomial is

$$
p_{n}(x)=\sum_{i=0}^{n} f\left(x_{i}\right) l_{i}(x)
$$

Example: Let us consider the data set $x=[0,1,2], f=[-2,-1,2]$

$$
\begin{gathered}
l_{0}(x)=\frac{(x-1)(x-2)}{(-1)(-2)}=\left(x^{2}-3 x+2\right) / 2 \\
l_{1}(x)=\frac{x(x-2)}{(1)(-1)}=-x^{2}+2 x \\
l_{2}(x)=\frac{x(x-1)}{(2)(1)}=\left(x^{2}-x\right) / 2 \\
p_{2}(x)=-2 l_{0}(x)-l_{1}(x)+2 l_{2}(x)=x^{2}-2
\end{gathered}
$$

Example:
$f(x)=\cos (x)^{5}$ using 8 points $x=[0,1,2,3,4,5,6,7]$ and 14 points $x_{i}=$ $i * 0.5, i=0,2, \cdots 14$

```
A Matlab example
x=[[\begin{array}{lllllllll}{0}&{1}&{2}&{3}&{4}&{5}&{6}&{7}\end{array}];
y=cos(x).^5;
c = polyfit(x,y,length(x)-1);
xi = 0:0.1:7;
zi = cos(xi).^5;
yi =polyval(c,xi);
subplot(2,1,1)
title('Interpolation')
plot(xi,yi,'-.',xi,zi,x,y,'*');
subplot(2,1,2)
title('Interpolation Error')
plot(xi,zi-yi,x,zeros(1,length(x)),'-*');
```


Newton form and divided differences:

We develop a procedure to compute $a_{0}, a_{1}, \cdots, a_{n}$ such that the interpolation polynomial has the form

$$
p_{n}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots+a_{n}\left(x-x_{0}\right) \cdots\left(x-x_{n-1}\right)
$$

where $a_{0}=f\left(x_{0}\right), a_{1}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}$ and such that

$$
a_{k}=f\left[x_{0}, x_{1}, \cdots, x_{k}\right]
$$

is called the $k^{t h}$ divided difference. All divided differences are generated by the following recurrence formula

x_{i}	$f\left[x_{i}\right]=f\left(x_{i}\right)$				
	$\begin{gathered} f\left[x_{i}, x_{k}\right]=\frac{f\left[x_{k}\right]-f\left[x_{i}\right]}{x_{k}-x_{i}} \\ f\left[x_{0}, x_{1}, \cdots, x_{k-1}, x_{k}\right]=\frac{f\left[x_{1}, \cdots, x_{k}\right]-f\left[x_{0}, \cdots, x_{k-1}\right]}{x_{k}-x_{0}} \end{gathered}$				
	$f\left(x_{i}\right)$	$1^{\text {st }} D D$	$2^{\text {nd }} D D$	$3^{r d} D D$	$4^{\text {th }} D D$
x_{0}	$f\left(x_{0}\right)$				
		$f\left[x_{0}, x_{1}\right]$			
x_{1}	$f\left(x_{1}\right)$		$f\left[x_{0}, x_{1}, x_{2}\right]$		
	$f\left(x_{1}\right)$	$f\left[x_{1}, x_{2}\right]$	$f\left[x_{0}, x_{1}, x_{2}\right]$	$f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$	
x_{2}	$f\left(x_{2}\right)$		$f\left[x_{1}, x_{2}, x_{3}\right]$	$f\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$	$f\left[x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right]$
	$f\left(x_{3}\right)$	$f\left[x_{2}, x_{3}\right]$	$f\left[x_{2}, x_{3}, x_{4}\right]$	$f\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$	
x_{3}	$f\left(x_{3}\right)$		$\int\left[x_{2}, x_{3}, x_{4}\right]$		
x_{4}	$f\left(x_{4}\right)$				

The forward Newton polynomial can be written as

$$
\begin{aligned}
p_{4}(x) & =f\left(x_{0}\right)+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+f\left[x_{0}, x_{1}, x_{2}\right]\left(x-x_{0}\right)\left(x-x_{1}\right)+ \\
& f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) \\
& +f\left[x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right]\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)
\end{aligned}
$$

The backward Newton polynomial can be written as

$$
\begin{aligned}
p_{4}(x) & =f\left(x_{4}\right)+f\left[x_{3}, x_{4}\right]\left(x-x_{4}\right)+f\left[x_{2}, x_{3}, x_{4}\right]\left(x-x_{4}\right)\left(x-x_{3}\right)+ \\
& f\left[x_{1}, x_{2}, x_{3}, x_{4}\right]\left(x-x_{4}\right)\left(x-x_{3}\right)\left(x-x_{2}\right) \\
& +f\left[x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right]\left(x-x_{4}\right)\left(x-x_{3}\right)\left(x-x_{2}\right)\left(x-x_{1}\right)
\end{aligned}
$$

Example:

x_{i}	$f\left(x_{i}\right)$	$1^{s t} D D$	$2^{\text {nd }} D D$	$3^{r d} D D$	$4^{t h} D D$	$5^{\text {th }} D D$
-2	16	-8				
-1	8	-4	2			
0	4	$-10 / 3$				
1	-16	-20	-8	10	$10 / 3$	
2	8	24	22	$-40 / 3$	$-35 / 6$	$-11 / 6$
3	-4	-12				

The forward Newton polynomial

$$
\begin{aligned}
& p_{5}(x)=16-8(x+2)+2(x+2)(x+1)-\frac{10}{3}(x+2)(x+1) x \\
& +\frac{10}{3}(x+2)(x+1) x(x-1)-\frac{11}{6}(x+2)(x+1) x(x-1)(x-2)
\end{aligned}
$$

The Backward Newton polynomial is given by

$$
\begin{aligned}
& p_{5}(x)=-4-12(x-3) 18(x-3)(x-2)-\frac{40}{3}(x-3)(x-2)(x-1) \\
& \quad+\frac{35}{6}(x-3)(x-2)(x-1) x-\frac{11}{6}(x-3)(x-2)(x-1) x(x-1) .
\end{aligned}
$$

Remarks:

(i) The upper diagonal contains the coefficients for the forward Newton polynomials.
(ii) The lower diagonal contains the coefficients for the backward Newton polynomials.
(iii) $p_{k}(x)$ interpolates f at $x_{0}, x_{1}, \cdots, x_{k}$ and is obtained as

$$
p_{k}(x)=f\left(x_{0}\right)+\sum_{j=1}^{k} f\left[x_{0}, x_{1}, \cdots, x_{j}\right] \prod_{i=0}^{j-1}\left(x-x_{i}\right)
$$

(iv) $p_{2}(x)$ that interpolates f at x_{2}, x_{3} and x_{4} is

$$
p_{2}(x)=f\left(x_{2}\right)+f\left[x_{2}, x_{3}\right]\left(x-x_{2}\right)+f\left[x_{2}, x_{3}, x_{4}\right]\left(x-x_{2}\right)\left(x-x_{3}\right) .
$$

(v) If we decide to add an additional point, it should be added at the bottom for forward Newton polynomials and at the top for backward Newton polynomials.
(vi) $f\left[x_{0}, x_{1}, \cdots, x_{k}\right]=\frac{f^{(k)}(\xi)}{k!}, \quad \xi \in[a, b]$.

Nested mutliplication

An efficient algorithm to evaluate Newton polynomial can be obtained by writing

$$
\begin{gathered}
p_{n}(x)=a_{1}+\left(a_{2}+\cdots\left(a_{n-2}+\left(a_{n-1}+\left(a_{n}+a_{n+1}\left(x-x_{n}\right)\right)\right.\right.\right. \\
\left.\left.\left.\left(x-x_{n-1}\right)\right)\left(x-x_{n-2}\right) \cdots\right)\left(x-x_{1}\right)\right) .
\end{gathered}
$$

Matlab program

```
%input a(i), i=1,2,\ldots,n+1 , x(i),i=1,\ldots,n+1, and x
%
p = a(n+1);
for i=n:-1:1
    p = a(i) + p*(x-x(i));
end;
%p = p_n(x)
```


1.4 Interpolation error and convergence

In this section we study the interpolation error and convergence of interpolation polynomials to the interpolated function.

1.4.1 Interpolation error

Theorem 1.4.1. Let $f \in C[a, b]$ and $x_{0}, x_{1}, x_{2}, \cdots x_{n}$, be $n+1$ distinct points in $[a, b]$. Then there exists a unique polynomial p_{n} of degree at most n such that $p_{n}\left(x_{i}\right)=f\left(x_{i}\right), i=0,1, \cdots n$.

Proof. Existence: we define

$$
\begin{gathered}
L_{i}(x)=\frac{\prod_{j=0, j \neq i}^{n}\left(x-x_{j}\right)}{\prod_{j=0, j \neq i}^{n}\left(x_{i}-x_{j}\right)} \\
L_{i}\left(x_{j}\right)=\delta_{i j}= \begin{cases}1, & \mathrm{i}=\mathrm{j} \\
0, & \text { otherwise }\end{cases}
\end{gathered}
$$

and

$$
p_{n}(x)=\sum_{i=0}^{n} f\left(x_{i}\right) L_{i}(x)
$$

One can verify that

$$
p_{n}\left(x_{j}\right)=f\left(x_{j}\right) .
$$

Uniqueness:

Assume there are two polynomials $q_{n}(x)$ and $p_{n}(x)$ such that

$$
q_{n}\left(x_{j}\right)=p_{n}\left(x_{j}\right)=f\left(x_{j}\right), j=0,1,2, \cdots, n
$$

and consider the difference

$$
d_{n}(x)=p_{n}(x)-q_{n}(x) .
$$

$d_{n}\left(x_{j}\right)=0, i=0,1, \cdots, n$ so $d_{n}(x)$ has $n+1$ roots. By the fundamental theorem of Algebra $d_{n}(x)=0$.

Theorem 1.4.2. Let $f \in C[a, b](n+1)$ differentiable on (a, b) and let $x_{0}, x_{1}, \cdots, x_{n}$, be $(n+1)$ distinct points in $[a, b]$. If $p_{n}(x)$ is such that $p_{n}\left(x_{i}\right)=f\left(x_{i}\right), i=0,1, \cdots, n$, then for each $x \in[a, b]$ there exists $\xi(x) \in$ $[a, b]$ such that

$$
f(x)-p_{n}(x)=\frac{f^{n+1}(\xi(x))}{(n+1)!} W(x)
$$

where $W(x)=\prod_{i=0}^{n}\left(x-x_{i}\right)$.

Proof. Let $x \in[a, b]$ and $x \neq x_{i}, i=0,1, \cdots, n$ and define the function

$$
g(t)=f(t)-p_{n}(t)-\frac{f(x)-p_{n}(x)}{W(x)} W(t) .
$$

We note that g has $(n+2)$ roots, i.e., $g\left(x_{i}\right)=0, i=0,1, \cdots n$ and $g(x)=0$. Using the generalized Rolle's Theorem there exits $\xi(x) \in(a, b)$ such that

$$
g^{(n+1)}(\xi(x))=0
$$

which leads to

$$
\begin{equation*}
g^{(n+1)}(\xi(x))=f^{(n+1)}(\xi(x))-0-\frac{f(x)-p_{n}(x)}{W(x)}(n+1)!=0, \tag{1.1.1}
\end{equation*}
$$

We solve (1.1.1) to find $f(x)-p_{n}(x)=\frac{f^{(n+1)}(\xi(x))}{(n+1)!} W(x)$ which completes the proof.

Corollary 1. Assume that $\max _{x \in[a, b]}\left|f^{(n+1)}(x)\right|=M_{n+1}$ then

$$
\left|f(x)-p_{n}(x)\right| \leq \frac{M_{n+1}}{(n+1)!}|W(x)|, \quad \forall x \in[a, b] .
$$

and

$$
\max _{x \in[a, b]}\left|f(x)-p_{n}(x)\right| \leq \frac{M_{n+1}}{(n+1)!} \max _{x \in[a, b]}|W(x)| .
$$

Proof. The proof is straight forward.

Examples:

$$
\begin{aligned}
\left\|f-P_{1}\right\|_{\infty} \leq \frac{M_{2} h^{2}}{8}, & {\left[x_{0}, x_{0}+h\right] . } \\
\left\|f-p_{2}\right\|_{\infty} \leq \frac{M_{3} h^{3}}{9 \sqrt{3}}, & {\left[x_{0}, x_{0}+2 h\right] . } \\
\left\|f-p_{3}\right\|_{\infty} \leq \frac{M_{4} h^{4}}{24}, & {\left[x_{0}, x_{0}+3 h\right] . }
\end{aligned}
$$

Example: Let us interpolate $f(x)=e^{\frac{x}{3}}$ on $[0,1]$ at $x_{0}, x_{1}, \cdots, x_{n}$. The $n+1$ derivative is $f^{(n+1)}(x)=\frac{e^{\frac{x}{3}}}{3^{n+1}}$ where

$$
M_{n+1}=\max _{x \in[0,1]}\left|f^{(n+1)}(x)\right|=\frac{e^{\frac{1}{3}}}{3^{n+1}} .
$$

The interpolation error can be bounded as

$$
\left|f(x)-p_{n}(x)\right| \leq \frac{e^{1 / 3}|W(x)|}{3^{n+1}(n+1)!}, x \in[0,1] .
$$

For instance, for $n=4$ and $x=[0,1 / 4,1 / 2,3 / 4,1], W(x)=x(x-1 / 4)(x-$ $1 / 2)(x-3 / 4)(x-1)$

The error at $x=0.3$ can be bounded as

$$
\left|f(0.3)-p_{4}(0.3)\right| \leq \frac{e^{1 / 3}|W(0.3)|}{3^{5} 5!} \approx 0.45210^{-7}
$$

Example: Let us consider $f(x)=\cos (x)+x$ on $[0,2]$ which satisfies

$$
\max _{x \in[0,2]}\left|f^{(k)}(x)\right| \leq 1
$$

The interpolation error can be bounded as
Case 1: Two interpolation points with $h=2$,

$$
\max _{x \in[0,2]}\left|f(x)-p_{1}(x)\right| \leq \frac{h^{2} M_{2}}{8} \leq 4 / 8=0.5 .
$$

Case 2: Three interpolation points with $h=1$,

$$
\max _{x \in[0,2]}\left|f(x)-p_{2}(x)\right| \leq \frac{h^{2} M_{3}}{9 \sqrt{3}} \leq 1 /(9 \sqrt{3} \approx 0.0641
$$

Case 3: Four interpolation points with $h=2 / 3$,

$$
\max _{x \in[0,2]}\left|f(x)-p_{3}(x)\right| \leq \frac{h^{4} M_{4}}{24} \leq(2 / 3)^{4} / 24 \approx 0.0082
$$

1.4.2 Convergence

We start by reviewing the convergence of functions and defining simple and uniform convergence of sequences of functions.

Let $f_{n}(x), n=0,1, \cdots$ be a sequence of continuous functions on $[a, b]$.

Definition 1. (Simple convergence): $f_{n}(x)$ converges simply to $f(x)$ if and only if at every $x \in[a, b] \lim _{n \rightarrow \infty}\left|f_{n}(x)-f(x)\right|=0$.

Definition 2. (Uniform convergence): f_{n} converges uniformly to f if and only if $\lim _{n \rightarrow \infty} \max _{x \in[a, b]}\left|f_{n}(x)-f(x)\right|=0$.

Example: Let us consider the sequence

$$
f_{n}(x)=\frac{1}{1+n x}, n=0,1, \cdots, x \in[0,1] .
$$

(i) The sequence f_{n} converges simply to 0 for all $0<x \leq 1$ while $f_{n}(0)=1$. However, f_{n} does not converge uniformly since $\left\|f_{n}\right\|_{\infty}=1$.
(ii) The sequence f_{n} converges uniformly to 0 on $[2,3]$ since $\left\|f_{n}\right\|_{\infty}=1 /(1+$ $2 n)$.

Next, we will study the uniform convergence of interpolation polynomials on a fixed interval $[a, b]$ as the number of interpolation points approaches
infinity. Let $h=(b-a) / n$ and $x_{i}=a+i h, i=0,1,2, \cdots, n$, equidistant interpolation points. Let $p_{n}(x)$ denote the Lagrange interpolation polynomial, i.e., $p_{n}\left(x_{i}\right)=f\left(x_{i}\right), i=0, \cdots, n$ and let us study the limit

$$
\lim _{n \rightarrow \infty}\left\|f-p_{n}\right\|_{\infty}=\lim _{n \rightarrow \infty} \max _{x \in[a, b]}\left|f(x)-p_{n}(x)\right| .
$$

For $x \in[a, b],\left|x-x_{i}\right| \leq(b-a)$ which leads to $|W(x)| \leq(b-a)^{n+1}$. Thus, the interpolation error is bounded as

$$
\left\|f-p_{n}\right\|_{\infty} \leq \frac{M_{n+1}}{(n+1)!}(b-a)^{n+1}
$$

We have uniform convergence when $\frac{M_{n+1}}{(n+1)!}(b-a)^{n+1} \rightarrow 0$ as $n \rightarrow \infty$.

Theorem 1.4.3. Let f be an analytic function on a disk centered at $(a+b) / 2$ with a radius $r>3(b-a) / 2$. Then, the interpolation polynomial $p_{n}(x)$ satisfying $p_{n}\left(x_{i}\right)=f\left(x_{i}\right), i=0,1,2, \cdots n$, converges to f as $n \rightarrow \infty$, i.e.,

$$
\lim _{n \rightarrow \infty}\left\|f-p_{n}\right\|_{\infty}=0
$$

Proof. A function is analytic at $(b+a) / 2$ if it admits a power series expansion that converges on a disk of radius r and centered at $(a+b) / 2$.

Applying Cauchy's formula

$$
\begin{aligned}
& f^{(k)}(x)=\frac{k!}{2 \pi i} \oint_{C_{r}} \frac{f(z)}{(z-x)^{k+1}} d z, \quad x \in[a, b] . \\
&\left|f^{(k)}(x)\right| \leq \frac{k!}{2 \pi} \oint_{C_{r}} \frac{|f(z)|}{|(z-x)|^{k+1}} d z, \quad x \in[a, b] .
\end{aligned}
$$

Let z be a point on the circle C_{r} and $x \in[a, b]$. From the triangle with vertices $z,(a+b) / 2$ and x the following triangle inequality holds

$$
|z-x|+d \geq r .
$$

Noting that $d \leq(b-a) / 2$ the triangle inequality yields

$$
\begin{gathered}
|z-x| \geq r-(b-a) / 2 \\
\left|f^{(k)}(x)\right| \leq \frac{k!}{2 \pi} \frac{\max _{z \in C_{r}}|f(z)|}{|r-(b-a) / 2|^{(k+1)}} 2 \pi r .
\end{gathered}
$$

Assume $r>\frac{b-a}{2}\left([a, b] \subset C_{r}\right)$ to obtain

$$
M_{k} \leq \frac{r}{r-(b-a) / 2} \max _{z \in C_{r}}|f(z)| \frac{k!}{(r-(b-a) / 2)^{k}}
$$

Using $k=n+1$ the interpolation error may be bounded as

$$
\begin{gathered}
\left|f(x)-p_{n}(x)\right| \leq \frac{M_{n+1}}{(n+1)!}(b-a)^{(n+1)} \leq \\
\max _{z \in C_{r}}|f(z)|\left(\frac{r(b-a)}{r-\frac{(b-a)}{2}}\right)\left(\frac{b-a}{r-(b-a) / 2}\right)^{n} .
\end{gathered}
$$

Finally, we have uniform convergence if $\frac{b-a}{r-(b-a) / 2}<1$, i.e., $r>\frac{3}{2}(b-a)$ which establishes the theorem.

Examples of analytic functions are $\sin (z), e^{z}, \cos \left(z^{2}\right)$.

Runge phenomenon:

Let $f(x)=\frac{1}{4+x^{2}}$ is $C^{\infty}[-10,10]$ but we do not have uniform convergence on $[-10,10]$ when using the $n+1$ equally spaced interpolation points $x_{i}=$ $-10+i h, i=0,1, \cdots, n, h=20 / n$.

The function $f(z)$ has two poles $z= \pm 2 i$, thus, can't be analytic on disk C_{r} with radius $r>3(b-a) / 2=30$ and center at $(a+b) / 2$. We cannot apply the previous theorem and we should expect convergence problems for x far away from the origin.

The largest interval $[-a, a]$ satisfying $r>3(b-a) / 2=3 a$ corresponds to $a<2 / 3$. Actually, it may converge on a larger interval because this is a sufficient condition.

Interpolation errors and divided differences:

The Newton form of $p_{n}(x)$ that interpolates f at $x_{i}, i=0,1, \cdots, n$ is

$$
p_{n}(x)=f\left[x_{0}\right]+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+\sum_{i=2}^{n} f\left[x_{0}, \cdots, x_{i}\right] \prod_{j=0}^{i-1}\left(x-x_{j}\right) .
$$

We proof a theorem relating the interpolation errors and divided differences.

Theorem 1.4.4. If $f \in C[a, b]$ and $n+1$ times differentiable, then for every $x \in[a, b]$

$$
f(x)-p_{n}(x)=f\left[x_{0}, x_{1}, \cdots, x_{n}, x\right] \prod_{i=0}^{n}\left(x-x_{i}\right)
$$

and

$$
f\left[x_{0}, x_{1}, x_{2}, \cdots, x_{k}\right]=\frac{f^{(k)}(\xi)}{k!}, \xi \in\left[\min _{i=0, \cdots, k} x_{i}, \max _{i=0, \cdots, n} x_{i}\right]
$$

Proof. Let us introduce another point x distinct from $x_{i}, i=0,1, \cdots n$ and let p_{n+1} interpolate f at $x_{0}, x_{1}, \cdots x_{n}$ and x, thus

$$
p_{n+1}(x)=p_{n}(x)+f\left[x_{0}, x_{1}, \cdots, x_{n}, x\right] \prod_{i=0}^{n}\left(x-x_{i}\right) .
$$

Combining the equation $p_{n+1}(x)=f(x)$ and the interpolation error formula we write

$$
f(x)-p_{n}(x)=f\left[x_{0}, x_{1}, \cdots, x_{n}, x\right] \prod_{i=0}^{n}\left(x-x_{i}\right)=\frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{i=0}^{n}\left(x-x_{i}\right)
$$

This leads to

$$
f\left[x_{0}, x_{1}, \cdots, x_{k}\right]=\frac{f^{(k)}(\xi)}{k!}, \quad \xi \in\left[\min _{i=0, \cdots, k} x_{i}, \max _{i=0, \cdots, k} x_{i}\right]
$$

which completes the proof.

Remark:

$$
\lim _{x_{i} \rightarrow x_{0}, i=1, \cdots k} f\left[x_{0}, x_{1}, \cdots, x_{k}\right]=\frac{f^{(k)}\left(x_{0}\right)}{k!}
$$

1.5 Interpolation at Chebyshev points

In the previous section we have shown that uniform convergence does not occur using uniform interpolation points for some functions.

Now, we study the interpolation error on $[-1,1]$ where the $(n+1)$ interpolation points, $x_{i}^{*}, i=0,1, \cdots, n$, in $[-1,1]$ are selected such that

$$
\left\|W^{*}(.)\right\|_{\infty}=\min _{Q \in \tilde{\mathcal{P}}_{n+1}}\|Q(.)\|_{\infty}
$$

where $\tilde{\mathcal{P}}_{n}$ is the set of the monic polynomials

$$
\tilde{\mathcal{P}}_{n}=\left[Q \in \mathcal{P}_{n} \mid Q=x^{n}+\sum_{i=1}^{n-1} c_{i} x^{i}\right],
$$

and $W^{*}(x)=\prod_{i}^{n}\left(x-x_{i}^{*}\right)$.
Question: Are there interpolation points $x_{i}^{*}, i=0,1,2, \cdots, n$ in $[-1,1]$ such that
$\left\|W^{*}\right\|_{\infty}=\min _{x_{i} \in[a, b], i=0,1, \cdots, n}\|W\|_{\infty}$
If the above statement is true, the interpolation error can be bounded by
$\left\|E_{n}\right\|_{\infty} \leq \frac{M_{n+1}}{(n+1)!}\left\|W^{*}\right\|_{\infty}$
The Answer : The best interpolation points $x_{i}^{*}, i=0,1,2, \cdots, n$ are the roots of the Chebyshev polynomial $T_{n+1}(x)$ defined as
$T_{k}(x)=\cos (k \operatorname{arcos}(x)), k=0,1,2, \cdots$.
In the following theorem we will prove some properties of Chebyshev polynomials.

Theorem 1.5.1. The Chebyshev polynomials $T_{k}(x), k=0,1,2, \cdots$, satisfy the following properties:
(i) $\left|T_{k}(x)\right| \leq 1$, for all $-1 \leq x \leq 1$
(ii) $T_{k+1}(x)=2 x T_{k}(x)-T_{k-1}$
(iii) $T_{k}(x)$ has k roots $x_{j}^{*}=\cos \left(\frac{2 j+1}{2 k} \pi\right), j=0,1, \cdots, k-1, \in[-1,1]$
(iv) $T_{k}(x)=2^{k-1} \prod_{j=0}^{k-1}\left(x-x_{j}^{*}\right)$
(v) If $\tilde{T}_{k}(x)=\frac{T_{k}(x)}{2^{k-1}}$ then $\max _{x \in[-1,1]}\left|\tilde{T}_{k}(x)\right|=\frac{1}{2^{k-1}}$.

Proof. We obtain (i) by noting that the range of the cosine function is $[-1,1]$.
To obtain (ii) we write
$T_{k+1}(x)=\cos (k \operatorname{arcos}(x)+\operatorname{arcos}(x))=\cos (k \theta+\theta)$
where $\theta=\operatorname{arcos}(x)$ and write
$T_{k+1}=\cos (k \theta+\theta)$
$T_{k-1}=\cos (k \theta-\theta)$
Use the trigonometric identity $\cos (a \pm b)=\cos (a) \cos (b) \mp \sin (a) \sin (b)$ to obtain

$$
\cos (k \theta+\theta)=\cos (k \theta) \cos (\theta)-\sin (k \theta) \sin (\theta)
$$

and

$$
\cos (k \theta-\theta)=\cos (k \theta) \cos (\theta)+\sin (k \theta) \sin (\theta)
$$

Adding the previous equations to obtain
$T_{k+1}(x)+T_{k-1}(x)=2 \cos (k \theta) \cos (\theta)=2 x T_{k}(x)$
This proves (ii).
To obtain the roots we set $\cos (\operatorname{karcos}(x))=0$ which leads to

$$
\operatorname{karcos}(x)=\frac{(2 j+1)}{2} \pi, j=0, \pm 1, \pm 2, \cdots
$$

If we solve for x, we obtain

$$
x=\cos \left(\frac{(2 j+1)}{2 k} \pi\right), j=0, \pm 1, \pm 2, \cdots
$$

leads to the roots

$$
x_{j}^{*}=\cos \left(\frac{(2 j+1)}{2 k} \pi\right), j=0,1, \cdots, k-1 .
$$

Use induction to prove (iv) step 1: $T_{1}(x)=2^{0} x, T_{2}(x)=2^{1} x^{2}-1$ (iv) is true for $k=1,2$.

Step 2: Assume $T_{k}=2^{k-1} x^{k}+\sum_{i=0}^{k-1} c_{i} x^{i}$, for $k=1,2, \cdots, n$ and use (ii) we write

$$
T_{n+1}(x)=2 x T_{n}-T_{n-1}(x)=2^{n} x^{n+1}+\sum_{i=0}^{n} a_{i} x^{i}
$$

This establishes (iv), i.e., $T_{k}=2^{k-1} \prod_{j=0}^{k-1}\left(x-x_{j}^{*}\right)$.
Applying (iv) we show that (v) is true.

Corollary 2. If $\tilde{T}_{n}(x)$ is the monic Chebyshev polynomial of degree n, then

$$
\max _{-1 \leq x \leq 1}\left|\tilde{Q}_{n}(x)\right| \geq \max _{-1 \leq x \leq 1}\left|\tilde{T}_{n}(x)\right|=\frac{1}{2^{n-1}}, \forall \tilde{Q}_{n} \in \tilde{\mathcal{P}}_{n}
$$

Proof. Assume there is another monic polynomial $\tilde{R}_{n}(x)$ such that

$$
\max _{-1 \leq x \leq 1}\left|\tilde{R}_{n}(x)\right|<\frac{1}{2^{n-1}}
$$

We also note that

$$
\tilde{T}_{n}\left(z_{k}\right)=\frac{(-1)^{k}}{2^{n-1}}, \quad z_{k}=\cos (k \pi / n), k=0,1,2, \cdots, n
$$

The $(n-1)$-degree polynomial $d_{n-1}(x)=\tilde{T}_{n}(x)-\tilde{R}_{n}(x)$ satisfies
$d_{n-1}\left(z_{0}\right)>0, d_{n-1}\left(z_{1}\right)<0, d_{n-1}\left(z_{2}\right)>0, d_{n-1}\left(z_{3}\right)<0$ So $d_{n-1}(x)$ changes sign between each pair z_{k} and $z_{k+1}, k=0,1,2, \cdots, n$ and thus has n roots. Thus $d_{n-1}(x)=0$, identically, i.e., $\tilde{T}(x)$ and $\tilde{R}_{n}(x)$ are identical. This leads to a contradiction with the assumption above.

Below are the first five Chebyshev polynomials.

$$
\begin{aligned}
& T_{0}(x)=1 \\
& T_{1}(x)=x \\
& T_{2}(x)=2 x^{2}-1 \\
& T_{3}(x)=4 x^{3}-3 x \\
& T_{4}(x)=8 x^{4}-8 x^{2}+1
\end{aligned}
$$

Example of Chebyshev points:

k	x_{0}^{*}	x_{1}^{*}	x_{2}^{*}	x_{3}^{*}
1	0			
2	$\sqrt{2} / 2$	$-\sqrt{2} / 2$		
3	$\sqrt{3} / 2$	0	$-\sqrt{3} / 2$	
4	$\cos (\pi / 8)$	$\cos (3 \pi / 8)$	$\cos (5 \pi / 8)$	$\cos (7 \pi / 8)$

Application to interpolation:

Let $p_{n}(x) \in \mathcal{P}_{n}$ interpolate $f(x) \in C^{n+1}[-1,1]$ at the roots of $T_{n+1}(x)$, $x_{j}^{*}, j=0,1,2, \cdots, n$. Thus, we can write the interpolation error formula as

$$
f(x)-p_{n}(x)=\frac{f^{n+1}(\xi(x))}{(n+1)!} \tilde{T}_{n+1}(x)
$$

Using (v) from the previous theorem and assuming $\left\|f^{n+1}\right\|_{\infty,[-1,1]} \leq M_{n+1}$ we obtain

$$
\max _{x \in[-1,1]}\left|f(x)-p_{n}(x)\right| \leq \frac{M_{n+1}}{2^{n}(n+1)!}
$$

Remarks:

1. We note that this choice of interpolation points reduces the error significantly.
2. With Chebyshev points, p_{n} converges uniformly to f when $f \in C^{1}[-1,1]$ only. The function f does not have to be analytic (see Gautschi).

Example 1:
Consider $f(x)=e^{x}, x \in[-1,1]$
Case 1: with three points; $\mathrm{n}=2$:

$$
\left\|E_{2}\right\|_{\infty} \leq \frac{M_{3}}{3!2^{2}}=e / 24=0.1136
$$

Case 2: with 6 points; $\mathrm{n}=5$:

$$
\left\|E_{5}\right\|_{\infty} \leq \frac{M_{6}}{6!2^{5}}=e /(720 \times 32)=0.11710^{-3}
$$

How many Chebyshev points are needed to have $\left\|E_{n}\right\|_{\infty}<10^{-8}$

$$
\left\|E_{n}\right\|_{\infty} \leq \frac{M_{n+1}}{2^{n}(n+1)!}=\frac{e}{(n+1)!2^{n}}=0.13110^{-9}, \text { for } \mathrm{n}=9
$$

Thus, 10 Chebyshev points are needed.
Chebyshev points on $[a, b]$:
Chebyshev points can be used on an arbitrary interval $[a, b]$ using the linear transformation

$$
\begin{equation*}
x=\frac{a+b}{2}+\frac{b-a}{2} t, \quad-1 \leq t \leq 1 . \tag{1.1.2a}
\end{equation*}
$$

We also need the inverse mapping

$$
\begin{equation*}
t=2 \frac{x-a}{b-a}-1, \quad a \leq x \leq b \tag{1.1.2b}
\end{equation*}
$$

First, we order the Chebyshev nodes in $[-1,1]$ as

$$
t_{k}^{*}=\cos \left(\frac{2 k+1}{2 n+2} \pi-\pi\right)=-\cos \left(\frac{2 k+1}{2 n+2} \pi\right), k=0,1,2, \cdots, n
$$

we define the interpolation nodes on an arbitrary interval $[a, b]$ as

$$
x_{k}^{*}=\frac{a+b}{2}+\frac{b-a}{2} t_{k}^{*}, k=0,1,2, \cdots, n
$$

Remarks:

1. $x_{0}^{*}<x_{1}^{*}<\cdots<x_{n}^{*}$
2. x_{k}^{*} are symmetric with respect to the center $(a+b) / 2$
3. x_{k}^{*} are independent of the interpolated function f

Theorem 1.5.2. Let $f \in C^{n+1}[a, b]$ and p_{n} interpolate f at the Chebyshev nodes $x_{k}^{*}, k=0,1,2, \cdots, n$, in $[a, b]$. Then

$$
\max _{x \in[a, b]}\left|f(x)-p_{n}(x)\right| \leq 2 M_{n+1} \frac{(b-a)^{n+1}}{4^{n+1}(n+1)!}
$$

Where $M_{n+1}=\max _{x \in[a, b]}\left|f^{(n+1)}(x)\right|$.

Proof. It suffices to rewrite $W(x)=\prod_{i=0}^{n}\left(x-x_{i} *\right)$ using the mapping (1.1.2) to find that

$$
\left(x-x_{i}^{*}\right)=\frac{b-a}{2}\left(t-t_{i}^{*}\right),
$$

and

$$
W(x)=\prod_{i=0}^{n}\left(x-x_{i} *\right)=\left(\frac{b-a}{2}\right)^{n+1} \prod_{i=0}^{n}\left(t-t_{i}^{*}\right)=\left(\frac{b-a}{2}\right)^{n+1} \tilde{T}_{n+1}(t) .
$$

Finally, using $\left\|\tilde{T}_{n+1}\right\|_{\infty,[-1,1]}=\frac{1}{2^{n}}$ we complete proof.

Example 2:

Consider $f(x)=3^{x}=e^{\ln (3) x}, x \in[0,1]$ whose derivative is $f^{(n+1)}(x)=$ $\ln (3)^{n+1} e^{\ln (3) x}$. Noting that $f^{(n+1)}$ is a monotonically increasing function, $M_{n+1}=f^{(n+1)}(1)=3 \ln (3)^{n+1}$. Therefore,

$$
\left\|E_{n}\right\|_{\infty} \leq \frac{2 \times 3 \ln (3)^{n+1}}{4^{n+1}(n+1)!}=\frac{6 \ln (3)^{n+1}}{4^{n+1}(n+1)!}
$$

\# of Chebyshev points	Error bound
2	0.226
3	0.0207
4	0.00142
5	0.000078
6	0.35810^{-5}
7	0.14010^{-6}
8	0.4810^{-8}
9	0.1410^{-9}

1.6 Hermite interpolation

We restate the general Hermite interpolation by Letting $x_{0}<x_{1}<x_{2} \cdots x_{m}$ be $m+1$ distinct points such that

$$
\begin{equation*}
f^{(k)}\left(x_{i}\right)=p_{n}^{(k)}\left(x_{i}\right), \quad k=0,1, \cdots n_{i}-1, \quad i=0,1, \cdots m \tag{1.1.3}
\end{equation*}
$$

where $\sum_{i=0}^{m} n_{i}=n+1$ and $n_{i} \geq 1$. We note that $n_{i}=1, i=0, \cdots, m$, leads to Lagrange interpolation.

1.6.1 Lagrange form of Hermite interpolation polynomials

Theorem 1.6.1. There exists a unique polynomial $p_{n}(x)$ that satisfies (1.1.3) with $n_{i}=2$ and $n=2 m+1$.

Proof. Existence:

Next, we study the special case $n_{i}=2, i=0,1,2, \cdots$, where

$$
\begin{equation*}
l_{i, 1}(x)=\left(x-x_{i}\right) l_{i}(x)^{2} . \tag{1.1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
l_{i, 0}=l_{i}(x)^{2}-2 l_{i}^{\prime}\left(x_{i}\right)\left(x-x_{i}\right) l_{i}(x)^{2} \tag{1.1.5}
\end{equation*}
$$

Now, we can verify that

$$
\begin{gathered}
l_{i, 1}\left(x_{j}\right)=0, j=0,1,2, \cdots, m \\
l_{i, 1}^{\prime}(x)=2\left(x-x_{i}\right) l_{i}^{\prime}(x) l_{i}(x)+l_{i}(x)^{2} .
\end{gathered}
$$

Thus, $l_{i, 1}^{\prime}\left(x_{j}\right)=\delta_{i j}$.
One can easily check that $l_{i, 0}\left(x_{j}\right)=\delta_{i j}$.
For $l_{i, 0}^{\prime}(x)$ we have

$$
l_{i, 0}^{\prime}(x)=\left(1-2 l_{i}^{\prime}\left(x_{i}\right)\left(x-x_{i}\right)\right) 2 l_{i}^{\prime}(x) l_{i}(x)-2 l_{i}^{\prime}\left(x_{i}\right) l_{i}(x)^{2}
$$

Thus, $l_{i, 0}^{\prime}\left(x_{j}\right)=0, j=0,1, \cdots, m$.
Existence of Hermite interpolation polynomial is established by writing the Lagrange form of Hermite polynomial as

$$
\begin{equation*}
p_{n}(x)=\sum_{i=0}^{m} f\left(x_{i}\right) l_{i, 0}(x)+\sum_{i=0}^{m} f^{\prime}\left(x_{i}\right) l_{i, 1}(x) \tag{1.1.6}
\end{equation*}
$$

Uniqueness:

Assume there are two polynomials $p_{n}(x)$ and $q_{n}(x)$ that satisfy (1.1.3) and consider the difference $d_{n}(x)=p_{n}(x)-q_{n}(x)$ which satisfies

$$
d_{n}^{(s)}\left(x_{j}\right)=0, s=0,1, j=0,1, \cdots, m
$$

Thus, $d_{n}(x)$ is a polynomial of degree at most n and has $(n+1)$ roots counting the multiplicity of each root. The fundamental theorem of Algebra shows that $d_{n}(x)$ is identically zero. With this we establish the uniqueness of p_{n} and finish the proof of the theorem.

1.6.2 Newton form of Hermite interpolation polynomial

Using the following relation

$$
\begin{equation*}
f\left[x_{0}, x_{0}+h, x_{0}+2 h, \cdots, x_{0}+k h\right]=\frac{f^{(k)}(\xi)}{k!}, x_{0}<\xi<x_{0}+k h \tag{1.1.7}
\end{equation*}
$$

and taking the limit when $h \rightarrow 0$ we obtain that

$$
\begin{equation*}
f\left[x_{0}, x_{0}, x_{0}, \cdots, x_{0}\right]=\frac{f^{k}\left(x_{0}\right)}{k!} . \tag{1.1.8}
\end{equation*}
$$

The divided difference table for the data $\left(x_{k}+i h, f\left(x_{0}+k h\right)\right), i=0,1,2,3,4$ will converge to the table shown below where we recover the Taylor polynomial about x_{k} and with $n_{k}=5$.

Using this observation we initialize the table for x_{k} and $n_{k}=5$ as follows:
(i) every point x_{i} is repeated n_{i} times
(ii) we set $z_{i}=x_{k}, z_{i+1}=x_{k}, \cdots, z_{i+4}=x_{k}$
(iii) we initialize $f\left[z_{i}, z_{i+1}, \cdots, z_{i+s}\right]=\frac{f^{(s)}\left(x_{k}\right)}{s!}$ as shown in the following table

$$
\begin{array}{c|c|c|c|c|c|l|}
z_{i} & x_{k} & f\left(x_{k}\right) & & & & \\
z_{i+1} & x_{k} & f\left(x_{k}\right) & f^{\prime}\left(x_{k}\right) & & & \\
z_{i+2} & x_{k} & f\left(x_{k}\right) & f^{\prime}\left(x_{k}\right) & f^{\prime \prime}\left(x_{k}\right) / 2! & & \\
z_{i+3} & x_{k} & f\left(x_{k}\right) & f^{\prime}\left(x_{k}\right) & f^{\prime \prime}\left(x_{k}\right) / 2! & f^{\prime \prime \prime}\left(x_{k}\right) / 3! & \\
z_{i+4} & x_{k} & f\left(x_{k}\right) & f^{\prime}\left(x_{k}\right) & f^{\prime \prime}\left(x_{k}\right) / 2! & f^{\prime \prime \prime}\left(x_{k}\right) / 3! & f^{(4)}\left(x_{k}\right) / 4!
\end{array}
$$

The general formula for divided differences with repeated arguments for $x_{0} \leq$ $x_{1} \leq \ldots<x_{n}$ is given by

$$
f\left[x_{i}, x_{i+1}, \ldots, x_{i+k}\right]=\left\{\begin{array}{l}
\frac{f\left[x_{i+1}, x_{i+2}, \ldots, x_{i+k}\right]-f\left[x_{i}, \ldots, x_{k-1}\right]}{x_{i+k}-x_{i}}, \text { if } x_{i} \neq x_{i+k} \\
\frac{f^{(k)}(\xi)}{k!}
\end{array}\right.
$$

Example: Let $f(x)=x^{4}+1, f^{\prime}(x)=4 x^{3}$. We will construct a polynomial $p_{5}(x)$ such that $p\left(x_{i}\right)=f\left(x_{i}\right)$ and $p^{\prime}\left(x_{i}\right)=f^{\prime}\left(x_{i}\right)$ with $x_{i}=-1,0,1$. The Hermite divided difference table is given as

	z_{i}	$f\left(z_{i}\right)$	1 DD	2 DD	3 DD	4 DD	5 DD
z_{0}	-1	2					
z_{1}	-1	2	$f^{\prime}(-1)=-4$				
z_{2}	0	1	-1	3			
z_{3}	0	1	$f^{\prime}(0)=0$	1	-2		
z_{4}	1	2	1	1	0	1	
z_{5}	1	2	$f^{\prime}(1)=4$	3	2	1	0

The forward Hermite polynomial is given as

$$
\begin{equation*}
p_{5}(x)=2-4(x+1)+3(x+1)^{2}-2(x+1)^{2} x+(x+1)^{2} x^{2}=1+x^{4} \tag{1.1.9}
\end{equation*}
$$

The Hermite polynomial that interpolates f and f^{\prime} at $x=-1,0$ is given as

$$
\begin{equation*}
p_{3}(x)=2-4(x+1)+3(x+1)^{2}-2(x+1)^{2} x . \tag{1.1.10}
\end{equation*}
$$

The backward Hermite polynomial is given as

$$
\begin{equation*}
p_{5}(x)=2-4(x-1)+3(x-1)^{2}+2(x-1)^{2} x+(x-1)^{2} x^{2}=1+x^{4} \tag{1.1.11}
\end{equation*}
$$

The Hermite polynomial that interpolates f and f^{\prime} at $x=0,1$ is given by

$$
\begin{equation*}
p_{3}(x)=2+4(x-1)+3(x-1)^{2}+2(x-1)^{2} x . \tag{1.1.12}
\end{equation*}
$$

Example:

Consider the data with $m=1, n_{0}=1, n_{1}=2$ given in the following table

x_{i}	0	1
$f\left(x_{i}\right)$	1	2
$f^{\prime}\left(x_{i}\right)$	0	1
$f^{\prime \prime}\left(x_{i}\right)$	NA	2

We write the divided differences table as

	z_{I}	$f\left(z_{i}\right)$	1 DD	2 DD	3 DD	4 DD
z_{0}	0	1				
z_{1}	0	1	$f^{\prime}\left(x_{0}\right)=0$			
z_{2}	1	2	1	1		
z_{3}	1	2	$f^{\prime}\left(x_{1}\right)=1$	0	-1	
z_{4}	1	2	$f^{\prime}\left(x_{1}\right)=1$	$f^{\prime \prime}\left(x_{1}\right) / 2!=1$	1	2

The Hermite polynomial is given as

$$
\begin{gather*}
H_{4}(x)=1+0(x-0)+(x-0)^{2}-(x-0)^{2}(x-1)+2(x-0)^{2}(x-1)^{2} \\
=1+2 x^{2}-x^{3}+2 x^{2}(x-1)^{2} \tag{1.1.13}
\end{gather*}
$$

1.6.3 Hermite interpolation error

Theorem 1.6.2. Let $f(x) \in C[a, b]$ be $2 m+2$ differentiable on (a, b) and consider $x_{0}<x_{1}<x_{2}, \cdots, x_{m}$ in $[a, b]$ with $n_{i}=2, i=0,1, \cdots, m$. If $p_{2 m+1}$ is the Hermite polynomial such that $p_{2 m+1}^{(k)}\left(x_{i}\right)=f^{(k)}\left(x_{i}\right), i=0,1, \cdots, m$, $k=0,1$, then there exists $\xi(x) \in[a, b]$ such that

$$
\begin{equation*}
f(x)-p_{2 m+1}(x)=\frac{f^{(2 m+2)}(\xi(x))}{(2 m+2)!} W(x) \tag{1.1.14a}
\end{equation*}
$$

where

$$
\begin{equation*}
W(x)=\prod_{i=0}^{m}\left(x-x_{i}\right)^{2} \tag{1.1.14b}
\end{equation*}
$$

Proof. We consider the special case $n_{i}=2$, i.e., $n=2 m+1$, select an arbitrary point $x \in[a, b], x \neq x_{i}, i=0, \cdots, m$ and define the function

$$
\begin{equation*}
g(t)=f(t)-p_{2 m+1}(t)-\frac{f(x)-p_{2 m+1}(x)}{W(x)} W(t) . \tag{1.1.15}
\end{equation*}
$$

We note that g has $(m+2)$ roots, i.e., $g\left(x_{i}\right)=0, i=0,1, \cdots m$ and $g(x)=0$. Applying the generalized Rolle's Theorem we show that
$g^{\prime}\left(\xi_{i}\right)=0, i=0,1, \cdots, m$ where $\xi_{i} \in[a, b], \xi_{i} \neq x_{j}, \xi_{i} \neq x$.
Using (1.1.3) with $n_{i}=2$ we have $g^{\prime}\left(x_{i}\right)=0, i=0,1, \cdots, m$. Thus, $g^{\prime}(t)$ has $2 m+2$ roots in $[a, b]$.

Applying the generalized Rolle's theorem we show that there exists $\xi \in(a, b)$ such that

$$
g^{(2 m+2)}(\xi)=0
$$

Combining this with (1.1.15) yields

$$
0=f^{(2 m+2)}(\xi)-\frac{f(x)-p_{2 m+1}(x)}{W(x)}(2 m+2)!
$$

Solving for $f(x)-p_{2 m+1}(x)$ leads to (1.1.14).

Corollary 3. If $f(x)$ and $p_{2 m+1}(x)$ are as in the previous theorem, then

$$
\begin{equation*}
\left|f(x)-p_{2 m+1}(x)\right|<\frac{M_{2 m+2}}{(2 m+2)!}|W(x)|, \quad x \in[a, b] \tag{1.1.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|f(x)-p_{2 m+1}(x)\right\|_{\infty,[a, b]} \leq \frac{M_{2 m+2}}{(2 m+2)!}(b-a)^{2 m+2} \tag{1.1.17}
\end{equation*}
$$

Proof. The proof is straight forward.

At this point we would like to note that we can prove a uniform convergence result under the same conditions as for Lagrange interpolation.

Example: Let $f(x)=\sin (x), x \in[0, \pi / 2]$ and $p_{5}(x)$ interpolate f and f^{\prime} at $x_{i}=0,0.2, \frac{\pi}{2}$, with $n_{i}=2$ and $2 m+2=6$

Using the error bound 1.1.16 with $M_{2 m+2}=1, n_{i}=2$ and

$$
W(x)=\left[(x-0)(x-0.2)\left(x-\frac{\pi}{2}\right)\right]^{2},
$$

we obtain

$$
\begin{equation*}
\left|E_{5}(1.1)\right| \leq \frac{|W(1.1)|}{6!} \approx \frac{0.46608^{2}}{6!} \approx 3.01710^{-4} \tag{1.1.18}
\end{equation*}
$$

1.7 Spline Interpolation

In this section we will study piecewise polynomial interpolation and write the interpolation errors in terms of the subdivision size and the degree of polynomials.

1.7.1 Piecewise Lagrange interpolation

We construct the piecewise linear interpolation for the data $\left(x_{i}, f\left(x_{i}\right)\right), i=$ $0,1, \cdots, n$ such that $x_{0}<x_{1}<\cdots<x_{n}$ as

$$
P_{1}(x)=\left\{\begin{array}{l}
p_{1,0}(x)=f\left(x_{0}\right) \frac{\left(x-x_{1}\right)}{x_{0}-x_{1}}+f\left(x_{1}\right) \frac{\left(x-x_{0}\right)}{x_{1}-x_{0}}, x \in\left[x_{0}, x_{1}\right], \tag{1.1.19}\\
p_{1, i}(x)=f\left(x_{i}\right) \frac{\left(x-x_{i+1}\right)}{x_{i}-x_{i+1}}+f\left(x_{i+1}\right) \frac{\left(x-x_{i}\right)}{x_{i+1}-x_{i}}, x \in\left[x_{i}, x_{i+1}\right] . \\
i=0,1, \cdots, n-1 .
\end{array}\right.
$$

The interpolation error on $\left(x_{i}, x_{i+1}\right)$ is bounded as

$$
\begin{equation*}
\left\|E_{1, i}(x)\right\| \leq \frac{M_{2, i}}{2}\left|\left(x-x_{i}\right)\left(x-x_{i+1}\right)\right|, x \in\left(x_{i}, x_{i+1}\right) \tag{1.1.20}
\end{equation*}
$$

where $M_{2, i}=\max _{x_{i} \leq x \leq x_{i+1}}\left|f^{(2)}(x)\right|$. This can be written as

$$
\begin{equation*}
\left\|E_{1, i}\right\|_{\infty} \leq \frac{M_{2, i} h_{i}^{2}}{8}, h_{i}=x_{i+1}-x_{i} \tag{1.1.21}
\end{equation*}
$$

The global error is

$$
\begin{equation*}
\left\|E_{1}\right\|_{\infty} \leq \frac{M_{2} H^{2}}{8}, H=\max _{i=0, \cdots, n-1} h_{i} . \tag{1.1.22}
\end{equation*}
$$

Theorem 1.7.1. Let $f \in C^{0}[a, b]$ be twice differentiable on (a, b). If $P_{1}(x)$ is the piecewise linear interpolant of f at $x_{i}=a+i * h, i=0,1, \cdots, n$, $h=(b-a) / n$, then P_{1} converges uniformly to f as $n \rightarrow \infty$.
Proof. We prove this theorem using the error estimate (1.1.22).
For piecewise quadratic interpolation we select $h=(b-a) / n$ and construct $p_{2, i}$ that interpolates f at $x_{i},\left(x_{i}+x_{i+1}\right) / 2$ and x_{i+1}. In this case the interpolation error is bounded as

$$
\begin{equation*}
\left\|E_{2, i}\right\|_{\infty} \leq \frac{M_{3, i}\left(h_{i} / 2\right)^{3}}{9 \sqrt{3}}, h_{i}=x_{i+1}-x_{i} . \tag{1.1.23}
\end{equation*}
$$

A global bound is

$$
\begin{equation*}
\left\|E_{2}\right\|_{\infty} \leq \frac{M_{3}(H / 2)^{3}}{9 \sqrt{3}}, H=\max _{i=0, \cdots, 2 n-1} h_{i} . \tag{1.1.24}
\end{equation*}
$$

Theorem 1.7.2. Let $f \in C^{0}[a, b]$ and be $m+1$ times differentiable on (a, b) and $x_{0}<x_{1}<\cdots<x_{n}$ with $h_{i}=x_{i+1}-x_{i}$ and $H=\max _{i} h_{i}$. If $P_{m}(x)$ is the piecewise polynomial of degree m on each subinterval $\left[x_{i}^{i}, x_{i+1}\right]$ and $P_{m}(x)$ interpolates f on $\left[x_{i}, x_{i+1}\right]$ at $x_{i, k}=x_{i}+k * \tilde{h}_{i}, k=0,1, \cdots, m, \tilde{h}_{i}=h_{i} / m$, then P_{m} converges uniformly to f as $H \rightarrow 0$.
Proof. Again we prove this theorem using the error bound

$$
\begin{equation*}
\left\|E_{m}\right\|_{\infty} \leq \frac{M_{m+1} H^{m+1}}{(m+1)!}, H=\max _{i=0,1, \cdots, n m-1} h_{i} \tag{1.1.25}
\end{equation*}
$$

Similarly, we may construct piecewise Hermite interpolation polynomials following the same line of reasoning as for Lagrange interpolation.

1.7.2 Cubic spline interpolation

We use piecewise polynomials of degree three that are C^{2} and interpolate the data such as $S\left(x_{k}\right)=f\left(x_{k}\right)=y_{k}, k=0,1, \cdots n$.

Algorithm

(i) Order the points $x_{k}, x=0,1, \cdots n$ such that

$$
a=x_{0}<x_{1}<x_{2}<\cdots x_{n-1}<x_{n}=b
$$

(ii) Let $S(x)$ be a piecewise spline defined by n cubic polynomials such that $S(x)=S_{k}(x)=a_{k}+b_{k}\left(x-x_{k}\right)+c_{k}\left(x-x_{k}\right)^{2}+d_{k}\left(x-x_{k}\right)^{3}, \quad x_{k} \leq x \leq x_{k+1}$
(iii) find $a_{k}, b_{k}, c_{k}, d_{k}, k=0,1, \cdots n-1$ such that
(1) $S\left(x_{k}\right)=y_{k}, \quad k=0,1, \cdots, n$
(2) $S_{k}\left(x_{k+1}\right)=S_{k+1}\left(x_{k+1}\right), \quad k=0, \cdots, n-2$
(3) $S_{k}^{\prime}\left(x_{k+1}\right)=S_{k+1}^{\prime}\left(x_{k+1}\right), \quad k=0, \cdots, n-2$
(4) $S_{k}^{\prime \prime}\left(x_{k+1}\right)=S_{k+1}^{\prime \prime}\left(x_{k+1}\right), \quad k=0, \cdots, n-2$

Theorem 1.7.3. If \mathbf{A} is an $n \times n$ strictly diagonally dominant matrix, i.e., $\left|a_{k k}\right|>\sum_{i=1, i \neq k}^{n}\left|a_{k, i}\right|, k=1,2, \cdots n$, then A is nonsingular.

Proof. By contradiction, we assume that A is singular, i.e., there exists a nonzero vector \mathbf{x} such that $\mathbf{A x}=\mathbf{0}$ and let x_{k} such that $\left|x_{k}\right|=\max \left|x_{i}\right|$. This leads to

$$
\begin{equation*}
a_{k k} x_{k}=-\sum_{i=1, i \neq k}^{n} a_{k i} x_{i} \tag{1.1.26}
\end{equation*}
$$

Taking the absolute value and using the triangle inequality we obtain

$$
\begin{equation*}
\left|a_{k k}\right|\left|x_{k}\right| \leq \sum_{i=1, i \neq k}^{n}\left|a_{k i}\right|\left|x_{i}\right| . \tag{1.1.27}
\end{equation*}
$$

Dividing both terms by $\left|x_{k}\right|$ we get

$$
\begin{equation*}
\left.\left|a_{k k}\right| \leq \sum_{i=1, i \neq k}^{n}\left|a_{k i} \frac{\left|x_{i}\right|}{\left|x_{k}\right|} \leq \sum_{i=1, i \neq k}^{n}\right| a_{k i} \right\rvert\, \tag{1.1.28}
\end{equation*}
$$

This leads to a contradiction since \mathbf{A} is strictly diagonally dominant.

Theorem 1.7.4. Let us consider the set of data points $\left(x_{i}, f\left(x_{i}\right)\right), i=$ $0,1, \cdots, n$, such that $x_{0}<x_{1}<\cdots, x_{n}$. If $S^{\prime \prime}\left(x_{0}\right)=S^{\prime \prime}\left(x_{n}\right)=0$, then there exists a unique piecewise cubic polynomial that satisfies the conditions (iii).

Proof. Existence: we assume $S^{\prime \prime}\left(x_{k}\right)=m_{k}$ where $h_{k}=x_{k+1}-x_{k}$ and use piecewise linear interpolation of $S^{\prime \prime}$ to write

$$
\begin{gathered}
S_{k}^{\prime \prime}(x)=m_{k} \frac{x-x_{k+1}}{x_{k}-x_{k+1}}+m_{k+1} \frac{x-x_{k}}{x_{k+1}-x_{k}} \\
=-\frac{m_{k}}{h_{k}}\left(x-x_{k+1}\right)+\frac{m_{k+1}}{h_{k}}\left(x-x_{k}\right), x_{k} \leq x \leq x_{k+1}
\end{gathered}
$$

With this definition of $S^{\prime \prime}$, condition (4) is automatically satisfied.
Integrating $S_{k}^{\prime \prime}(x)$ we obtain

$$
S_{k}(x)=-\frac{m_{k}}{6 h_{k}}\left(x-x_{k+1}\right)^{3}+\frac{m_{k+1}}{6 h_{k}}\left(x-x_{k}\right)^{3}+p_{k}\left(x_{k+1}-x\right)+q_{k}\left(x-x_{k}\right)
$$

Need to find m_{k}, q_{k} and $p_{k}, k=0,1,2, \cdots, n-1$.
In order to enforce the conditions (1) and (2) we write

$$
\begin{gathered}
S_{k}\left(x_{k}\right)=y_{k}=\frac{m_{k}}{6} h_{k}^{2}+p_{k} h_{k} \\
S_{k}\left(x_{k+1}\right)=y_{k+1}=\frac{m_{k+1}}{6} h_{k}^{2}+q_{k} h_{k}
\end{gathered}
$$

Solve for p_{k} and q_{k} to solve

$$
\begin{equation*}
p_{k}=\frac{y_{k}}{h_{k}}-\frac{m_{k} h_{k}}{6} \tag{1.1.29a}
\end{equation*}
$$

$$
\begin{equation*}
q_{k}=\frac{y_{k+1}}{h_{k}}-\frac{m_{k+1} h_{k}}{6} \tag{1.1.29b}
\end{equation*}
$$

We note that if $m_{k}, k=0,1, \ldots, n$ are known, The previous equations may be used to compute p_{k} and q_{k}.

Now, substitute p_{k} and q_{k} in the equation for S_{k} to have

$$
\begin{gather*}
S_{k}(x)=-\frac{m_{k}}{6 h_{k}}\left(x-x_{k+1}\right)^{3}+\frac{m_{k+1}}{6 h_{k}}\left(x-x_{k}\right)^{3}+\left(\frac{y_{k}}{h_{k}}-\frac{m_{k} h_{k}}{6}\right)\left(x_{k+1}-x\right)+ \\
\left(\frac{y_{k+1}}{h_{k}}-\frac{m_{k+1} h_{k}}{6}\right)\left(x-x_{k}\right) \tag{1.1.30}
\end{gather*}
$$

Applying condition (3) to enforce the continuity of $S^{\prime}(x)$

$$
\begin{equation*}
S_{k}^{\prime}\left(x_{k+1}\right)=S_{k+1}^{\prime}\left(x_{k+1}\right), k=0,1, \cdots, n-1 \tag{1.1.31}
\end{equation*}
$$

where

$$
\begin{gather*}
S_{k}^{\prime}(x)=-\frac{m_{k}}{2 h_{k}}\left(x-x_{k+1}\right)^{2}+\frac{m_{k+1}}{2 h_{k}}\left(x-x_{k}\right)^{2}- \\
\left(\frac{y_{k}}{h_{k}}-\frac{m_{k} h_{k}}{6}\right)+\left(\frac{y_{k+1}}{h_{k}}-\frac{m_{k+1} h_{k}}{6}\right), x_{k} \leq x \leq x_{k+1} \tag{1.1.32}
\end{gather*}
$$

and

$$
\begin{gather*}
S_{k+1}^{\prime}(x)=-\frac{m_{k+1}}{2 h_{k+1}}\left(x-x_{k+2}\right)^{2}+\frac{m_{k+2}}{2 h_{k+1}}\left(x-x_{k+1}\right)^{2}- \\
\left(\frac{y_{k+1}}{h_{k+1}}-\frac{m_{k+1} h_{k+1}}{6}\right)+\left(\frac{y_{k+2}}{h_{k+1}}-\frac{m_{k+2} h_{k+1}}{6}\right), x_{k+1} \leq x \leq x_{k+2} \tag{1.1.33}
\end{gather*}
$$

Taking the limit from the left at x_{k+1} leads to

$$
\begin{equation*}
S_{k}^{\prime}\left(x_{k+1}\right)=\frac{m_{k+1} h_{k}}{3}+\frac{m_{k} h_{k}}{6}+d_{k} \tag{1.1.34}
\end{equation*}
$$

Taking the limit from the right at x_{k+1} yields

$$
S_{k+1}^{\prime}\left(x_{k+1}\right)=-\frac{m_{k+1} h_{k+1}}{3}-\frac{m_{k+2} h_{k+1}}{6}+d_{k+1}
$$

where

$$
d_{k}=\frac{y_{k+1}-y_{k}}{h_{k}}, k=0,1, \cdots, n-1
$$

Using (1.1.31) we obtain the following system having $n+1$ unknowns and $n-1$ equations.

$$
(\mathbf{I})\left\{\begin{array}{l}
m_{k} h_{k}+2 m_{k+1}\left(h_{k}+h_{k+1}\right)+m_{k+2} h_{k+1}=6\left(d_{k+1}-d_{k}\right), \tag{1.1.35}\\
k=0,1,2, \cdots, n-2
\end{array}\right.
$$

Now we need to close the system by adding two more equations from $S^{\prime \prime}\left(x_{0}\right)=$ 0 and $S^{\prime \prime}\left(x_{n}\right)=0$ which leads to

$$
\begin{equation*}
m_{0}=0, \quad m_{n}=0 \tag{1.1.36}
\end{equation*}
$$

This is called the natural spline.
The system (1.1.35) and (1.1.36) lead to

$$
(I . N A T)\left\{\begin{array}{l}
\left(2 h_{0}+2 h_{1}\right) m_{1}+h_{1} m_{2}=u_{0} \\
m_{k} h_{k}+2 m_{k+1}\left(h_{k}+h_{k+1}\right)+m_{k+1} h_{k+1}=u_{k}, 1 \leq k \leq n-3 \\
h_{n-2} m_{n-2}+2\left(h_{n-2}+h_{n-1}\right) m_{n-1}=u_{n-2}
\end{array}\right.
$$

In matrix form we write

$$
\left[\begin{array}{ccccc}
2\left(h_{0}+h_{1}\right) & h_{1} & 0 & \cdots & 0 \\
h_{1} & 2\left(h_{1}+h_{2}\right) & h_{2} & \ddots & 0 \\
0 & h_{2} & 2\left(h_{2}+h_{3}\right) & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & h_{n-2} \\
0 & \cdots & 0 & h_{n-2} & 2\left(h_{n-2}+h_{n-1}\right)
\end{array}\right]\left[\begin{array}{c}
m_{1} \\
m_{2} \\
m_{3} \\
\vdots \\
m_{n-1}
\end{array}\right]=\left[\begin{array}{c}
u_{0} \\
u_{1} \\
u_{2} \\
\vdots \\
u_{n-2}
\end{array}\right]
$$

The resulting matrix is strictly symmetric positive definite and diagonally dominant and yields a unique solution.

Other splines include:

Not-a-Knot Spline:

We add the following two conditions:
$S_{0}^{\prime \prime \prime}\left(x_{1}\right)=S_{1}^{\prime \prime \prime}\left(x_{1}\right)$ which leads to

$$
\begin{equation*}
\frac{m_{1}-m_{0}}{h_{0}}=\frac{m_{2}-m_{1}}{h_{1}} \tag{1.1.37}
\end{equation*}
$$

and the condition
$S_{n-2}^{\prime \prime \prime}\left(x_{n-1}\right)=S_{n-1}^{\prime \prime \prime}\left(x_{n-1}\right)$ which leads to

$$
\begin{equation*}
\frac{m_{n}-m_{n-1}}{h_{n-1}}=\frac{m_{n-1}-m_{n-2}}{h_{n-2}} \tag{1.1.38}
\end{equation*}
$$

Solve (1.1.37) and (1.1.38) for m_{0} and m_{n} to obtain

$$
\begin{gather*}
m_{0}=\left(1+h_{0} / h_{1}\right) m_{1}-\left(h_{0} / h_{1}\right) m_{2} \tag{1.1.39}\\
m_{n}=-h_{n} / h_{n_{1}} m_{n-2}+\left(1+h_{n} / h_{n-1}\right) m_{n-1} \tag{1.1.40}
\end{gather*}
$$

Substitute into the system (1.1.35) to obtain
$(I . N K)\left\{\begin{array}{l}\left(3 h_{0}+2 h_{1}+h_{0}^{2} / h_{1}\right) m_{1}+\left(h_{1}-h_{0}^{2} / h_{1}\right) m_{2}=u_{0} \\ m_{k} h_{k}+2 m_{k+1}\left(h_{k}+h_{k+1}\right)+m_{k+1} h_{k+1}=u_{k}, k=1, \cdots, n-3 \\ \left(h_{n-2}-h_{n-1}^{2} / h_{n-2}\right) m_{n-2}+\left(2 h_{n-2}+3 h_{n-1}+h_{n-1}^{2} / h_{n-2}\right) m_{n-1}=u_{n-2}\end{array}\right.$
where $u_{k}=6\left(d_{k+1}-d_{k}\right), k=0,1, \cdots, n-2$. We solve the system for $m_{1}, m_{2}, \cdots m_{n-1}$ and use (1.1.39) and (1.1.40) to find m_{0} and m_{n}.

Use (1.1.29) to find p_{k} and $q_{k}, k=0,1, \cdots n-1$. Finally, we use the formula (1.1.30) that defines $S_{k}(x)$.

Clamped Spline:

We close the system (I) using the following conditions
$S_{0}^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)$
$S_{n-1}^{\prime}\left(x_{n}\right)=f^{\prime}\left(x_{n}\right)$

$$
\begin{gathered}
S_{0}^{\prime}(x)=-\frac{m_{0}}{2 h_{0}}\left(x-x_{1}\right)^{2}+\frac{m_{1}}{2 h_{0}}\left(x-x_{0}\right)^{2}-\left(\frac{y_{0}}{h_{0}}-\frac{m_{0} h_{0}}{6}\right)+\left(\frac{y_{1}}{h_{0}}-\frac{m_{1} h_{0}}{6}\right) \\
S_{0}^{\prime}\left(x_{0}\right)=-\frac{m_{0} h_{0}}{3}-\frac{m_{1} h_{0}}{6}+\frac{y_{1}-y_{0}}{h_{0}} .
\end{gathered}
$$

The boundary equation $S_{0}^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)$ leads to

$$
\begin{equation*}
2 m_{0} h_{0}+m_{1} h_{0}=6\left(d_{0}-f^{\prime}\left(x_{0}\right)\right) \tag{1.1.41}
\end{equation*}
$$

The boundary condition $S_{n-1}^{\prime}\left(x_{n}\right)=f^{\prime}\left(x_{n}\right)$ yields the equation

$$
S_{n-1}^{\prime}\left(x_{n}\right)=\frac{m_{n} h_{n-1}}{3}+\frac{m_{n-1} h_{n-1}}{6}+d_{n-1}=f^{\prime}\left(x_{n}\right),
$$

which leads

$$
\begin{equation*}
2 m_{n} h_{n-1}+m_{n-1} h_{n-1}=6\left(f^{\prime}\left(x_{n}\right)-d_{n-1}\right) \tag{1.1.42}
\end{equation*}
$$

Now, the system (I) is reduced to

$$
(I . C L)\left\{\begin{array}{l}
\left(\frac{3 h_{0}}{2}+2 h_{1}\right) m_{1}+h_{1} m_{2}=u_{0}-3\left(d_{0}-f^{\prime}\left(x_{0}\right)\right) \\
m_{k} h_{k}+2 m_{k+1}\left(h_{k}+h_{k+1}\right)+m_{k+1} h_{k+1}=u_{k}, k=1,2, \cdots, n-3 \\
h_{n-2} m_{n-2}+\left(2 h_{n-2}+\frac{3 h_{n-1}}{2}\right) m_{n-1}=u_{n-2}-3\left(f^{\prime}\left(x_{n}\right)-d_{n-1}\right)
\end{array}\right.
$$

Matrix formulation for the not-a-knot spline

$$
A M=U
$$

where

$$
\begin{gathered}
A=\left[\begin{array}{ccccc}
3 h_{0}+2 h_{1}+\frac{h_{0}^{2}}{h_{1}} & h_{1}-\frac{h_{0}^{2}}{h_{1}} & 0 & \cdots & 0 \\
h_{1} & 2\left(h_{1}+h_{2}\right) & h_{2} & \ddots & 0 \\
0 & h_{2} & 2\left(h_{2}+h_{3}\right) & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & h_{n-2} \\
0 & \cdots & 0 & h_{n-2}-\frac{h_{n-1}^{2}}{h_{n-2}} & 2 h_{n-2}+3 h_{n-1}+\frac{h_{n-1}^{2}}{h_{n-2}}
\end{array}\right] \\
\\
M=\left[\begin{array}{c}
m_{1} \\
m_{2} \\
m_{3} \\
\vdots \\
m_{n-1}
\end{array}\right], B=\left[\begin{array}{c}
u_{0} \\
u_{1} \\
u_{2} \\
\vdots \\
u_{n-2}
\end{array}\right]
\end{gathered}
$$

The system admits a unique solution since the matrix is strictly diagonally dominant.

Example 1: consider the function $f(x)=x /(2+x)$ at $-1,1,2,3$

x_{i}	$f\left(x_{i}\right)$	$1^{s t} D D$	$6^{*}(2$ nd Diff $)$
-1	-1	$2 / 3$	
1	$1 / 3$		-3
2	$1 / 2$	$1 / 6$	$-2 / 5$
3	$3 / 5$	$1 / 10$	

$h_{0}=2, h_{1}=1, h_{2}=1$.
$\left[\begin{array}{cc}3 h_{0}+2 h_{1}+h_{0}^{2} / h_{1} & h_{1}-h_{0}^{2} / h_{1} \\ h_{1}-h_{2}^{2} / h_{1} & \left.2 h_{1}+3 h_{2}+h_{2}^{2} / h_{1}\right)\end{array}\right]\left[\begin{array}{l}m_{1} \\ m_{2}\end{array}\right]=\left[\begin{array}{l}u_{0} \\ u_{1}\end{array}\right]$
$\left[\begin{array}{cc}12 & -3 \\ 0 & 6\end{array}\right]\left[\begin{array}{l}m_{1} \\ m_{2}\end{array}\right]=\left[\begin{array}{c}-3 \\ -2 / 5\end{array}\right]$
The solution is $m_{1}=-4 / 15, m_{2}=-1 / 15$

Matrix formulation for the clamped spline

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
\left(\frac{3 h_{0}}{2}+2 h_{1}\right) & h_{1} & 0 & \cdots & 0 \\
h_{1} & 2\left(h_{1}+h_{2}\right) & h_{2} & \ddots & 0 \\
0 & h_{2} & 2\left(h_{2}+h_{3}\right) & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & h_{n-2} \\
0 & \cdots & 0 & h_{n-2} & \left(2 h_{n-2}+\frac{3 h_{n-1}}{2}\right)
\end{array}\right]\left[\begin{array}{c}
m_{1} \\
m_{2} \\
m_{3} \\
\vdots \\
m_{n-1}
\end{array}\right]} \\
& \quad=\left[\begin{array}{c}
u_{0}-3\left(d_{0}-f^{\prime}\left(x_{0}\right)\right) \\
u_{1} \\
u_{2} \\
\vdots \\
u_{n-2}-3\left(f^{\prime}\left(x_{n}\right)-d_{n-1}\right)
\end{array}\right]
\end{aligned}
$$

The system admits a unique solution since the matrix is symmetric diagonally dominant and positive definite (SPD).

Example 1:

Let us interpolate the function $f(x)=x /(2+x)$ where $f^{\prime}(x)=2 /(2+x)^{2}$. Thus $S_{0}^{\prime}\left(x_{0}\right)=2=f^{\prime}(-1)$ and $S_{n-1}^{\prime}\left(x_{3}\right)=2 / 25=f^{\prime}(3)$.

To compute the $u_{i}, i=0,1$ we use the following table

x_{i}	$f\left(x_{i}\right)$	$1^{s t} D D$	$6^{*}(2$ nd Diff $)$
-1	-1	$2 / 3$	
1	$1 / 3$		-3
2	$1 / 2$	$1 / 6$	$-2 / 5$
3	$3 / 5$	$1 / 10$	

$h_{0}=2, h_{1}=1, h_{2}=1$.
$\left[\begin{array}{cc}3 h_{0} / 2+2 h_{1} & h_{1} \\ h_{1} & \left.2 h_{1}+3 h_{2} / 2\right)\end{array}\right]\left[\begin{array}{l}m_{1} \\ m_{2}\end{array}\right]=\left[\begin{array}{l}u_{0}-3\left(d_{0}-f^{\prime}\left(x_{0}\right)\right) \\ u_{1}-3\left(f^{\prime}\left(x_{3}\right)-d_{2}\right)\end{array}\right]$
$\left[\begin{array}{cc}5 & 1 \\ 1 & 7 / 2\end{array}\right]\left[\begin{array}{l}m_{1} \\ m_{2}\end{array}\right]=\left[\begin{array}{c}1 \\ -17 / 50\end{array}\right]$
The solution is $m_{1}=64 / 275, m_{2}=-9 / 55$
$m_{0}=3 \frac{f\left[x_{0}, x_{1}\right]-f^{\prime}\left(x_{0}\right)}{h_{0}}-m_{1} / 2=-582 / 275$
$m_{3}=3 \frac{f^{\prime}\left(x_{3}\right)-f\left[x_{2}, x_{3}\right]}{h_{2}}-m_{2} / 2=6 / 275$
On [-1,1]:
$p_{0}=y_{0} / h_{0}-\left(m_{0} h_{0}\right) / 6=113 / 550, q_{0}=y_{1} / h_{0}-\left(m_{1} h_{0}\right) / 6=49 / 550$
$S_{0}(x)=\frac{582}{12 \times 275}(x-1)^{3}+\frac{64}{12 \times 275}(x+1)^{3}$

$$
+\frac{113}{550}(1-x)+\frac{49}{550}(x+1)
$$

On $[1,2]$

$$
\begin{aligned}
p_{1}=y_{1} / h_{1}-\left(m_{1} h_{1}\right) / 6 & =81 / 275, \\
q_{1}=y_{2} / h_{1}-\left(m_{2} h_{1}\right) / 6 & =29 / 55 \\
S_{1}(x) & =-\frac{64}{6 \times 275}(x-2)^{3}-\frac{9}{6 \times 55}(x-1)^{3} \\
& +81(2-x) / 275+29(x-1) / 55
\end{aligned}
$$

On $[2,3]$

$$
\begin{gathered}
p_{2}=y_{2} / h_{2}-\left(m_{2} h_{2}\right) / 6=29 / 55, q_{2}=y_{3} / h_{2}-\left(m_{3} h_{2}\right) / 6=164 / 275 \\
S_{2}(x)=\frac{9}{6 \times 55}(x-3)^{3}-\frac{1}{275}(x-2)^{3} \\
+29(3-x) / 55+164(x-2) / 275
\end{gathered}
$$

Examples of natural spline approximations

Example 1: Let $f(x)=|x|$ and construct the cubic spline interpolation at the points $x_{i}=-2+i, i=0,1,2,3,4$

x_{i}	$f\left(x_{i}\right)$	$1^{s t} D D$	$6^{*}(2$ nd Diff $)$
-2	2	-1	
-1	1		0
0	0	-1	12
1	1	1	0
2	2	1	

We note that $h_{i}=h, i=0,1,2,3, m_{0}=m_{4}=0$ which leads to the following system

$$
\left[\begin{array}{lll}
4 & 1 & 0 \\
1 & 4 & 1 \\
0 & 1 & 4
\end{array}\right]\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
12 \\
0
\end{array}\right]
$$

The solution is $m_{1}=-6 / 7, m_{2}=24 / 7, m_{3}=-6 / 7$.
On $[-2,-1]$

$$
\begin{gathered}
p_{0}=\left(y_{0}-\frac{m_{0} h_{0}^{2}}{6}\right) / h_{0}=(2-0) / 1=2 q_{0}=\left(y_{1}-\frac{m_{1} h_{0}^{2}}{6}\right) / h_{0}=(1+1 / 7)=8 / 7 \\
S_{0}(x)=-\frac{1}{7}(x+2)^{3}+2(-1-x)+\frac{8}{7}(x+2)
\end{gathered}
$$

On $[-1,0]$

$$
\begin{aligned}
& p_{1}=\left(y_{1}-\frac{m_{1} h_{1}^{2}}{6}\right) / h_{1}=(2-0) / 1=8 / 7 \\
& q_{1}=\left(y_{2}-\frac{m_{2} h_{1}^{2}}{6}\right) / h_{1}=(1+1 / 7)=-4 / 7
\end{aligned}
$$

$$
S_{1}(x)=\frac{1}{7} x^{3}+\frac{4}{7}(x+1)^{3}+\frac{8}{7}(0-x)-\frac{4}{7}(x+1)
$$

On $[0,1]$

$$
\begin{aligned}
p_{2}=\left(y_{2}-\frac{m_{2} h_{2}^{2}}{6}\right) / h_{2} & =\left(0-\frac{24}{7 \times 6}\right)=-4 / 7 \\
q_{2}=\left(y_{3}-\frac{m_{3} h_{2}^{2}}{6}\right) / h_{2} & =\left(1+\frac{1}{6 \times 7}\right)=8 / 7 \\
S_{2}(x) & =-\frac{4}{7}(x-1)^{3}-x^{3} / 7-\frac{4}{7}(1-x)+\frac{8}{7} x
\end{aligned}
$$

On $[1,2]$
$p_{3}=\left(y_{3}-\frac{m_{3} h_{3}^{2}}{6}\right) / h_{3}=8 / 7, q_{3}=\left(y_{4}-\frac{m_{4} h_{3}^{2}}{6}\right) / h_{3}=2$

$$
S_{3}(x)=-(2-x)^{3} / 7+2(x-1)+8(2-x) / 7
$$

$p=(2,8 / 7,-4 / 7,8 / 7), q=(8 / 7,-4 / 7,8 / 7,2)$

Example 2:

x_{i}	$f\left(x_{i}\right)$	$1^{s t} D D$	$6^{*}(2$ nd Diff $)$
-1	-1	$2 / 3$	
1	$1 / 3$		-3
2	$1 / 2$	$1 / 6$	$-2 / 5$
3	$3 / 5$	$1 / 10$	

$h_{0}=2, h_{1}=1, h_{2}=1$.

Natural cubic spline leads to $m_{0}=m_{3}=0$. The other coefficients satisfy the system

$$
\begin{aligned}
& {\left[\begin{array}{cc}
2\left(h_{0}+h_{1}\right) & h_{1} \\
h_{1} & 2\left(h_{1}+h_{2}\right)
\end{array}\right]\left[\begin{array}{l}
m_{1} \\
m_{2}
\end{array}\right]=\left[\begin{array}{c}
-3 \\
-2 / 5
\end{array}\right]} \\
& {\left[\begin{array}{ll}
6 & 1 \\
1 & 4
\end{array}\right]\left[\begin{array}{l}
m_{1} \\
m_{2}
\end{array}\right]=\left[\begin{array}{c}
-3 \\
-2 / 5
\end{array}\right]}
\end{aligned}
$$

which admits the following solution $m_{1}=-\frac{58}{115}, m_{2}=\frac{3}{115}$
On $[-1,1]$
$p_{0}=\left(y_{0}-\frac{m_{0} h_{0}^{2}}{6}\right) / h_{0}=-1 / 2, q_{0}=\left(y_{1}-\frac{m_{1} h_{0}^{2}}{6}\right) / h_{0}=77 / 230$
On $[1,2]$
$p_{1}=\left(y_{1}-\frac{m_{1} h_{1}^{2}}{6}\right) / h_{1}=48 / 115, q_{1}=\left(y_{2}-\frac{m_{2} h_{1}^{2}}{6}\right) / h_{1}=57 / 115$
On $[2,3]$
$p_{2}=\left(y_{2}-\frac{m_{2} h_{2}^{2}}{6}\right) / h_{2}=57 / 115, q_{2}=\left(y_{3}-\frac{m_{3} h_{2}^{2}}{6}\right) / h_{2}=3 / 5$
$p=[-1 / 2,48 / 115,57 / 115], q=[77 / 230,57 / 115,3 / 5]$
Matlab commands for splines

```
x=0:1:10;
y=sin(x);
xi=0:0.2:10;
yi = sin(xi);
%piecewise linear interpolation
y1 = interp1(x,y,xi)
plot(x,y,'0',xi,yi) %plot the exact function
hold on;
plot(xi,y1);
%
y2 = interp1(x,y,xi,'spline') % spline interpolation
y3 = interp1(x,y,'cubic') % piecewise cubic interpolation
y4 = spline(x,y,xi) %not-a-knot spline
plot(xi,y4);
plot(xi,y2);
plot(xi,y3);
```


1.7.3 Convergence of cubic splines

We will study the uniform convergence of the clamped cubic spline for $f \in$ $C^{4}[a, b]$.
We first write the matrix formulation for the clamped cubic spline as

$$
\mathrm{AM}=\mathrm{B}
$$

where $\mathbf{M}=\left[m_{0}, m_{1}, \cdots, m_{n}\right]^{t}, \mathbf{B}=\left[b_{0}, b_{1}, \cdots, b_{n}\right]^{t}$.
Let us recall that

$$
S_{0}^{\prime}\left(x_{0}\right)=\frac{h_{0} m_{0}}{3}+\frac{h_{0} m_{1}}{6}=\frac{\left(y_{1}-y_{0}\right)}{h_{0}}-f^{\prime}\left(x_{0}\right)
$$

and

$$
S_{n-1}^{\prime}\left(x_{n}\right)=\frac{h_{n-1} m_{n-1}}{6}+\frac{h_{n-1} m_{n}}{3}=f^{\prime}\left(x_{n}\right)-\frac{\left(y_{n}-y_{n-1}\right)}{h_{n-1}} .
$$

We combine (1.1.41), (1.1.42) and (1.1.35) to write the $(n+1) \times(n+1)$ matrix A as

$$
a_{i, j}=\left\{\begin{array}{l}
2, \text { if } i=j \tag{1.1.43}\\
1, \text { if }(i, j)=(1,2) \text { or }(i, j)=(n, n-1) \\
\frac{h_{i}}{h_{i}+h_{i-1}}, \text { if } j=i+1,1<i<n \\
\frac{h_{i-1}}{h_{i}+h_{i-1}}, \text { if } j=i-1,1 \leq i<n-1 \\
0, \text { otherwise, }
\end{array} .\right.
$$

the $n+1$ by $n+1$ matrix A can be written as

$$
A=\left[\begin{array}{cccccc}
2 & 1 & 0 & 0 & \ldots & 0 \tag{1.1.44}\\
\ddots & \ddots & & & & \vdots \\
\ddots & \frac{h_{i-1}}{h_{i}+h_{i-1}} & 2 & \frac{h_{i}}{h_{i}+h_{i-1}} & \ldots & 0 \\
\ddots & \ddots & & & & \vdots \\
0 & 0 & 0 & \ldots & 1 & 2
\end{array}\right]
$$

The right-hand side \mathbf{B} is defined by

$$
\begin{equation*}
b_{0}=\frac{6}{h_{0}}\left(\frac{y_{1}-y_{0}}{h_{0}}-f^{\prime}\left(x_{0}\right)\right), \tag{1.1.45}
\end{equation*}
$$

$$
\begin{gather*}
b_{i}=\frac{6}{h_{i}+h_{i-1}}\left(\frac{y_{i+1}-y_{i}}{h_{i}}-\frac{y_{i}-y_{i-1}}{h_{i-1}}\right), i=1,2, \cdots, n-1, \tag{1.1.46}\\
b_{n}=\frac{6}{h_{n-1}}\left(f^{\prime}\left(x_{n}\right)-\frac{y_{n}-y_{n-1}}{h_{n-1}}\right) . \tag{1.1.47}
\end{gather*}
$$

Lemma 1.7.1. Let \mathbf{A} be defined in (1.1.43) such that $\mathbf{A z}=\mathbf{w}$. Then,

$$
\|\mathbf{z}\|_{\infty} \leq\|\mathbf{w}\|_{\infty}
$$

Proof. Let z_{k} be such that $\left|z_{k}\right|=\|\mathbf{z}\|_{\infty}$. The $k^{\text {th }}$ equation from $\mathbf{A z}=\mathbf{w}$ leads to

$$
\begin{equation*}
a_{k, k-1} z_{k-1}+2 z_{k}+a_{k, k+1} z_{k+1}=w_{k} \tag{1.1.48}
\end{equation*}
$$

Applying the triangle inequality we have

$$
\begin{gather*}
\left|\left|\mathbf{w} \|_{\infty} \geq\left|w_{k}\right|=\left|a_{k, k-1} z_{k-1}+2 z_{k}+a_{k, k+1} z_{k+1}\right|\right.\right. \tag{1.1.49}\\
\geq 2\left|z_{k}\right|-a_{k, k-1}\left|z_{k-1}\right|-a_{k, k+1}\left|z_{k+1}\right| \tag{1.1.50}\\
\geq\left(2-\left(a_{k, k-1}+a_{k, k+1}\right)\left|z_{k}\right|\right. \tag{1.1.51}
\end{gather*}
$$

Using the fact that $a_{k, k-1}+a_{k, k+1}=1$ we complete the proof.

In order to state the following lemma we let $\mathbf{F}=\left[f^{\prime \prime}\left(x_{0}\right), f^{\prime \prime}\left(x_{1}\right), \cdots, f^{\prime \prime}\left(x_{n}\right)\right]^{t}$, $\mathbf{R}=\mathbf{B}-\mathbf{A F}=\mathbf{A}(\mathbf{M}-\mathbf{F})$ and $H=\max _{i=0, \cdots n-1} h_{i}$.

Lemma 1.7.2. If $f \in C^{4}[a, b]$ and $\left\|f^{(4)}\right\|_{\infty} \leq M_{4}$, then

$$
\begin{equation*}
\|\mathbf{M}-\mathbf{F}\|_{\infty} \leq\|\mathbf{R}\|_{\infty} \leq \frac{3}{4} M_{4} H^{2} \tag{1.1.52}
\end{equation*}
$$

Proof.

$$
\begin{equation*}
r_{0}=b_{0}-2 f^{\prime \prime}\left(x_{0}\right)-f^{\prime \prime}\left(x_{1}\right)=\frac{6}{h_{0}}\left(\frac{y_{1}-y_{0}}{h_{0}}-f^{\prime}\left(x_{0}\right)\right)-2 f^{\prime \prime}\left(x_{0}\right)-f^{\prime \prime}\left(x_{1}\right) . \tag{1.1.53}
\end{equation*}
$$

Using Taylor expansion we write

$$
\begin{gather*}
\frac{y_{1}-y_{0}}{h_{0}}=\frac{f\left(x_{0}+h_{0}\right)-f\left(x_{0}\right)}{h_{0}} \tag{1.1.54}\\
=\frac{1}{h_{0}}\left(h_{0} f^{\prime}\left(x_{0}\right)+\frac{h_{0}^{2} f^{\prime \prime}\left(x_{0}\right)}{2}+\frac{h_{0}^{3} f^{\prime \prime \prime}\left(x_{0}\right)}{6}+\frac{h_{0}^{4} f^{(4)}\left(\tau_{1}\right)}{24}\right) \tag{1.1.55}\\
f^{\prime \prime}\left(x_{0}+h_{0}\right)=f^{\prime \prime}\left(x_{0}\right)+h_{0} f^{\prime \prime \prime}\left(x_{0}\right)+\frac{h_{0}^{2} f^{(4)}\left(\tau_{2}\right)}{2} \tag{1.1.56}
\end{gather*}
$$

which leads to

$$
\begin{equation*}
r_{0}=\frac{h_{0}^{2} f^{(4)}\left(\tau_{1}\right)}{4}-\frac{h_{0}^{2} f^{(4)}\left(\tau_{2}\right)}{2} \tag{1.1.57}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\left|r_{0}\right|<3 H^{2} M_{4} / 4 \tag{1.1.58}
\end{equation*}
$$

Similarly for

$$
\begin{align*}
& r_{n}=b_{n}-f^{\prime \prime}\left(x_{n-1}\right)-2 f^{\prime \prime}\left(x_{n}\right) \tag{1.1.59}\\
& b_{n}=\frac{6}{h_{n-1}}\left(f^{\prime}\left(x_{n}\right)-\frac{y_{n}-y_{n-1}}{h_{n-1}}\right) \tag{1.1.60}
\end{align*}
$$

Using Taylor series

$$
\begin{gather*}
\frac{f\left(x_{n}\right)-f\left(x_{n-1}\right)}{h_{n-1}}=-\frac{f\left(x_{n-1}\right)-f\left(x_{n}\right)}{h_{n-1}}= \\
\frac{-1}{h_{n-1}}\left(-h_{n-1} f^{\prime}\left(x_{n}\right)+\frac{h_{n-1}^{2}}{2} f^{\prime \prime}\left(x_{n}\right)-\frac{h_{n-1}^{3}}{6} f^{\prime \prime \prime}\left(x_{n}\right)+\frac{h_{n-1}^{4}}{24} f^{(4)}\left(\tau_{1}\right)\right) . \tag{1.1.61}
\end{gather*}
$$

$$
\begin{gather*}
f^{\prime \prime}\left(x_{n-1}\right)=f^{\prime \prime}\left(x_{n}-h_{n-1}\right)=f^{\prime \prime}\left(x_{n}\right)-\frac{h_{n-1}}{2} f^{\prime \prime \prime}\left(x_{n}\right)+\frac{h_{n-1}^{2}}{2} f^{(4)}\left(\tau_{2}\right) \tag{1.1.62}\\
\left|r_{n}\right|<3 H^{2} M_{4} / 4 \tag{1.1.63}\\
r_{j}=b_{j}-\mu_{j} f^{\prime \prime}\left(x_{j-1}\right)-2 f^{\prime \prime}\left(x_{j}\right)-\lambda_{j} f^{\prime \prime}\left(x_{j+1}\right) \tag{1.1.64a}
\end{gather*}
$$

where

$$
\begin{equation*}
\mu_{j}=\frac{h_{j-1}}{h_{j}+h_{j-1}}, \quad \lambda_{j}=\frac{h_{j}}{h_{j}+h_{j-1}} \tag{1.1.64b}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{j}=\frac{6}{h_{j-1}+h_{j}}\left(\frac{y_{j+1}-y_{j}}{h_{j}}-\frac{y_{j}-y_{j-1}}{h_{j-1}}\right) . \tag{1.1.64c}
\end{equation*}
$$

Using Taylor expansion we write

$$
\begin{align*}
& \frac{y_{j+1}-y_{j}}{h_{j}}=\left[f^{\prime}\left(x_{j}\right)+\frac{h_{j} f^{\prime \prime}\left(x_{j}\right)}{2}+\frac{h_{j}^{2} f^{\prime \prime \prime}\left(x_{j}\right)}{6}+\frac{h_{j}^{3} f^{(4)}\left(\tau_{1}\right)}{24}\right] \tag{1.1.64d}\\
& \frac{y_{j}-y_{j-1}}{h_{j-1}}=\left[+f^{\prime}\left(x_{j}\right)-\frac{h_{j-1} f^{\prime \prime}\left(x_{j}\right)}{2}+\frac{h_{j-1}^{2} f^{\prime \prime \prime}\left(x_{j}\right)}{6}-\frac{h_{j-1}^{3} f^{(4)}\left(\tau_{2}\right)}{24}\right], \tag{1.1.64e}\\
& f^{\prime \prime}\left(x_{j-1}\right)=f^{\prime \prime}\left(x_{j}\right)-h_{j-1} f^{\prime \prime \prime}\left(x_{j}\right)+h_{j-1}^{2} f^{(4)}\left(\tau_{3}\right) / 2 \tag{1.1.64f}\\
& f^{\prime \prime}\left(x_{j+1}\right)=f^{\prime \prime}\left(x_{j}\right)+h_{j} f^{\prime \prime \prime}\left(x_{j}\right)+h_{j}^{2} f^{(4)}\left(\tau_{4}\right) / 2 \tag{1.1.64g}
\end{align*}
$$

Note that $\tau_{i} \in\left(x_{j-1}, x_{j+1}\right)$.
Combining (1.1.64) we obtain

$$
\begin{equation*}
r_{j}=\frac{1}{h_{j}+h_{j-1}}\left[\frac{h_{j}^{3} f^{(4)}\left(\tau_{1}\right)}{4}+\frac{h_{j-1}^{3} f^{(4)}\left(\tau_{2}\right)}{4}-\frac{h_{j-1}^{3} f^{(4)}\left(\tau_{3}\right)}{2}-\frac{h_{j}^{3} f^{(4)}\left(\tau_{4}\right)}{2}\right] . \tag{1.1.65}
\end{equation*}
$$

This can be bounded as

$$
\begin{equation*}
\left|r_{j}\right| \leq \frac{3}{4} M_{4} \frac{h_{j}^{3}+h_{j-1}^{3}}{h_{j}+h_{j-1}} \tag{1.1.66}
\end{equation*}
$$

Without loss of generality we assume $h_{j} \geq h_{j-1}$ and write

$$
\begin{equation*}
\frac{h_{j}^{3}+h_{j-1}^{3}}{h_{j}+h_{j-1}}=h_{j}^{2} \frac{1+\left(\frac{h_{j-1}}{h_{j}}\right)^{3}}{1+\frac{h_{j-1}}{h_{j}}} \leq h_{j}^{2} \leq H^{2} \tag{1.1.67}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\left|r_{j}\right|<\frac{3}{4} M_{4} H^{2} \tag{1.1.68}
\end{equation*}
$$

Finally, using Lemma 1.7.1 we have

$$
\begin{equation*}
\|\mathbf{M}-\mathbf{F}\|_{\infty} \leq\|\mathbf{R}\|_{\infty} \leq \frac{3}{4} M_{4} H^{2} \tag{1.1.69}
\end{equation*}
$$

which completes the proof.
Theorem 1.7.5. Le $f(x) \in C^{4}[a, b], a \leq x_{0}<x_{1}<\cdots<x_{n} \leq b$, $h_{j}=$ $x_{j+1}-x_{j}$ and $H=\max _{i=0, \cdots, n-1} h_{j}$. Assume there exits $K>0$ independent of H such that

$$
\begin{equation*}
\frac{H}{h_{j}} \leq K, j=0,1, \cdots, n-1 . \tag{1.1.70}
\end{equation*}
$$

If $S(x)$ is the clamped cubic spline approximation of f at $x_{i}, i=0,1, \cdots, x_{n}$, then there exists $C_{k}>0$ independent of H such that

$$
\begin{equation*}
\left\|f^{(k)}-S^{(k)}\right\|_{\infty,[a, b]} \leq C_{k} M_{4} K H^{4-k}, k=0,1,2,3 \tag{1.1.71}
\end{equation*}
$$

where $M_{4}=\left\|f^{(4)}\right\|_{\infty}$.
Proof. For $k=3$ and $x \in\left[x_{j-1}-x_{j}\right]$ by adding and subtracting few auxiliary terms the error can be written

$$
e^{\prime \prime \prime}(x)=f^{\prime \prime \prime}(x)-S^{\prime \prime \prime}(x)=f^{\prime \prime \prime}(x)-\frac{m_{j}-m_{j-1}}{h_{j-1}}
$$

$$
\begin{gather*}
=f^{\prime \prime \prime}(x)-\frac{m_{j}-f^{\prime \prime}\left(x_{j}\right)}{h_{j-1}}+\frac{m_{j-1}-f^{\prime \prime}\left(x_{j-1}\right)}{h_{j-1}} \\
=-\frac{f^{\prime \prime}\left(x_{j}\right)-f^{\prime \prime}(x)}{h_{j-1}}+\frac{f^{\prime \prime}\left(x_{j-1}\right)-f^{\prime \prime}(x)}{h_{j-1}} . \tag{1.1.72}
\end{gather*}
$$

Using Lemma 1.7.2 we bound the following terms

$$
\begin{equation*}
\left|\frac{m_{j}-f^{\prime \prime}\left(x_{j}\right)}{h_{j-1}}\right| \leq \frac{3 M_{4} H^{2}}{4 h_{j-1}},\left|\frac{m_{j-1}-f^{\prime \prime}\left(x_{j-1}\right)}{h_{j-1}}\right| \leq \frac{3 M_{4} H^{2}}{4 h_{j-1}} \tag{1.1.73}
\end{equation*}
$$

We use Taylor series to obtain

$$
f^{\prime \prime}\left(x_{j}\right)-f^{\prime \prime}(x)=\left(x_{j}-x\right) f^{\prime \prime \prime}(x)+\frac{\left(x_{j}-x\right)^{2}}{2} f^{(4)}\left(\tau_{1}\right)
$$

and

$$
f^{\prime \prime}\left(x_{j-1}\right)-f^{\prime \prime}(x)=\left(x_{j-1}-x\right) f^{\prime \prime \prime}(x)+\frac{\left(x_{j-1}-x\right)^{2}}{2} f^{(4)}\left(\tau_{2}\right)
$$

we bound the error

$$
\begin{align*}
& \left.\left|e^{\prime \prime \prime}(x)\right| \leq \frac{3 M_{4} H^{2}}{4 h_{j-1}}+\frac{1}{h_{j-1}} \right\rvert\,\left(x_{j}-x\right) f^{\prime \prime \prime}(x)+\left(x_{j}-x\right)^{2} f^{(4)}\left(\tau_{1}\right) \tag{1.1.74}\\
& \left.\quad-\left(x_{j-1}-x\right) f^{\prime \prime \prime}(x)-\frac{\left(x_{j-1}-x\right)^{2}}{2} f^{(4)}\left(\tau_{2}\right)-h_{j-1} f^{\prime \prime \prime}(x) \right\rvert\, \tag{1.1.75}
\end{align*}
$$

The $f^{\prime \prime \prime}$ terms cancel out to give

$$
\left|e^{\prime \prime \prime}(x)\right| \leq \frac{3 M_{4} H^{2}}{2 h_{j-1}}+\frac{M_{4}}{2 h_{j}}\left[\left(x_{j}-x\right)^{2}+\left(x_{j-1}-x\right)^{2}\right] .
$$

Using

$$
\left\|\left(x_{j}-x\right)^{2}+\left(x_{j-1}-x\right)^{2}\right\|_{\infty,\left[x_{j-1}, x_{j}\right]}=h_{j-1}^{2} \leq H^{2}
$$

we write

$$
\begin{equation*}
\left|e^{\prime \prime \prime}(x)\right| \leq \frac{3 M_{4} H^{2}}{2 h_{j-1}}+\frac{M_{4} H^{2}}{2 h_{j-1}} . \tag{1.1.76}
\end{equation*}
$$

Since $H / h_{j} \leq K$ we have

$$
\begin{equation*}
\left|f^{\prime \prime \prime}(x)-S^{\prime \prime \prime}(x)\right| \leq 2 M_{4} K H, \quad \forall x \tag{1.1.77}
\end{equation*}
$$

For $k=2$, we note that for each $x \in(a, b)$, there is x_{j} such that $\left|x_{j}-x\right| \leq$ $H / 2$. Now we rewrite $e^{\prime \prime}(x)$ as

$$
\begin{equation*}
e^{\prime \prime}(x)=f^{\prime \prime}(x)-S^{\prime \prime}(x)=f^{\prime \prime}\left(x_{j}\right)-S^{\prime \prime}\left(x_{j}\right)+\int_{x_{j}}^{x}\left(f^{\prime \prime \prime}(t)-S^{\prime \prime \prime}(t)\right) d t \tag{1.1.78}
\end{equation*}
$$

Using $\left|\int g\right|<\int|g| d x$ and Lemma 1.7.2 we obtain

$$
\begin{align*}
\left|e^{\prime \prime}(x)\right| & \leq \frac{3 M_{4} H^{2}}{4}+\left|\left(x-x_{j}\right)\right| \max _{x \in[a, b]}\left\|f^{\prime \prime \prime}-S^{\prime \prime \prime}\right\| \tag{1.1.79}\\
& \leq \frac{3 M_{4} H^{2}}{4}+M_{4} K H^{2} \leq \frac{7 K M_{4} H^{2}}{4}, K>1 \tag{1.1.80}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\left\|f^{\prime \prime}(x)-S^{\prime \prime}(x)\right\|_{\infty} \leq \frac{7 K M_{4} H^{2}}{4} \tag{1.1.81}
\end{equation*}
$$

For $k=1$, we consider $e(t)=f(t)-S(t)$, since $e\left(x_{j}\right)=0$, by Rolle's theorem there exist $\xi_{j}, j=0,1, \cdots, n-1$ such that $e^{\prime}\left(\xi_{i}\right)=0$ and $e^{\prime}\left(x_{0}\right)=e^{\prime}\left(x_{n}\right)=0$. For every $x \in[a, b]$ there exists ξ_{i} such that $\left|x-\xi_{i}\right| \leq H$ and $e^{\prime}(x)$ can be written as

$$
\begin{equation*}
f^{\prime}(x)-S^{\prime}(x)=\int_{\xi_{i}}^{x}\left(f^{\prime \prime}(t)-S^{\prime \prime}(t)\right) d t \tag{1.1.82}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\left|e^{\prime}(x)\right| \leq\left|x-\xi_{i}\right|\left\|e^{\prime \prime}\right\|_{\infty} \leq \frac{7}{4} M_{4} K H^{3} \tag{1.1.83}
\end{equation*}
$$

For $k=0$, for every $x \in[a, b]$ there is x_{j} such that $\left|x-x_{j}\right| \leq H / 2$ we also write

$$
\begin{align*}
& f(x)-S(x)=\int_{x_{j}}^{x}\left(f^{\prime}(t)-S^{\prime}(t)\right) d t \tag{1.1.84}\\
& |e(x)| \leq\left|x-x_{j}\right|\left\|e^{\prime}\right\|_{\infty} \leq \frac{7}{8} M_{4} K H^{4} . \tag{1.1.85}
\end{align*}
$$

We conclude that $S^{(k)}$ converges uniformly to $f^{(k)}$ for $k=0,1,2,3$ and $H \rightarrow$ 0 .

Optimal bounds are proved by Birkhoff and De Boor (Burden and Faires) as

$$
\begin{equation*}
\|f-S\|_{\infty}<\frac{5}{384} M_{4} H^{4} \tag{1.1.86}
\end{equation*}
$$

We recall the Hermite interpolation error

$$
\begin{equation*}
\left|f-H_{3}\right|<\frac{1}{24 \times 16} M_{4} H^{4}=\frac{M_{4} H^{4}}{384}, \tag{1.1.87}
\end{equation*}
$$

Comparing the cubic spline and Hermite interpolation errors, we see that the ratio between the spline and the Hermite errors is only 5 . We also note that Hermite interpolation requires the derivative at all the interpolation points while the clamped spline needs the derivatives at the end points only.

Optimality of Splines: The optimality is in the sense that cubic spline has the smallest curvature. For a curve defined by $y=f(x)$ the curvature is defined as

$$
\tau=\frac{\left|f^{\prime \prime}(x)\right| \mid}{\left[1+\left(f^{\prime}(x)\right)^{2}\right]^{3 / 2}}
$$

Here the curvature is approximated by $\left|f^{\prime \prime}(x)\right|$ and $\int_{a}^{b} S^{\prime \prime}(x)^{2} d x$ is minimized. More precisely we state the following theorem.

Theorem 1.7.6. If $f \in C^{2}[a, b]$ and $S(x)$ is the natural cubic spline that interpolates f at $n+1$ points $x_{i}, i=0,1, \cdots, n$, then

$$
\begin{equation*}
\int_{a}^{b} S^{\prime \prime}(x)^{2} d x \leq \int_{a}^{b} f^{\prime \prime}(x)^{2} d x \tag{1.1.88}
\end{equation*}
$$

Proof. We consider the function $e(x)=f(x)-S(x)$ with $e\left(x_{i}\right)=0, i=$ $0,1, \cdots, n$, and write the approximate curvature of $f=S+e$ as

$$
\begin{array}{r}
\int_{a}^{b} f^{\prime \prime}(x)^{2} d x=\int_{a}^{b}\left(S^{\prime \prime}(x)+e^{\prime \prime}(x)\right)^{2} d x= \\
\int_{a}^{b} S^{\prime \prime}(x)^{2} d x+\int_{a}^{b} e^{\prime \prime}(x)^{2} d x+2 \int_{a}^{b} S^{\prime \prime}(x) e^{\prime \prime}(x) d x \tag{1.1.89}
\end{array}
$$

We complete the proof by showing that the last term in the right-hand side of (1.1.89) is 0 .

Integrating by parts we obtain

$$
\int_{x_{i}}^{x_{i+1}} e^{\prime \prime}(x) S^{\prime \prime}(x) d x=\left.S^{\prime \prime}(x) e^{\prime}(x)\right|_{x=x_{i}} ^{x=x_{i+1}}-\int_{x_{i}}^{x_{i+1}} S^{\prime \prime \prime}(x) e^{\prime}(x) d x
$$

Summing over all intervals, using the fact that $e \in C^{2}$ and $S^{\prime \prime}(a)=S^{\prime \prime}(b)=0$. Noting that $S^{\prime \prime \prime}(x)=C_{i}$ is a constant on $\left(x_{i}, x_{i+1}\right)$ we obtain

$$
\begin{gathered}
\sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} e^{\prime \prime}(x) S^{\prime \prime}(x) d x=-\sum_{i=0}^{n-1} C_{i} \int_{x_{i}}^{x_{i+1}} e^{\prime}(x) d x \\
=-\sum_{i=0}^{n-1} C_{i}\left[e\left(x_{i+1}\right)-e\left(x_{i}\right)\right]=0
\end{gathered}
$$

We used the fact that $e\left(x_{i}\right)=0$ we establish $\int_{a}^{b} S^{\prime \prime}(x) e^{\prime \prime}(x) d x=0$.
Combining this with (1.1.89) leads to (1.1.88).

The same result holds for the clamped cubic spline with $S^{\prime}(a)=f^{\prime}(a)$ and $S^{\prime}(b)=f^{\prime}(b)$. We follow the same line of reasoning to prove it.
Thus, among all C^{2} functions interpolating f at x_{0}, \ldots, x_{n}, the natural cubic spline has the smallest curvature. This includes the clamped spline and not$a=k n o t$ splines.

1.7.4 B-splines

We describe a system of B-splines (B stands for basis) from which other splines can be obtained.

We first start with B-splines of degree 0, i.e., piecewise constant splines defined as

$$
B_{i}^{0}(x)=\left\{\begin{array}{ll}
1 & x_{i} \leq x<x_{i+1} \tag{1.1.90}\\
0 & \text { otherwise }
\end{array}, i \in \mathbf{Z}\right.
$$

Properties of $B_{i}^{0}(x)$:

1. $B_{i}^{0}(x) \geq 0$, for all x and i
2. $\sum_{i=-\infty}^{\infty} B_{i}^{0}(x)=1$, for all x
3. The support of $B_{i}^{0}(x)$ is $\left[x_{i}, x_{i+1}\right)$
4. $B_{i}^{0}(x) \in C^{-1}$.

We show property (2) by noting that for arbitrary x there exists m such that $x \in\left[x_{m}, x_{m+1}\right)$ then write

$$
\sum_{i=-\infty}^{\infty} B_{i}^{0}(x)=B_{m}^{0}(x)=1
$$

Use the recurrence formula to generate the next basis functions

$$
\begin{equation*}
B_{i}^{k}(x)=\frac{x-x_{i}}{x_{i+k}-x_{i}} B_{i}^{k-1}(x)+\frac{x_{i+k+1}-x}{x_{i+k+1}-x_{i+1}} B_{i+1}^{k-1}(x), \quad \text { for } k>0 . \tag{1.1.91}
\end{equation*}
$$

Properties of B_{i}^{1} :

1. $B_{i}^{1}(x)$ are the classical piecewise linear hat functions equal to 1 at x_{i+1} and zero all other nodes.
2. $B_{i}^{1}(x) \in C^{0}$
3. $\sum_{i=-\infty}^{\infty} B_{i}^{1}(x)=1$ for all x
4. The support of $B_{i}^{1}(x)$ is $\left(x_{i}, x_{i+2}\right)$
5. $B_{i}^{1}(x) \geq 0$ for all x and i

In general for arbitrary k one can show that:

1. $B_{i}^{k}(x)$ are piecewise polynomials of degree k
2. $B_{i}^{k}(x) \in C^{k-1}$
3. $\sum_{i=-\infty}^{\infty} B_{i}^{k}(x)=1$ for all x
4. The support of $B_{i}^{k}(x)$ is $\left(x_{i}, x_{i+k+1}\right)$
5. $B_{i}^{k}(x) \geq 0$ for all x and i
6. $B_{i}^{k}(x),-\infty<i<\infty$ are linearly independent, i.e., they form a basis.

See Figure 1.7.4 for plots of the first four b-splines.
Interpolation using B-splines:
(i) For $k=0$, we construct a piecewise constant spline interpolation by writing

$$
\begin{equation*}
f(x) \approx P_{0}(x)=\sum_{i=-\infty}^{\infty} c_{i} B_{i}^{0}(x) \tag{1.1.92}
\end{equation*}
$$

Using the properties of $B_{i}^{0}(x)$ we show that $c_{i}=f\left(x_{i}\right)$.
(ii) For $k=1$, we construct a piecewise linear spline interpolation by writing

$$
\begin{equation*}
f(x) \approx P_{1}(x)=\sum_{i=-\infty}^{\infty} c_{i} B_{i}^{1}(x) \tag{1.1.93}
\end{equation*}
$$

Again using $B_{i}^{1}\left(x_{j+1}\right)=\delta_{i j}$ we show that $c_{i}=f\left(x_{i+1}\right)$.
(ii) For $k=3$, we construct a piecewise cubic spline interpolation by writing

$$
\begin{equation*}
f(x) \approx P_{3}(x)=\sum_{i=-\infty}^{\infty} c_{i} B_{i}^{3}(x) \tag{1.1.94}
\end{equation*}
$$

Figure 1.1: B-splines of degree $k=0,1,2,3$, upper left to lower right.

We recall that $B_{i}^{3} \in C^{2}$ are piecewise cubic polynomials with support in $\left(x_{i}, x_{i+3}\right)$.

In order to interpolate f at $x_{i}, i=0, \cdots, n$, we

1. Write $S(x)=\sum_{i=-3}^{n-1} c_{i} B_{i}^{3}(x)$
(include basis functions whose support intersect $\left[x_{0}, x_{n}\right]$).
2. Set $n+1$ equations

$$
\begin{equation*}
f\left(x_{i}\right)=c_{i-3} B_{i-3}^{3}\left(x_{i}\right)+c_{i-2} B_{i-2}^{3}\left(x_{i}\right)+c_{i-1} B_{i-1}^{3}\left(x_{i}\right), \quad i=0,1, \cdot, n, \tag{1.1.95a}
\end{equation*}
$$

where $c_{-3}, c_{-2}, c_{-1}, c_{0}, \cdots, c_{n}$ are the unknowns.
3. Close the system, for natural Spline, by setting

$$
\begin{equation*}
S^{\prime \prime}\left(x_{0}\right)=0, \quad S^{\prime \prime}\left(x_{n}\right)=0 \tag{1.1.95b}
\end{equation*}
$$

4. Solve the system (1.1.95).

Remarks:

1. If x_{i} are uniformly distributed we have

$$
\begin{aligned}
& B_{i}^{2}\left(x_{j}\right)=0, j \leq i \text { or } j \geq i+3 \\
& B_{i}^{2}\left(x_{i+1}\right)=B_{i}^{2}\left(x_{i+2}\right)=1 / 2 \\
& B_{i}^{3}\left(x_{j}\right)=0, j \leq i \text { or } j \geq i+4 \\
& B_{i}^{3}\left(x_{i+1}\right)=B_{i}^{3}\left(x_{i+3}\right)=1 / 6, B_{i}^{3}\left(x_{i+2}\right)=2 / 3
\end{aligned}
$$

2. The system (1.1.95) has a unique solution
3. B-splines may be used to construct clamped splines

1.8 Interpolation in multiple dimensions

Read section of 6.10 of textbook (Kincaid and Cheney).

1.9 Least-squares Approximations

Read section 6.8 of Textbook (Kincaid and Cheney).

Bibliography

