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Chapter 1

Polynomial Interpolation

1.1 Review

Mean-value theorem: Let f 2 C[a; b] and di�erentiable on (a; b) then
there exists c 2 (a; b) such that

f 0(c) =
f(b)� f(a)

b� a
:

Weighted Mean-value theorem: If f 2 C[a; b] and g(x) > 0 on [a; b],
then there exists c 2 (a; b) such that

Z b

a

f(x)g(x)dx = f(c)

Z b

a

g(x)dx:

Rolle's theorem: If f 2 C[a; b], di�erentiable on (a; b) and f(a) = f(b),
then there exists c 2 (a; b) such that f 0(c) = 0.

Generalized Rolle's theorem: If f 2 C[a; b], n+1 times di�erentiable on
(a; b) and admits n + 2 zeros in [a; b], then there exists c 2 (a; b) such that
f (n+1)(c) = 0.

Intermediate value theorem: If f 2 C[a; b] such that f(a) 6= f(b), then
for each y between f(a) and f(b) there exists c 2 (a; b) such that f(c) = y.

5



6 CHAPTER 1. POLYNOMIAL INTERPOLATION

1.2 Introduction

From the Webster dictionary the de�nition of interpolation reads as follows:
\Interpolation is the act of introducing something, especially, spurious and
foreign, the act of calculating values of functions between values already
known"

Our goal is approximate a set of data points or a function by a simpler
polynomial function. Given a set of data points xi; i = 0; 1; � � �n; xi 6=
xj; if i 6= j we would like to construct a polynomial pm(x) such that

p(k)m (xi) = f (k)(xi); i = 0; 1; � � �m; k = 0; 1; � � �ni; with n =
mX
i=0

ni � 1:

Lagrange Interpolation: ni = 0, m � 1 , pn(xi) = f(xi); i = 0; 1; � � � ; n

Taylor Interpolation: n0 > 1, m = 0 , p
(k)
n (x0) = f (k)(x0); k = 0; 1; � � � ; n0.

Hermite Interpolation: ni � 1, m � 1 , p
(k)
n (xi) = f (k)(xi); i = 0; 1; � � � ; m;

k = 0; 1; � � �ni.

Why Interpolation? For instance interpolation is used to approximate
integrals

bZ
a

f(x)dx �
Z b

a

pm(x)dx

derivatives

f (k)(x) � p(k)m (x)

and plays a major role in approximating di�erential equations.

Taylor interpolation:

We �rst study Taylor polynomials de�ned as

pn(x) = f(x0)+ (x� x0)f
0

(x0)+
(x� x0)

2

2
f (2)(x0)+ � � �+ (x� x0)

n

n!
f (n)(x0):
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The interpolation error or remainder formula in Taylor expansions is written
as

f(x)� pn(x) =
(x� x0)

n+1

(n+ 1)!
f (n+1)(�)

Example: f(x) = sin(x); x0 = 0

p2n+1(x) =
nX

k=0

(�1)k x2k+1

(2k + 1)!

The interpolation error can be written as

jsin(x)� p2n+1(x)j = jxj2n+3

(2n+ 3)!
jcos(�)j < jxj2n+3

(2n+ 3)!

On the interval 0 < x < 1=2 the interpolation error is bounded as

jsin(x)� p2n+1(x)j < 1

22n+3(2n+ 3)!
:

1.3 Lagrange Interpolation

Lagrange form:

Given a set of points (xi; f(xi)); i = 0; 1; 2; � � �n; xj 6= xi we de�ne the
Lagrange coeÆcient polynomials li(x); i = 0; 1; � � �n: such as

li(xj) =

(
1; if i = j

0; otherwise

and is de�ned as

li(x) =
(x� x0)(x� x1) � � � (x� xi�1)(x� xi+1) � � � (x� xn)

(xi � x0)(xi � x1) � � � (xi � xi�1)(xi � xi+1) � � � (xi � xn)
:

The Lagrange form of the interpolation polynomial is

pn(x) =
nX
i=0

f(xi)li(x)
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Example: Let us consider the data set x = [0; 1; 2]; f = [�2;�1; 2]

l0(x) =
(x� 1)(x� 2)

(�1)(�2) = (x2 � 3x+ 2)=2

l1(x) =
x(x� 2)

(1)(�1) = �x2 + 2x

l2(x) =
x(x� 1)

(2)(1)
= (x2 � x)=2

p2(x) = �2l0(x)� l1(x) + 2l2(x) = x2 � 2

Example:

f(x) = cos(x)5 using 8 points x = [0; 1; 2; 3; 4; 5; 6; 7] and 14 points xi =
i � 0:5; i = 0; 2; � � �14

A Matlab example

x=[0 1 2 3 4 5 6 7];

y=cos(x).^5;

c = polyfit(x,y,length(x)-1);

xi = 0:0.1:7;

zi = cos(xi).^5;

yi =polyval(c,xi);

subplot(2,1,1)

title('Interpolation')

plot(xi,yi,'-.',xi,zi,x,y,'*');

subplot(2,1,2)

title('Interpolation Error')

plot(xi,zi-yi,x,zeros(1,length(x)),'-*');

Newton form and divided di�erences:

We develop a procedure to compute a0; a1; � � � ; an such that the interpola-
tion polynomial has the form

pn(x) = a0 + a1(x� x0) + a2(x� x0)(x� x1) + � � �+ an(x� x0) � � � (x� xn�1)
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where a0 = f(x0), a1 =
f(x1)�f(x0)

x1�x0
and such that

ak = f [x0; x1; � � � ; xk]

is called the kth divided di�erence. All divided di�erences are generated by
the following recurrence formula

f [xi] = f(xi)

f [xi; xk] =
f [xk]� f [xi]

xk � xi

f [x0; x1; � � � ; xk�1; xk] =
f [x1; � � � ; xk]� f [x0; � � � ; xk�1]

xk � x0

xi f(xi) 1stDD 2ndDD 3rdDD 4thDD
x0 f(x0)

f [x0; x1]
x1 f(x1) f [x0; x1; x2]

f [x1; x2] f [x0; x1; x2; x3]
x2 f(x2) f [x1; x2; x3] f [x0; x1; x2; x3; x4]

f [x2; x3] f [x1; x2; x3; x4]
x3 f(x3) f [x2; x3; x4]

f [x3; x4]
x4 f(x4)

The forward Newton polynomial can be written as

p4(x) = f(x0) + f [x0; x1](x� x0) + f [x0; x1; x2](x� x0)(x� x1)+

f [x0; x1; x2; x3](x� x0)(x� x1)(x� x2)

+f [x0; x1; x2; x3; x4](x� x0)(x� x1)(x� x2)(x� x3)

The backward Newton polynomial can be written as

p4(x) = f(x4) + f [x3; x4](x� x4) + f [x2; x3; x4](x� x4)(x� x3)+

f [x1; x2; x3; x4](x� x4)(x� x3)(x� x2)

+f [x0; x1; x2; x3; x4](x� x4)(x� x3)(x� x2)(x� x1)
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Example:

xi f(xi) 1stDD 2ndDD 3rdDD 4thDD 5thDD
�2 16

�8
�1 8 2

�4 �10=3
0 4 �8 10=3

�20 10 -11/6
1 �16 22 �35=6

24 �40=3
2 8 �18

�12
3 �4

The forward Newton polynomial

p5(x) = 16� 8(x+ 2) + 2(x+ 2)(x + 1)� 10

3
(x+ 2)(x+ 1)x

+
10

3
(x+ 2)(x+ 1)x(x� 1)� 11

6
(x + 2)(x+ 1)x(x� 1)(x� 2):

The Backward Newton polynomial is given by

p5(x) = �4� 12(x� 3)18(x� 3)(x� 2)� 40

3
(x� 3)(x� 2)(x� 1)

+
35

6
(x� 3)(x� 2)(x� 1)x� 11

6
(x� 3)(x� 2)(x� 1)x(x� 1):

Remarks:

(i) The upper diagonal contains the coeÆcients for the forward Newton poly-
nomials.

(ii) The lower diagonal contains the coeÆcients for the backward Newton
polynomials.

(iii) pk(x) interpolates f at x0; x1; � � � ; xk and is obtained as
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pk(x) = f(x0) +
kX

j=1

f [x0; x1; � � � ; xj]
j�1Y
i=0

(x� xi):

(iv) p2(x) that interpolates f at x2; x3 and x4 is

p2(x) = f(x2) + f [x2; x3](x� x2) + f [x2; x3; x4](x� x2)(x� x3):

(v) If we decide to add an additional point, it should be added at the bot-
tom for forward Newton polynomials and at the top for backward Newton
polynomials.

(vi) f [x0; x1; � � � ; xk] = f(k)(�)
k!

; � 2 [a; b]:

Nested mutliplication

An eÆcient algorithm to evaluate Newton polynomial can be obtained by
writing

pn(x) = a1 + (a2 + � � � (an�2 + (an�1 + (an + an+1(x� xn))

(x� xn�1))(x� xn�2) � � � )(x� x1)):

Matlab program

%input a(i), i=1,2,...,n+1 , x(i),i=1,...,n+1, and x

%

p = a(n+1);

for i=n:-1:1

p = a(i) + p*(x-x(i));

end;

%p = p_n(x)

1.4 Interpolation error and convergence

In this section we study the interpolation error and convergence of interpo-
lation polynomials to the interpolated function.
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1.4.1 Interpolation error

Theorem 1.4.1. Let f 2 C[a; b] and x0; x1; x2; � � �xn; be n+1 distinct points
in [a; b]. Then there exists a unique polynomial pn of degree at most n such
that pn(xi) = f(xi); i = 0; 1; � � �n.

Proof. Existence: we de�ne

Li(x) =

nQ
j=0;j 6=i

(x� xj)

nQ
j=0;j 6=i

(xi � xj)

Li(xj) = Æij =

(
1; i = j

0; otherwise

and

pn(x) =
nX
i=0

f(xi)Li(x)

One can verify that

pn(xj) = f(xj):

Uniqueness:

Assume there are two polynomials qn(x) and pn(x) such that

qn(xj) = pn(xj) = f(xj); j = 0; 1; 2; � � � ; n
and consider the di�erence

dn(x) = pn(x)� qn(x):

dn(xj) = 0; i = 0; 1; � � � ; n so dn(x) has n + 1 roots. By the fundamental
theorem of Algebra dn(x) = 0.
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Theorem 1.4.2. Let f 2 C[a; b] (n + 1) di�erentiable on (a; b) and let
x0; x1; � � � ; xn; be (n + 1) distinct points in [a; b]. If pn(x) is such that
pn(xi) = f(xi); i = 0; 1; � � � ; n, then for each x 2 [a; b] there exists �(x) 2
[a; b] such that

f(x)� pn(x) =
fn+1(�(x))

(n+ 1)!
W (x);

where W (x) =
nQ
i=0

(x� xi).

Proof. Let x 2 [a; b] and x 6= xi; i = 0; 1; � � � ; n and de�ne the function

g(t) = f(t)� pn(t)� f(x)� pn(x)

W (x)
W (t):

We note that g has (n+2) roots, i.e., g(xi) = 0; i = 0; 1; � � �n and g(x) = 0.
Using the generalized Rolle's Theorem there exits �(x) 2 (a; b) such that

g(n+1)(�(x)) = 0

which leads to

g(n+1)(�(x)) = f (n+1)(�(x))� 0� f(x)� pn(x)

W (x)
(n + 1)! = 0; (1.1.1)

We solve (1.1.1) to �nd f(x)� pn(x) =
f(n+1)(�(x))

(n+1)!
W (x) which completes the

proof.

Corollary 1. Assume that max
x2[a;b]

jf (n+1)(x)j =Mn+1 then

jf(x)� pn(x)j � Mn+1

(n+ 1)!
jW (x)j; 8 x 2 [a; b]:

and

max
x2[a;b]

jf(x)� pn(x)j � Mn+1

(n+ 1)!
max
x2[a;b]

jW (x)j:

Proof. The proof is straight forward.
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Examples:

jjf � P1jj1 � M2h
2

8
; [x0; x0 + h]:

jjf � p2jj1 � M3h
3

9
p
3
; [x0; x0 + 2h]:

jjf � p3jj1 � M4h
4

24
; [x0; x0 + 3h]:

Example: Let us interpolate f(x) = e
x
3 on [0; 1] at x0; x1; � � � ; xn. The n + 1

derivative is f (n+1)(x) = e
x
3

3n+1 where

Mn+1 = max
x2[0;1]

jf (n+1)(x)j = e
1
3

3n+1
:

The interpolation error can be bounded as

jf(x)� pn(x)j � e1=3jW (x)j
3n+1(n+ 1)!

; x 2 [0; 1]:

For instance, for n = 4 and x = [0; 1=4; 1=2; 3=4; 1], W (x) = x(x� 1=4)(x�
1=2)(x� 3=4)(x� 1)

The error at x = 0:3 can be bounded as

jf(0:3)� p4(0:3)j � e1=3jW (0:3)j
355!

� 0:45210�7:

Example: Let us consider f(x) = cos(x) + x on [0; 2] which satis�es
max
x2[0;2]

jf (k)(x)j � 1.

The interpolation error can be bounded as

Case 1: Two interpolation points with h = 2,

max
x2[0;2]

jf(x)� p1(x)j � h2M2

8
� 4=8 = 0:5:
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Case 2: Three interpolation points with h = 1,

max
x2[0;2]

jf(x)� p2(x)j � h2M3

9
p
3
� 1=(9

p
3 � 0:0641:

Case 3: Four interpolation points with h = 2=3,

max
x2[0;2]

jf(x)� p3(x)j � h4M4

24
� (2=3)4=24 � 0:0082:

1.4.2 Convergence

We start by reviewing the convergence of functions and de�ning simple and
uniform convergence of sequences of functions.

Let fn(x); n = 0; 1; � � � be a sequence of continuous functions on [a; b].

De�nition 1. (Simple convergence): fn(x) converges simply to f(x) if and
only if at every x 2 [a; b] lim

n!1
jfn(x)� f(x)j = 0:

De�nition 2. (Uniform convergence): fn converges uniformly to f if and
only if lim

n!1
max
x2[a;b]

jfn(x)� f(x)j = 0.

Example: Let us consider the sequence

fn(x) =
1

1 + nx
; n = 0; 1; � � � ; x 2 [0; 1]:

(i) The sequence fn converges simply to 0 for all 0 < x � 1 while fn(0) = 1.
However, fn does not converge uniformly since jjfnjj1 = 1.

(ii) The sequence fn converges uniformly to 0 on [2; 3] since jjfnjj1 = 1=(1+
2n).

Next, we will study the uniform convergence of interpolation polynomials
on a �xed interval [a; b] as the number of interpolation points approaches



16 CHAPTER 1. POLYNOMIAL INTERPOLATION

in�nity. Let h = (b� a)=n and xi = a+ ih; i = 0; 1; 2; � � � ; n; equidistant in-
terpolation points. Let pn(x) denote the Lagrange interpolation polynomial,
i.e., pn(xi) = f(xi); i = 0; � � � ; n and let us study the limit

lim
n!1

jjf � pnjj1 = lim
n!1

max
x2[a;b]

jf(x)� pn(x)j:

For x 2 [a; b], jx � xij � (b � a) which leads to jW (x)j � (b � a)n+1. Thus,
the interpolation error is bounded as

jjf � pnjj1 � Mn+1

(n+ 1)!
(b� a)n+1:

We have uniform convergence when Mn+1

(n+1)!
(b� a)n+1 ! 0 as n!1.

Theorem 1.4.3. Let f be an analytic function on a disk centered at (a+b)=2
with a radius r > 3(b � a)=2. Then, the interpolation polynomial pn(x)
satisfying pn(xi) = f(xi); i = 0; 1; 2; � � �n; converges to f as n!1, i.e.,

lim
n!1

jjf � pnjj1 = 0:

Proof. A function is analytic at (b+a)=2 if it admits a power series expansion
that converges on a disk of radius r and centered at (a + b)=2.

Applying Cauchy's formula

f (k)(x) =
k!

2�i

I
Cr

f(z)

(z � x)k+1
dz; x 2 [a; b]:

jf (k)(x)j � k!

2�

I
Cr

jf(z)j
j(z � x)jk+1

dz; x 2 [a; b]:
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Let z be a point on the circle Cr and x 2 [a; b]. From the triangle with
vertices z, (a + b)=2 and x the following triangle inequality holds

jz � xj+ d � r:

Noting that d � (b� a)=2 the triangle inequality yields

jz � xj � r � (b� a)=2:

jf (k)(x)j � k!

2�

max
z2Cr

jf(z)j
jr � (b� a)=2j(k+1)

2�r:

Assume r > b�a
2

([a; b] � Cr) to obtain

Mk � r

r � (b� a)=2
max
z2Cr

jf(z)j k!

(r � (b� a)=2)k
:

Using k = n+ 1 the interpolation error may be bounded as

jf(x)� pn(x)j � Mn+1

(n+ 1)!
(b� a)(n+1) �

max
z2Cr

jf(z)j
 
r(b� a)

r � (b�a)
2

!�
b� a

r � (b� a)=2

�n

:

Finally, we have uniform convergence if b�a
r�(b�a)=2

< 1, i.e., r > 3
2
(b�a) which

establishes the theorem.
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Examples of analytic functions are sin(z), ez, cos(z2).

Runge phenomenon:

Let f(x) = 1
4+x2

is C1[�10; 10] but we do not have uniform convergence
on [�10; 10] when using the n + 1 equally spaced interpolation points xi =
�10 + ih; i = 0; 1; � � � ; n, h = 20=n.

The function f(z) has two poles z = �2i, thus, can't be analytic on disk Cr

with radius r > 3(b � a)=2 = 30 and center at (a + b)=2. We cannot apply
the previous theorem and we should expect convergence problems for x far
away from the origin.

The largest interval [�a; a] satisfying r > 3(b � a)=2 = 3a corresponds to
a < 2=3. Actually, it may converge on a larger interval because this is a
suÆcient condition.

Interpolation errors and divided di�erences:

The Newton form of pn(x) that interpolates f at xi; i = 0; 1; � � � ; n is

pn(x) = f [x0] + f [x0; x1](x� x0) +
nX
i=2

f [x0; � � � ; xi]
i�1Y
j=0

(x� xj):

We proof a theorem relating the interpolation errors and divided di�erences.

Theorem 1.4.4. If f 2 C[a; b] and n+1 times di�erentiable, then for every
x 2 [a; b]

f(x)� pn(x) = f [x0; x1; � � � ; xn; x]
nY
i=0

(x� xi)

and

f [x0; x1; x2; � � � ; xk] = f (k)(�)

k!
; � 2 [ min

i=0;��� ;k
xi; max

i=0;��� ;n
xi]:

Proof. Let us introduce another point x distinct from xi; i = 0; 1; � � �n and
let pn+1 interpolate f at x0; x1; � � �xn and x, thus
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pn+1(x) = pn(x) + f [x0; x1; � � � ; xn; x]
nY
i=0

(x� xi):

Combining the equation pn+1(x) = f(x) and the interpolation error formula
we write

f(x)� pn(x) = f [x0; x1; � � � ; xn; x]
nY
i=0

(x� xi) =
f (n+1)(�(x))

(n+ 1)!

nY
i=0

(x� xi):

This leads to

f [x0; x1; � � � ; xk] = f (k)(�)

k!
; � 2 [ min

i=0;��� ;k
xi; max

i=0;��� ;k
xi];

which completes the proof.

Remark:

lim
xi!x0; i=1;���k

f [x0; x1; � � � ; xk] = f (k)(x0)

k!

1.5 Interpolation at Chebyshev points

In the previous section we have shown that uniform convergence does not
occur using uniform interpolation points for some functions.

Now, we study the interpolation error on [�1; 1] where the (n + 1) interpo-
lation points, x�i ; i = 0; 1; � � � ; n; in [�1; 1] are selected such that

jjW �(:)jj1 = min
Q2 ~Pn+1

jjQ(:)jj1

where ~Pn is the set of the monic polynomials

~Pn = [Q 2 PnjQ = xn +
n�1X
i=1

cix
i];
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and W �(x) =
nQ
i

(x� x�i ).

Question: Are there interpolation points x�i ; i = 0; 1; 2; � � � ; n in [�1; 1] such
that

jjW �jj1 = min
xi2[a;b];i=0;1;��� ;n

jjW jj1

If the above statement is true, the interpolation error can be bounded by

jjEnjj1 � Mn+1

(n+1)!
jjW �jj1

The Answer : The best interpolation points x�i ; i = 0; 1; 2; � � � ; n are the
roots of the Chebyshev polynomial Tn+1(x) de�ned as

Tk(x) = cos(karcos(x)); k = 0; 1; 2; � � � :
In the following theorem we will prove some properties of Chebyshev poly-
nomials.

Theorem 1.5.1. The Chebyshev polynomials Tk(x); k = 0; 1; 2; � � � , satisfy
the following properties:

(i) jTk(x)j � 1; for all � 1 � x � 1

(ii) Tk+1(x) = 2xTk(x)� Tk�1

(iii) Tk(x) has k roots x�j = cos(2j+1
2k

�); j = 0; 1; � � � ; k � 1;2 [�1; 1]

(iv) Tk(x) = 2k�1
k�1Q
j=0

(x� x�j)

(v) If ~Tk(x) =
Tk(x)
2k�1 then max

x2[�1;1]
j ~Tk(x)j = 1

2k�1 .

Proof. We obtain (i) by noting that the range of the cosine function is [�1; 1].
To obtain (ii) we write

Tk+1(x) = cos(karcos(x) + arcos(x)) = cos(k� + �)



1.5. INTERPOLATION AT CHEBYSHEV POINTS 21

where � = arcos(x) and write

Tk+1 = cos(k� + �)

Tk�1 = cos(k� � �)

Use the trigonometric identity cos(a � b) = cos(a)cos(b) � sin(a)sin(b) to
obtain

cos(k� + �) = cos(k�)cos(�)� sin(k�)sin(�)

and
cos(k� � �) = cos(k�)cos(�) + sin(k�)sin(�)

Adding the previous equations to obtain

Tk+1(x) + Tk�1(x) = 2cos(k�)cos(�) = 2xTk(x)

This proves (ii).

To obtain the roots we set cos(karcos(x)) = 0 which leads to

karcos(x) =
(2j + 1)

2
�; j = 0;�1;�2; � � � :

If we solve for x, we obtain

x = cos(
(2j + 1)

2k
�); j = 0;�1;�2; � � � ;

leads to the roots

x�j = cos(
(2j + 1)

2k
�); j = 0; 1; � � � ; k � 1:

Use induction to prove (iv) step 1: T1(x) = 20x, T2(x) = 21x2� 1 (iv) is true
for k = 1; 2.

Step 2: Assume Tk = 2k�1xk +
k�1P
i=0

cix
i , for k = 1; 2; � � � ; n and use (ii) we

write

Tn+1(x) = 2xTn � Tn�1(x) = 2nxn+1 +
nX
i=0

aix
i
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This establishes (iv), i.e., Tk = 2k�1
k�1Q
j=0

(x� x�j).

Applying (iv) we show that (v) is true.

Corollary 2. If ~Tn(x) is the monic Chebyshev polynomial of degree n, then

max
�1�x�1

j ~Qn(x)j � max
�1�x�1

j ~Tn(x)j = 1

2n�1
; 8 ~Qn 2 ~Pn:

Proof. Assume there is another monic polynomial ~Rn(x) such that

max
�1�x�1

j ~Rn(x)j < 1

2n�1

We also note that

~Tn(zk) =
(�1)k
2n�1

; zk = cos(k�=n); k = 0; 1; 2; � � � ; n:

The (n� 1)-degree polynomial dn�1(x) = ~Tn(x)� ~Rn(x) satis�es

dn�1(z0) > 0, dn�1(z1) < 0, dn�1(z2) > 0, dn�1(z3) < 0 So dn�1(x) changes
sign between each pair zk and zk+1; k = 0; 1; 2; � � � ; n and thus has n roots.
Thus dn�1(x) = 0, identically, i.e., ~T (x) and ~Rn(x) are identical. This leads
to a contradiction with the assumption above.

Below are the �rst �ve Chebyshev polynomials.

T0(x) = 1
T1(x) = x
T2(x) = 2x2 � 1
T3(x) = 4x3 � 3x
T4(x) = 8x4 � 8x2 + 1

Example of Chebyshev points:



1.5. INTERPOLATION AT CHEBYSHEV POINTS 23

k x�0 x�1 x�2 x�3

1 0

2
p
2=2 �p2=2

3
p
3=2 0 �p3=2

4 cos(�=8) cos(3�=8) cos(5�=8) cos(7�=8)

Application to interpolation:

Let pn(x) 2 Pn interpolate f(x) 2 Cn+1[�1; 1] at the roots of Tn+1(x),
x�j ; j = 0; 1; 2; � � � ; n. Thus, we can write the interpolation error formula
as

f(x)� pn(x) =
fn+1(�(x))

(n + 1)!
~Tn+1(x)

Using (v) from the previous theorem and assuming jjfn+1jj1;[�1;1] � Mn+1

we obtain

max
x2[�1;1]

jf(x)� pn(x)j � Mn+1

2n(n + 1)!

Remarks:

1. We note that this choice of interpolation points reduces the error signi�-
cantly.

2. With Chebyshev points, pn converges uniformly to f when f 2 C1[�1; 1]
only. The function f does not have to be analytic (see Gautschi).

Example 1:

Consider f(x) = ex; x 2 [�1; 1]

Case 1: with three points; n=2:

jjE2jj1 � M3

3!22
= e=24 = 0:1136:

Case 2: with 6 points; n=5:
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jjE5jj1 � M6

6!25
= e=(720� 32) = 0:11710�3:

How many Chebyshev points are needed to have jjEnjj1 < 10�8

jjEnjj1 � Mn+1

2n(n + 1)!
=

e

(n+ 1)!2n
= 0:13110�9; for n=9:

Thus, 10 Chebyshev points are needed.

Chebyshev points on [a; b]:

Chebyshev points can be used on an arbitrary interval [a; b] using the linear
transformation

x =
a+ b

2
+
b� a

2
t; �1 � t � 1: (1.1.2a)

We also need the inverse mapping

t = 2
x� a

b� a
� 1; a � x � b: (1.1.2b)

First, we order the Chebyshev nodes in [�1; 1] as

t�k = cos(
2k + 1

2n+ 2
� � �) = �cos(2k + 1

2n+ 2
�); k = 0; 1; 2; � � � ; n:

we de�ne the interpolation nodes on an arbitrary interval [a; b] as

x�k =
a+ b

2
+
b� a

2
t�k; k = 0; 1; 2; � � � ; n

Remarks:

1. x�0 < x�1 < � � � < x�n

2. x�k are symmetric with respect to the center (a+ b)=2

3. x�k are independent of the interpolated function f
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Theorem 1.5.2. Let f 2 Cn+1[a; b] and pn interpolate f at the Chebyshev
nodes x�k; k = 0; 1; 2; � � � ; n, in [a,b]. Then

max
x2[a;b]

jf(x)� pn(x)j � 2Mn+1
(b� a)n+1

4n+1(n+ 1)!
:

Where Mn+1 = max
x2[a;b]

jf (n+1)(x)j .

Proof. It suÆces to rewrite W (x) =
nQ
i=0

(x � xi�) using the mapping (1.1.2)

to �nd that

(x� x�i ) =
b� a

2
(t� t�i );

and

W (x) =
nY
i=0

(x� xi�) = (
b� a

2
)n+1

nY
i=0

(t� t�i ) = (
b� a

2
)n+1 ~Tn+1(t):

Finally, using jj ~Tn+1jj1;[�1;1] =
1
2n

we complete proof.

Example 2:

Consider f(x) = 3x = eln(3)x; x 2 [0; 1] whose derivative is f (n+1)(x) =
ln(3)n+1eln(3)x. Noting that f (n+1) is a monotonically increasing function,
Mn+1 = f (n+1)(1) = 3ln(3)n+1. Therefore,

jjEnjj1 � 2� 3 ln(3)n+1

4n+1(n+ 1)!
=

6 ln(3)n+1

4n+1(n + 1)!
:
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# of Chebyshev points Error bound
2 0.226
3 0.0207
4 0.00142
5 0.000078
6 0.358 10�5

7 0.140 10�6

8 0.48 10�8

9 0.14 10�9

1.6 Hermite interpolation

We restate the general Hermite interpolation by Letting x0 < x1 < x2 � � �xm
be m+ 1 distinct points such that

f (k)(xi) = p(k)n (xi); k = 0; 1; � � �ni � 1; i = 0; 1; � � �m; (1.1.3)

where
mP
i=0

ni = n+ 1 and ni � 1. We note that ni =1; i = 0; � � � ; m; leads to
Lagrange interpolation.

1.6.1 Lagrange form of Hermite interpolation polyno-

mials

Theorem 1.6.1. There exists a unique polynomial pn(x) that satis�es (1.1.3)
with ni = 2 and n = 2m + 1.

Proof. Existence:

Next, we study the special case ni = 2; i = 0; 1; 2; � � � ; where

li;1(x) = (x� xi)li(x)
2: (1.1.4)
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and

li;0 = li(x)
2 � 2l0i(xi)(x� xi)li(x)

2: (1.1.5)

Now, we can verify that

li;1(xj) = 0; j = 0; 1; 2; � � � ; m

l0i;1(x) = 2(x� xi)l
0
i(x)li(x) + li(x)

2:

Thus, l0i;1(xj) = Æij.

One can easily check that li;0(xj) = Æij.

For l0i;0(x) we have

l0i;0(x) = (1� 2l0i(xi)(x� xi))2l
0
i(x)li(x)� 2l0i(xi)li(x)

2:

Thus, l0i;0(xj) = 0; j = 0; 1; � � � ; m:
Existence of Hermite interpolation polynomial is established by writing the
Lagrange form of Hermite polynomial as

pn(x) =
mX
i=0

f(xi)li;0(x) +
mX
i=0

f 0(xi)li;1(x): (1.1.6)

Uniqueness:

Assume there are two polynomials pn(x) and qn(x) that satisfy (1.1.3) and
consider the di�erence dn(x) = pn(x)� qn(x) which satis�es

d(s)n (xj) = 0; s = 0; 1; j = 0; 1; � � � ; m:

Thus, dn(x) is a polynomial of degree at most n and has (n+1) roots counting
the multiplicity of each root. The fundamental theorem of Algebra shows
that dn(x) is identically zero. With this we establish the uniqueness of pn
and �nish the proof of the theorem.
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1.6.2 Newton form of Hermite interpolation polyno-

mial

Using the following relation

f [x0; x0 + h; x0 + 2h; � � � ; x0 + kh] =
f (k)(�)

k!
; x0 < � < x0 + kh (1.1.7)

and taking the limit when h! 0 we obtain that

f [x0; x0; x0; � � � ; x0] = fk(x0)

k!
: (1.1.8)

The divided di�erence table for the data (xk+ ih; f(x0+kh)); i = 0; 1; 2; 3; 4
will converge to the table shown below where we recover the Taylor polyno-
mial about xk and with nk = 5.

Using this observation we initialize the table for xk and nk = 5 as follows:

(i) every point xi is repeated ni times

(ii) we set zi = xk; zi+1 = xk; � � � ; zi+4 = xk

(iii) we initialize f [zi; zi+1; � � � ; zi+s] =
f(s)(xk)

s!
as shown in the following table

zi xk f(xk)
zi+1 xk f(xk) f 0(xk)
zi+2 xk f(xk) f 0(xk) f 00(xk)=2!
zi+3 xk f(xk) f 0(xk) f 00(xk)=2! f

000

(xk)=3!
zi+4 xk f(xk) f 0(xk) f 00(xk)=2! f

000

(xk)=3! f (4)(xk)=4!

The general formula for divided di�erences with repeated arguments for x0 �
x1 � : : : < xn is given by

f [xi; xi+1; : : : ; xi+k] =

(
f [xi+1;xi+2;::: ;xi+k]�f [xi;::: ;xk�1]

xi+k�xi
; if xi 6= xi+k

f(k)(�)
k!

Example: Let f(x) = x4 + 1, f 0(x) = 4x3. We will construct a polynomial
p5(x) such that p(xi) = f(xi) and p0(xi) = f 0(xi) with xi = �1; 0; 1. The
Hermite divided di�erence table is given as
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zi f(zi) 1 DD 2 DD 3 DD 4 DD 5 DD
z0 -1 2

z1 -1 2 f 0(�1) = �4
z2 0 1 -1 3

z3 0 1 f 0(0) = 0 1 -2

z4 1 2 1 1 0 1

z5 1 2 f 0(1) = 4 3 2 1 0

The forward Hermite polynomial is given as

p5(x) = 2� 4(x + 1) + 3(x + 1)2 � 2(x+ 1)2x + (x+ 1)2x2 = 1 + x4

(1.1.9)

The Hermite polynomial that interpolates f and f 0 at x = �1; 0 is given as

p3(x) = 2� 4(x+ 1) + 3(x+ 1)2 � 2(x + 1)2x: (1.1.10)

The backward Hermite polynomial is given as

p5(x) = 2� 4(x� 1) + 3(x� 1)2 + 2(x� 1)2x + (x� 1)2x2 = 1 + x4

(1.1.11)

The Hermite polynomial that interpolates f and f 0 at x = 0; 1 is given by

p3(x) = 2 + 4(x� 1) + 3(x� 1)2 + 2(x� 1)2x: (1.1.12)

Example:

Consider the data with m = 1; n0 = 1; n1 = 2 given in the following table

xi 0 1
f(xi) 1 2
f 0(xi) 0 1
f 00(xi) NA 2

We write the divided di�erences table as
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zI f(zi) 1DD 2DD 3 DD 4DD
z0 0 1

z1 0 1 f 0(x0) = 0

z2 1 2 1 1

z3 1 2 f 0(x1) = 1 0 -1

z4 1 2 f 0(x1) = 1 f 00(x1)=2! = 1 1 2

The Hermite polynomial is given as

H4(x) = 1 + 0(x� 0) + (x� 0)2 � (x� 0)2(x� 1) + 2(x� 0)2(x� 1)2

= 1 + 2x2 � x3 + 2x2(x� 1)2: (1.1.13)

1.6.3 Hermite interpolation error

Theorem 1.6.2. Let f(x) 2 C[a; b] be 2m + 2 di�erentiable on (a; b) and
consider x0 < x1 < x2; � � � ; xm in [a; b] with ni = 2; i = 0; 1; � � � ; m. If p2m+1

is the Hermite polynomial such that p(k)2m+1(xi) = f (k)(xi), i = 0; 1; � � � ; m,
k = 0; 1, then there exists �(x) 2 [a; b] such that

f(x)� p2m+1(x) =
f (2m+2)(�(x))

(2m+ 2)!
W (x) (1.1.14a)

where

W (x) =
mY
i=0

(x� xi)
2: (1.1.14b)

Proof. We consider the special case ni = 2; i.e., n = 2m + 1, select an
arbitrary point x 2 [a; b]; x 6= xi; i = 0; � � � ; m and de�ne the function

g(t) = f(t)� p2m+1(t)� f(x)� p2m+1(x)

W (x)
W (t): (1.1.15)
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We note that g has (m+2) roots, i.e., g(xi) = 0; i = 0; 1; � � �m and g(x) = 0.
Applying the generalized Rolle's Theorem we show that

g0(�i) = 0; i = 0; 1; � � � ; m where �i 2 [a; b], �i 6= xj, �i 6= x.

Using (1.1.3) with ni = 2 we have g0(xi) = 0; i = 0; 1; � � � ; m. Thus, g0(t)
has 2m+ 2 roots in [a; b].

Applying the generalized Rolle's theorem we show that there exists � 2 (a; b)
such that

g(2m+2)(�) = 0:

Combining this with (1.1.15) yields

0 = f (2m+2)(�)� f(x)� p2m+1(x)

W (x)
(2m + 2)!

Solving for f(x)� p2m+1(x) leads to (1.1.14).

Corollary 3. If f(x) and p2m+1(x) are as in the previous theorem, then

jf(x)� p2m+1(x)j < M2m+2

(2m+ 2)!
jW (x)j; x 2 [a; b] (1.1.16)

and

jjf(x)� p2m+1(x)jj1;[a;b] � M2m+2

(2m+ 2)!
(b� a)2m+2: (1.1.17)

Proof. The proof is straight forward.

At this point we would like to note that we can prove a uniform convergence
result under the same conditions as for Lagrange interpolation.

Example: Let f(x) = sin(x); x 2 [0; �=2] and p5(x) interpolate f and f 0 at
xi = 0; 0:2; �

2
, with ni = 2 and 2m+ 2 = 6
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Using the error bound 1.1.16 with M2m+2 = 1, ni = 2 and

W (x) = [(x� 0)(x� 0:2)(x� �

2
)]2;

we obtain

jE5(1:1)j � jW (1:1)j
6!

� 0:466082

6!
� 3:017 10�4: (1.1.18)

1.7 Spline Interpolation

In this section we will study piecewise polynomial interpolation and write
the interpolation errors in terms of the subdivision size and the degree of
polynomials.

1.7.1 Piecewise Lagrange interpolation

We construct the piecewise linear interpolation for the data (xi; f(xi)); i =
0; 1; � � � ; n such that x0 < x1 < � � � < xn as

P1(x) =

8><
>:
p1;0(x) = f(x0)

(x�x1)
x0�x1

+ f(x1)
(x�x0)
x1�x0

; x 2 [x0; x1];

p1;i(x) = f(xi)
(x�xi+1)
xi�xi+1

+ f(xi+1)
(x�xi)
xi+1�xi

; x 2 [xi; xi+1]:

i = 0; 1; � � � ; n� 1:

(1.1.19)

The interpolation error on (xi; xi+1) is bounded as

jjE1;i(x)jj � M2;i

2
j(x� xi)(x� xi+1)j; x 2 (xi; xi+1); (1.1.20)

where M2;i = max
xi�x�xi+1

jf (2)(x)j. This can be written as

jjE1;ijj1 � M2;ih
2
i

8
; hi = xi+1 � xi: (1.1.21)

The global error is
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jjE1jj1 � M2H
2

8
; H = max

i=0;��� ;n�1
hi: (1.1.22)

Theorem 1.7.1. Let f 2 C0[a; b] be twice di�erentiable on (a; b). If P1(x)
is the piecewise linear interpolant of f at xi = a + i � h; i = 0; 1; � � � ; n,
h = (b� a)=n, then P1 converges uniformly to f as n!1.

Proof. We prove this theorem using the error estimate (1.1.22).

For piecewise quadratic interpolation we select h = (b � a)=n and construct
p2;i that interpolates f at xi, (xi + xi+1)=2 and xi+1. In this case the inter-
polation error is bounded as

jjE2;ijj1 � M3;i(hi=2)
3

9
p
3

; hi = xi+1 � xi: (1.1.23)

A global bound is

jjE2jj1 � M3(H=2)
3

9
p
3

; H = max
i=0;��� ;2n�1

hi: (1.1.24)

Theorem 1.7.2. Let f 2 C0[a; b] and be m+1 times di�erentiable on (a; b)
and x0 < x1 < � � � < xn with hi = xi+1 � xi and H = max

i
hi. If Pm(x) is

the piecewise polynomial of degree m on each subinterval [xi; xi+1] and Pm(x)
interpolates f on [xi; xi+1] at xi;k = xi + k � ~hi; k = 0; 1; � � � ; m, ~hi = hi=m,
then Pm converges uniformly to f as H ! 0.

Proof. Again we prove this theorem using the error bound

jjEmjj1 � Mm+1H
m+1

(m+ 1)!
; H = max

i=0;1;��� ;nm�1
hi: (1.1.25)

Similarly, we may construct piecewise Hermite interpolation polynomials fol-
lowing the same line of reasoning as for Lagrange interpolation.
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1.7.2 Cubic spline interpolation

We use piecewise polynomials of degree three that are C2 and interpolate the
data such as S(xk) = f(xk) = yk; k = 0; 1; � � �n.

Algorithm

(i) Order the points xk; x = 0; 1; � � �n such that

a = x0 < x1 < x2 < � � �xn�1 < xn = b:

(ii) Let S(x) be a piecewise spline de�ned by n cubic polynomials such that

S(x) = Sk(x) = ak + bk(x� xk) + ck(x� xk)
2 + dk(x� xk)

3; xk � x � xk+1

(iii) �nd ak; bk; ck; dk; k = 0; 1; � � �n� 1 such that

(1) S(xk) = yk; k = 0; 1; � � � ; n
(2) Sk(xk+1) = Sk+1(xk+1); k = 0; � � � ; n� 2

(3) S
0

k(xk+1) = S
0

k+1(xk+1); k = 0; � � � ; n� 2

(4) S
00

k (xk+1) = S
00

k+1(xk+1); k = 0; � � � ; n� 2

Theorem 1.7.3. If A is an n� n strictly diagonally dominant matrix, i.e.,

jakkj >
nP

i=1;i6=k

jak;ij; k = 1; 2; � � �n, then A is nonsingular.

Proof. By contradiction, we assume that A is singular, i.e., there exists a
nonzero vector x such that Ax = 0 and let xk such that jxkj = maxjxij.
This leads to

akkxk = �
nX

i=1;i6=k

akixi: (1.1.26)

Taking the absolute value and using the triangle inequality we obtain

jakkjjxkj �
nX

i=1;i6=k

jakijjxij: (1.1.27)
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Dividing both terms by jxkj we get

jakkj �
nX

i=1;i6=k

jakij jxijjxkj �
nX

i=1;i6=k

jakij (1.1.28)

This leads to a contradiction since A is strictly diagonally dominant.

Theorem 1.7.4. Let us consider the set of data points (xi; f(xi)); i =
0; 1; � � � ; n; such that x0 < x1 < � � � ; xn. If S 00(x0) = S 00(xn) = 0, then
there exists a unique piecewise cubic polynomial that satis�es the conditions
(iii).

Proof. Existence: we assume S"(xk) = mk where hk = xk+1 � xk and use
piecewise linear interpolation of S" to write

S
00

k (x) = mk
x� xk+1

xk � xk+1

+mk+1
x� xk

xk+1 � xk

= �mk

hk
(x� xk+1) +

mk+1

hk
(x� xk); xk � x � xk+1

With this de�nition of S", condition (4) is automatically satis�ed.

Integrating S
00

k (x) we obtain

Sk(x) = �mk

6hk
(x� xk+1)

3 +
mk+1

6hk
(x� xk)

3 + pk(xk+1 � x) + qk(x� xk)

Need to �nd mk; qk and pk; k = 0; 1; 2; � � � ; n� 1:

In order to enforce the conditions (1) and (2) we write

Sk(xk) = yk =
mk

6
h2k + pkhk

Sk(xk+1) = yk+1 =
mk+1

6
h2k + qkhk

Solve for pk and qk to solve

pk =
yk
hk
� mkhk

6
(1.1.29a)
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qk =
yk+1

hk
� mk+1hk

6
: (1.1.29b)

We note that if mk; k = 0; 1; : : : ; n are known, The previous equations may
be used to compute pk and qk.

Now, substitute pk and qk in the equation for Sk to have

Sk(x) = �mk

6hk
(x� xk+1)

3 +
mk+1

6hk
(x� xk)

3 + (
yk
hk
� mkhk

6
)(xk+1 � x)+

(
yk+1

hk
� mk+1hk

6
)(x� xk) (1.1.30)

Applying condition (3) to enforce the continuity of S
0

(x)

S
0

k(xk+1) = S
0

k+1(xk+1); k = 0; 1; � � � ; n� 1: (1.1.31)

where

S 0k(x) = �mk

2hk
(x� xk+1)

2 +
mk+1

2hk
(x� xk)

2 �

(
yk
hk
� mkhk

6
) + (

yk+1

hk
� mk+1hk

6
); xk � x � xk+1; (1.1.32)

and

S 0k+1(x) = �mk+1

2hk+1
(x� xk+2)

2 +
mk+2

2hk+1
(x� xk+1)

2 �

(
yk+1

hk+1
� mk+1hk+1

6
) + (

yk+2

hk+1
� mk+2hk+1

6
); xk+1 � x � xk+2: (1.1.33)

Taking the limit from the left at xk+1 leads to

S
0

k(xk+1) =
mk+1hk

3
+
mkhk
6

+ dk: (1.1.34)

Taking the limit from the right at xk+1 yields
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S
0

k+1(xk+1) = �mk+1hk+1

3
� mk+2hk+1

6
+ dk+1

where

dk =
yk+1 � yk

hk
; k = 0; 1; � � � ; n� 1

Using (1.1.31) we obtain the following system having n + 1 unknowns and
n� 1 equations.

(I)

(
mkhk + 2mk+1(hk + hk+1) +mk+2hk+1 = 6(dk+1 � dk);

k = 0; 1; 2; � � � ; n� 2:
(1.1.35)

Now we need to close the system by adding two more equations from S 00(x0) =
0 and S 00(xn) = 0 which leads to

m0 = 0; mn = 0: (1.1.36)

This is called the natural spline.

The system (1.1.35) and (1.1.36) lead to

(I:NAT )

8><
>:
(2h0 + 2h1)m1 + h1m2 = u0

mkhk + 2mk+1(hk + hk+1) +mk+1hk+1 = uk; 1 � k � n� 3

hn�2mn�2 + 2(hn�2 + hn�1)mn�1 = un�2

In matrix form we write2
666664

2(h0 + h1) h1 0 � � � 0

h1 2(h1 + h2) h2
. . . 0

0 h2 2(h2 + h3) � � � 0
...

. . . . . . . . . hn�2

0 � � � 0 hn�2 2(hn�2 + hn�1)

3
777775

2
666664

m1

m2

m3
...

mn�1

3
777775=

2
666664

u0
u1
u2
...

un�2

3
777775

The resulting matrix is strictly symmetric positive de�nite and diagonally
dominant and yields a unique solution.
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Other splines include:

Not-a-Knot Spline:

We add the following two conditions:

S
000

0 (x1) = S
000

1 (x1) which leads to

m1 �m0

h0
=
m2 �m1

h1
(1.1.37)

and the condition

S
000

n�2(xn�1) = S
000

n�1(xn�1) which leads to

mn �mn�1

hn�1
=
mn�1 �mn�2

hn�2
(1.1.38)

Solve (1.1.37) and (1.1.38) for m0 and mn to obtain

m0 = (1 + h0=h1)m1 � (h0=h1)m2 (1.1.39)

mn = �hn=hn1mn�2 + (1 + hn=hn�1)mn�1 (1.1.40)

Substitute into the system (1.1.35) to obtain

(I:NK)

8><
>:
(3h0 + 2h1 + h20=h1)m1 + (h1 � h20=h1)m2 = u0

mkhk + 2mk+1(hk + hk+1) +mk+1hk+1 = uk; k = 1; � � � ; n� 3

(hn�2 � h2n�1=hn�2)mn�2 + (2hn�2 + 3hn�1 + h2n�1=hn�2)mn�1 = un�2

where uk = 6(dk+1 � dk); k = 0; 1; � � � ; n � 2. We solve the system for
m1; m2; � � �mn�1 and use (1.1.39) and (1.1.40) to �nd m0 and mn.

Use (1.1.29) to �nd pk and qk; k = 0; 1; � � �n� 1. Finally, we use the formula
(1.1.30) that de�nes Sk(x).
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Clamped Spline:

We close the system (I) using the following conditions

S
0

0(x0) = f
0

(x0)

S
0

n�1(xn) = f
0

(xn)

S 00(x) = �m0

2h0
(x� x1)

2 +
m1

2h0
(x� x0)

2 � (
y0
h0
� m0h0

6
) + (

y1
h0
� m1h0

6
)

S 00(x0) = �m0h0
3

� m1h0
6

+
y1 � y0
h0

:

The boundary equation S 00(x0) = f 0(x0) leads to

2m0h0 +m1h0 = 6(d0 � f 0(x0)) (1.1.41)

The boundary condition S 0n�1(xn) = f 0(xn) yields the equation

S 0n�1(xn) =
mnhn�1

3
+
mn�1hn�1

6
+ dn�1 = f 0(xn);

which leads

2mnhn�1 +mn�1hn�1 = 6(f 0(xn)� dn�1) (1.1.42)

Now, the system (I) is reduced to

(I:CL)

8><
>:
(3h0

2
+ 2h1)m1 + h1m2 = u0 � 3(d0 � f 0(x0))

mkhk + 2mk+1(hk + hk+1) +mk+1hk+1 = uk; k = 1; 2; � � � ; n� 3

hn�2mn�2 + (2hn�2 +
3hn�1

2
)mn�1 = un�2 � 3(f 0(xn)� dn�1)

Matrix formulation for the not-a-knot spline

AM = U
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where

A =

2
66666664

3h0 + 2h1 +
h20
h1

h1 � h20
h1

0 � � � 0

h1 2(h1 + h2) h2
. . . 0

0 h2 2(h2 + h3) � � � 0
...

. . . . . . . . . hn�2

0 � � � 0 hn�2 � h2n�1

hn�2
2hn�2 + 3hn�1 +

h2n�1

hn�2

3
77777775

M =

2
666664

m1

m2

m3
...

mn�1

3
777775 ; B =

2
666664

u0
u1
u2
...

un�2

3
777775

The system admits a unique solution since the matrix is strictly diagonally
dominant.

Example 1: consider the function f(x) = x=(2 + x) at �1; 1; 2; 3

xi f(xi) 1stDD 6*(2nd Di�)
�1 �1

2=3
1 1=3 �3

1=6
2 1=2 �2=5

1=10
3 3=5

h0 = 2, h1 = 1, h2 = 1.

�
3h0 + 2h1 + h20=h1 h1 � h20=h1

h1 � h22=h1 2h1 + 3h2 + h22=h1)

� �
m1

m2

�
=

�
u0
u1

�
�
12 �3
0 6

� �
m1

m2

�
=

� �3
�2=5

�

The solution is m1 = �4=15, m2 = �1=15
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Matrix formulation for the clamped spline

2
666664

(3h0
2
+ 2h1) h1 0 � � � 0

h1 2(h1 + h2) h2
. . . 0

0 h2 2(h2 + h3) � � � 0
...

. . . . . . . . . hn�2

0 � � � 0 hn�2 (2hn�2 +
3hn�1

2
)

3
777775

2
666664

m1

m2

m3
...

mn�1

3
777775

=

2
666664

u0 � 3(d0 � f 0(x0))
u1
u2
...

un�2 � 3(f 0(xn)� dn�1)

3
777775

The system admits a unique solution since the matrix is symmetric diagonally
dominant and positive de�nite (SPD).

Example 1:

Let us interpolate the function f(x) = x=(2 + x) where f 0(x) = 2=(2 + x)2.
Thus S 00(x0) = 2 = f 0(�1) and S 0n�1(x3) = 2=25 = f 0(3).

To compute the ui; i = 0; 1 we use the following table

xi f(xi) 1stDD 6*(2nd Di�)
�1 �1

2=3
1 1=3 �3

1=6
2 1=2 �2=5

1=10
3 3=5

h0 = 2, h1 = 1, h2 = 1.�
3h0=2 + 2h1 h1

h1 2h1 + 3h2=2)

� �
m1

m2

�
=

�
u0 � 3(d0 � f 0(x0))
u1 � 3(f 0(x3)� d2)

�
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�
5 1
1 7=2

� �
m1

m2

�
=

�
1

�17=50
�

The solution is m1 = 64=275, m2 = �9=55

m0 = 3f [x0;x1]�f 0(x0)
h0

�m1=2 = �582=275

m3 = 3f 0(x3)�f [x2;x3]
h2

�m2=2 = 6=275

On [-1,1] :

p0 = y0=h0 � (m0h0)=6 = 113=550, q0 = y1=h0 � (m1h0)=6 = 49=550

S0(x) =
582

12� 275
(x� 1)3 +

64

12� 275
(x + 1)3

+
113

550
(1� x) +

49

550
(x+ 1)

On [1; 2]

p1 = y1=h1 � (m1h1)=6 = 81=275,

q1 = y2=h1 � (m2h1)=6 = 29=55

S1(x) = � 64

6� 275
(x� 2)3 � 9

6� 55
(x� 1)3

+81(2� x)=275 + 29(x� 1)=55

On [2,3]

p2 = y2=h2 � (m2h2)=6 = 29=55, q2 = y3=h2 � (m3h2)=6 = 164=275

S2(x) =
9

6� 55
(x� 3)3 � 1

275
(x� 2)3

+29(3� x)=55 + 164(x� 2)=275

Examples of natural spline approximations
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Example 1: Let f(x) = jxj and construct the cubic spline interpolation at
the points xi = �2 + i; i = 0; 1; 2; 3; 4

xi f(xi) 1stDD 6*(2nd Di�)
�2 2

�1
�1 1 0

�1
0 0 12

1
1 1 0

1
2 2

We note that hi = h; i = 0; 1; 2; 3, m0 = m4 = 0 which leads to the following
system

2
44 1 0
1 4 1
0 1 4

3
5
2
4m1

m2

m3

3
5 =

2
4 0
12
0

3
5

The solution is m1 = �6=7, m2 = 24=7, m3 = �6=7.

On [�2;�1]

p0 = (y0 � m0h20
6

)=h0 = (2� 0)=1 = 2 q0 = (y1 � m1h20
6

)=h0 = (1 + 1=7) = 8=7

S0(x) = �1

7
(x+ 2)3 + 2(�1� x) +

8

7
(x + 2)

On [�1; 0]

p1 = (y1 � m1h21
6

)=h1 = (2� 0)=1 = 8=7

q1 = (y2 � m2h21
6

)=h1 = (1 + 1=7) = �4=7

S1(x) =
1

7
x3 +

4

7
(x+ 1)3 +

8

7
(0� x)� 4

7
(x+ 1)
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On [0; 1]

p2 = (y2 � m2h22
6

)=h2 = (0� 24
7�6

) = �4=7

q2 = (y3 � m3h22
6

)=h2 = (1 + 1
6�7

) = 8=7

S2(x) = �4

7
(x� 1)3 � x3=7� 4

7
(1� x) +

8

7
x

On [1; 2]

p3 = (y3 � m3h23
6

)=h3 = 8=7, q3 = (y4 � m4h23
6

)=h3 = 2

S3(x) = �(2� x)3=7 + 2(x� 1) + 8(2� x)=7

p = (2; 8=7;�4=7; 8=7), q = (8=7;�4=7; 8=7; 2)

Example 2:

xi f(xi) 1stDD 6*(2nd Di�)
�1 �1

2=3
1 1=3 �3

1=6
2 1=2 �2=5

1=10
3 3=5

h0 = 2, h1 = 1, h2 = 1.

Natural cubic spline leads to m0 = m3 = 0. The other coeÆcients satisfy the
system

�
2(h0 + h1) h1

h1 2(h1 + h2)

� �
m1

m2

�
=

� �3
�2=5

�
�
6 1
1 4

� �
m1

m2

�
=

� �3
�2=5

�
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which admits the following solution m1 = � 58
115

, m2 =
3

115

On [�1; 1]

p0 = (y0 � m0h20
6

)=h0 = �1=2, q0 = (y1 � m1h20
6

)=h0 = 77=230

On [1; 2]

p1 = (y1 � m1h21
6

)=h1 = 48=115, q1 = (y2 � m2h21
6

)=h1 = 57=115

On [2; 3]

p2 = (y2 � m2h22
6

)=h2 = 57=115, q2 = (y3 � m3h22
6

)=h2 = 3=5

p = [�1=2; 48=115; 57=115], q = [77=230; 57=115; 3=5]

Matlab commands for splines

x=0:1:10;

y=sin(x);

xi=0:0.2:10;

yi = sin(xi);

%piecewise linear interpolation

y1 = interp1(x,y,xi)

plot(x,y,'0',xi,yi) %plot the exact function

hold on;

plot(xi,y1);

%

y2 = interp1(x,y,xi,'spline') % spline interpolation

y3 = interp1(x,y,'cubic') % piecewise cubic interpolation

y4 = spline(x,y,xi) %not-a-knot spline

plot(xi,y4);

plot(xi,y2);

plot(xi,y3);
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1.7.3 Convergence of cubic splines

We will study the uniform convergence of the clamped cubic spline for f 2
C4[a; b].
We �rst write the matrix formulation for the clamped cubic spline as

AM = B

where M = [m0; m1; � � � ; mn]
t, B = [b0; b1; � � � ; bn]t.

Let us recall that

S 00(x0) =
h0m0

3
+
h0m1

6
=

(y1 � y0)

h0
� f 0(x0)

and

S 0n�1(xn) =
hn�1mn�1

6
+
hn�1mn

3
= f 0(xn)� (yn � yn�1)

hn�1
:

We combine (1.1.41), (1.1.42) and (1.1.35) to write the (n + 1) � (n + 1)
matrix A as

ai;j =

8>>>>>><
>>>>>>:

2; if i = j

1; if (i; j) = (1; 2) or (i; j) = (n; n� 1)
hi

hi+hi�1
; if j = i+ 1; 1 < i < n

hi�1

hi+hi�1
; if j = i� 1; 1 � i < n� 1

0; otherwise;

: (1.1.43)

the n+ 1 by n+ 1 matrix A can be written as

A =

2
6666664

2 1 0 0 : : : 0
. . . . . .

...
. . . hi�1

hi+hi�1
2 hi

hi+hi�1
: : : 0

. . . . . .
...

0 0 0 : : : 1 2

3
7777775

(1.1.44)

The right-hand side B is de�ned by

b0 =
6

h0
(
y1 � y0
h0

� f 0(x0)); (1.1.45)
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bi =
6

hi + hi�1

(
yi+1 � yi

hi
� yi � yi�1

hi�1

); i = 1; 2; � � � ; n� 1; (1.1.46)

bn =
6

hn�1
(f 0(xn)� yn � yn�1

hn�1
): (1.1.47)

Lemma 1.7.1. Let A be de�ned in (1.1.43) such that Az = w. Then,

jjzjj1 � jjwjj1
Proof. Let zk be such that jzkj = jjzjj1. The kth equation from Az = w

leads to

ak;k�1zk�1 + 2zk + ak;k+1zk+1 = wk (1.1.48)

Applying the triangle inequality we have

jjwjj1 � jwkj = jak;k�1zk�1 + 2zk + ak;k+1zk+1j (1.1.49)

� 2jzkj � ak;k�1jzk�1j � ak;k+1jzk+1j (1.1.50)

� (2� (ak;k�1 + ak;k+1)jzkj: (1.1.51)

Using the fact that ak;k�1 + ak;k+1 = 1 we complete the proof.

In order to state the following lemma we let F = [f 00(x0); f
00(x1); � � � ; f 00(xn)]t,

R = B�AF = A(M� F) and H = max
i=0;���n�1

hi.

Lemma 1.7.2. If f 2 C4[a; b] and jjf (4)jj1 �M4, then

jjM� Fjj1 � jjRjj1 � 3

4
M4H

2: (1.1.52)
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Proof.

r0 = b0 � 2f 00(x0)� f 00(x1) =
6

h0
(
y1 � y0
h0

� f 0(x0))� 2f 00(x0)� f 00(x1):

(1.1.53)

Using Taylor expansion we write

y1 � y0
h0

=
f(x0 + h0)� f(x0)

h0
(1.1.54)

=
1

h0
(h0f

0(x0) +
h20f

00(x0)

2
+
h30f

000(x0)

6
+
h40f

(4)(�1)

24
) (1.1.55)

f 00(x0 + h0) = f 00(x0) + h0f
000(x0) +

h20f
(4)(�2)

2
(1.1.56)

which leads to

r0 =
h20f

(4)(�1)

4
� h20f

(4)(�2)

2
(1.1.57)

Thus,

jr0j < 3H2M4=4: (1.1.58)

Similarly for

rn = bn � f 00(xn�1)� 2f 00(xn): (1.1.59)

bn =
6

hn�1
(f 0(xn)� yn � yn�1

hn�1
) (1.1.60)

Using Taylor series

f(xn)� f(xn�1)

hn�1

= �f(xn�1)� f(xn)

hn�1

=

�1
hn�1

(�hn�1f
0(xn) +

h2n�1

2
f 00(xn)� h3n�1

6
f 000(xn) +

h4n�1

24
f (4)(�1)): (1.1.61)
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f 00(xn�1) = f 00(xn � hn�1) = f 00(xn)� hn�1

2
f 000(xn) +

h2n�1

2
f (4)(�2) (1.1.62)

jrnj < 3H2M4=4: (1.1.63)

rj = bj � �jf
00(xj�1)� 2f 00(xj)� �jf

00(xj+1); (1.1.64a)

where

�j =
hj�1

hj + hj�1

; �j =
hj

hj + hj�1

(1.1.64b)

and

bj =
6

hj�1 + hj
(
yj+1 � yj

hj
� yj � yj�1

hj�1
): (1.1.64c)

Using Taylor expansion we write

yj+1 � yj
hj

= [f 0(xj) +
hjf

00(xj)

2
+
h2jf

000(xj)

6
+
h3jf

(4)(�1)

24
]; (1.1.64d)

yj � yj�1

hj�1
= [+f 0(xj)� hj�1f

00(xj)

2
+
h2j�1f

000(xj)

6
� h3j�1f

(4)(�2)

24
];

(1.1.64e)

f 00(xj�1) = f 00(xj)� hj�1f
000(xj) + h2j�1f

(4)(�3)=2; (1.1.64f)

f 00(xj+1) = f 00(xj) + hjf
000(xj) + h2jf

(4)(�4)=2: (1.1.64g)

Note that �i 2 (xj�1; xj+1).

Combining (1.1.64) we obtain

rj =
1

hj + hj�1
[
h3jf

(4)(�1)

4
+
h3j�1f

(4)(�2)

4
� h3j�1f

(4)(�3)

2
� h3jf

(4)(�4)

2
]:

(1.1.65)
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This can be bounded as

jrjj � 3

4
M4

h3j + h3j�1

hj + hj�1
(1.1.66)

Without loss of generality we assume hj � hj�1 and write

h3j + h3j�1

hj + hj�1
= h2j

1 + (
hj�1

hj
)3

1 +
hj�1

hj

� h2j � H2: (1.1.67)

Thus,

jrjj < 3

4
M4H

2: (1.1.68)

Finally, using Lemma 1.7.1 we have

jjM� Fjj1 � jjRjj1 � 3

4
M4H

2; (1.1.69)

which completes the proof.

Theorem 1.7.5. Le f(x) 2 C4[a; b], a � x0 < x1 < � � � < xn � b, hj =
xj+1� xj and H = max

i=0;��� ;n�1
hj. Assume there exits K > 0 independent of H

such that

H

hj
� K; j = 0; 1; � � � ; n� 1: (1.1.70)

If S(x) is the clamped cubic spline approximation of f at xi; i = 0; 1; � � � ; xn,
then there exists Ck > 0 independent of H such that

jjf (k) � S(k)jj1;[a;b] � CkM4KH4�k; k = 0; 1; 2; 3; (1.1.71)

where M4 = jjf (4)jj1.
Proof. For k = 3 and x 2 [xj�1�xj ] by adding and subtracting few auxiliary
terms the error can be written

e000(x) = f 000(x)� S 000(x) = f 000(x)� mj �mj�1

hj�1
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= f 000(x)� mj � f 00(xj)

hj�1
+
mj�1 � f 00(xj�1)

hj�1

�f
00(xj)� f 00(x)

hj�1
+
f 00(xj�1)� f 00(x)

hj�1
: (1.1.72)

Using Lemma 1.7.2 we bound the following terms

jmj � f 00(xj)

hj�1
j � 3M4H

2

4hj�1
; jmj�1 � f 00(xj�1)

hj�1
j � 3M4H

2

4hj�1
: (1.1.73)

We use Taylor series to obtain

f 00(xj)� f 00(x) = (xj � x)f 000(x) +
(xj � x)2

2
f (4)(�1)

and

f 00(xj�1)� f 00(x) = (xj�1 � x)f 000(x) +
(xj�1 � x)2

2
f (4)(�2)

we bound the error

je000(x)j � 3M4H
2

4hj�1
+

1

hj�1
j(xj � x)f 000(x) + (xj � x)2f (4)(�1) (1.1.74)

�(xj�1 � x)f 000(x)� (xj�1 � x)2

2
f (4)(�2)� hj�1f

000(x)j (1.1.75)

The f 000 terms cancel out to give

je000(x)j � 3M4H
2

2hj�1
+
M4

2hj
[(xj � x)2 + (xj�1 � x)2]:

Using
jj(xj � x)2 + (xj�1 � x)2jj1;[xj�1;xj ] = h2j�1 � H2;

we write

je000(x)j � 3M4H
2

2hj�1
+
M4H

2

2hj�1
: (1.1.76)

Since H=hj � K we have
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jf 000(x)� S 000(x)j � 2M4KH; 8x: (1.1.77)

For k = 2, we note that for each x 2 (a; b), there is xj such that jxj � xj �
H=2. Now we rewrite e00(x) as

e00(x) = f 00(x)� S 00(x) = f 00(xj)� S 00(xj) +

Z x

xj

(f 000(t)� S 000(t))dt (1.1.78)

Using j R gj < R jgjdx and Lemma 1.7.2 we obtain

je00(x)j � 3M4H
2

4
+ j(x� xj)j max

x2[a;b]
jjf 000 � S 000jj (1.1.79)

� 3M4H
2

4
+M4KH2 � 7KM4H

2

4
; K > 1: (1.1.80)

Thus,

jjf 00(x)� S 00(x)jj1 � 7KM4H
2

4
: (1.1.81)

For k = 1, we consider e(t) = f(t)�S(t), since e(xj) = 0, by Rolle's theorem
there exist �j; j = 0; 1; � � � ; n�1 such that e0(�i) = 0 and e0(x0) = e0(xn) = 0.
For every x 2 [a; b] there exists �i such that jx � �ij � H and e0(x) can be
written as

f 0(x)� S 0(x) =

Z x

�i

(f 00(t)� S 00(t))dt (1.1.82)

Thus,

je0(x)j � jx� �ijjje00jj1 � 7

4
M4KH3: (1.1.83)
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For k = 0, for every x 2 [a; b] there is xj such that jx � xjj � H=2 we also
write

f(x)� S(x) =

Z x

xj

(f 0(t)� S 0(t))dt (1.1.84)

je(x)j � jx� xjjjje0jj1 � 7

8
M4KH4: (1.1.85)

We conclude that S(k) converges uniformly to f (k) for k = 0; 1; 2; 3 and H !
0.

Optimal bounds are proved by Birkho� and De Boor (Burden and Faires) as

jjf � Sjj1 <
5

384
M4H

4: (1.1.86)

We recall the Hermite interpolation error

jf �H3j < 1

24� 16
M4H

4 =
M4H

4

384
; (1.1.87)

Comparing the cubic spline and Hermite interpolation errors, we see that the
ratio between the spline and the Hermite errors is only 5. We also note that
Hermite interpolation requires the derivative at all the interpolation points
while the clamped spline needs the derivatives at the end points only.

Optimality of Splines: The optimality is in the sense that cubic spline
has the smallest curvature. For a curve de�ned by y = f(x) the curvature is
de�ned as

� =
jf 00(x)jj

[1 + (f 0(x))2]3=2
:

Here the curvature is approximated by jf 00(x)j and R b

a
S 00(x)2dx is minimized.

More precisely we state the following theorem.
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Theorem 1.7.6. If f 2 C2[a; b] and S(x) is the natural cubic spline that
interpolates f at n+ 1 points xi; i = 0; 1; � � � ; n; thenZ b

a

S 00(x)2dx �
Z b

a

f 00(x)2dx: (1.1.88)

Proof. We consider the function e(x) = f(x) � S(x) with e(xi) = 0; i =
0; 1; � � � ; n; and write the approximate curvature of f = S + e asZ b

a

f 00(x)2dx =

Z b

a

(S 00(x) + e00(x))2dx =

Z b

a

S 00(x)2dx +

Z b

a

e00(x)2dx+ 2

Z b

a

S 00(x)e00(x)dx: (1.1.89)

We complete the proof by showing that the last term in the right-hand side
of (1.1.89) is 0.

Integrating by parts we obtainZ xi+1

xi

e00(x)S 00(x)dx = S 00(x)e0(x)jx=xi+1
x=xi

�
Z xi+1

xi

S 000(x)e0(x)dx:

Summing over all intervals, using the fact that e 2 C2 and S 00(a) = S 00(b) = 0.
Noting that S 000(x) = Ci is a constant on (xi; xi+1) we obtain

n�1X
i=0

Z xi+1

xi

e00(x)S 00(x)dx = �
n�1X
i=0

Ci

Z xi+1

xi

e0(x)dx

= �
n�1X
i=0

Ci[e(xi+1)� e(xi)] = 0

We used the fact that e(xi) = 0 we establish
R b

a
S 00(x)e00(x)dx = 0.

Combining this with (1.1.89) leads to (1.1.88).

The same result holds for the clamped cubic spline with S 0(a) = f 0(a) and
S 0(b) = f 0(b). We follow the same line of reasoning to prove it.
Thus, among all C2 functions interpolating f at x0; : : : ; xn, the natural cubic
spline has the smallest curvature. This includes the clamped spline and not-
a=knot splines.
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1.7.4 B-splines

We describe a system of B-splines (B stands for basis) from which other
splines can be obtained.

We �rst start with B-splines of degree 0, i.e., piecewise constant splines
de�ned as

B0
i (x) =

(
1 xi � x < xi+1

0 otherwise
; i 2 Z (1.1.90)

Properties of B0
i (x):

1. B0
i (x) � 0; for all x and i

2.
1P

i=�1

B0
i (x) = 1, for all x

3. The support of B0
i (x) is [xi; xi+1)

4. B0
i (x) 2 C�1.

We show property (2) by noting that for arbitrary x there exists m such that
x 2 [xm; xm+1) then write

1X
i=�1

B0
i (x) = B0

m(x) = 1:

Use the recurrence formula to generate the next basis functions

Bk
i (x) =

x� xi
xi+k � xi

Bk�1
i (x) +

xi+k+1 � x

xi+k+1 � xi+1
Bk�1

i+1 (x); for k > 0: (1.1.91)

Properties of B1
i :

1. B1
i (x) are the classical piecewise linear hat functions equal to 1 at xi+1

and zero all other nodes.

2. B1
i (x) 2 C0

3.
1P

i=�1

B1
i (x) = 1 for all x
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4. The support of B1
i (x) is (xi; xi+2)

5. B1
i (x) � 0 for all x and i

In general for arbitrary k one can show that:

1. Bk
i (x) are piecewise polynomials of degree k

2. Bk
i (x) 2 Ck�1

3.
1P

i=�1

Bk
i (x) = 1 for all x

4. The support of Bk
i (x) is (xi; xi+k+1)

5. Bk
i (x) � 0 for all x and i

6. Bk
i (x), �1 < i <1 are linearly independent, i.e., they form a basis.

See Figure 1.7.4 for plots of the �rst four b-splines.

Interpolation using B-splines:

(i) For k = 0, we construct a piecewise constant spline interpolation by
writing

f(x) � P0(x) =
1X

i=�1

ciB
0
i (x) (1.1.92)

Using the properties of B0
i (x) we show that ci = f(xi).

(ii) For k = 1, we construct a piecewise linear spline interpolation by writing

f(x) � P1(x) =
1X

i=�1

ciB
1
i (x) (1.1.93)

Again using B1
i (xj+1) = Æij we show that ci = f(xi+1).

(ii) For k = 3, we construct a piecewise cubic spline interpolation by writing

f(x) � P3(x) =
1X

i=�1

ciB
3
i (x) (1.1.94)
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Figure 1.1: B-splines of degree k = 0; 1; 2; 3, upper left to lower right.
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We recall that B3
i 2 C2 are piecewise cubic polynomials with support in

(xi; xi+3).

In order to interpolate f at xi; i = 0; � � � ; n, we

1. Write S(x) =
n�1P
i=�3

ciB
3
i (x)

(include basis functions whose support intersect [x0; xn]).

2. Set n+ 1 equations

f(xi) = ci�3B
3
i�3(xi) + ci�2B

3
i�2(xi) + ci�1B

3
i�1(xi); i = 0; 1; �; n;

(1.1.95a)

where c�3; c�2; c�1; c0; � � � ; cn are the unknowns.

3. Close the system, for natural Spline, by setting

S 00(x0) = 0; S 00(xn) = 0; (1.1.95b)

4. Solve the system (1.1.95).

Remarks:

1. If xi are uniformly distributed we have
B2

i (xj) = 0; j � i or j � i+ 3,
B2

i (xi+1) = B2
i (xi+2) = 1=2

B3
i (xj) = 0; j � i or j � i+ 4,

B3
i (xi+1) = B3

i (xi+3) = 1=6, B3
i (xi+2) = 2=3

2. The system (1.1.95) has a unique solution

3. B-splines may be used to construct clamped splines

1.8 Interpolation in multiple dimensions

Read section of 6.10 of textbook (Kincaid and Cheney).

1.9 Least-squares Approximations

Read section 6.8 of Textbook (Kincaid and Cheney).
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