Série de TD № 2 de Physique

Analyse dimensionnelle et équations aux dimensions

Exercice 1:

- Ecrire les équations aux dimensions des constantes physiques (K), (ρ) et (ϵ_0) incluses dans ces relations physiques :
- $F = K. m_1.m_2/r^2$ Loi de l'attraction universelle dans laquelle (F) désigne une force ; $(m_1 \text{ et } m_2)$ représentent des masses et (r) indique la distance entre les deux masses m_1 et m_2 .
- $R = \rho$. L/S Loi de la résistance ohmique (R) d'un conducteur électrique de résistivité (ρ); de longueur (L) et de surface (S) de la section droite du conducteur.
- $E=q/4\pi \epsilon_0 r^2$ Loi du champ électrique (E) créé par une charge (q) à un point loin de la charge d'une distance (r).
- Préciser les unités de mesure de ces constantes dans le système international (SI) des unités de mesure.

Exercice 2:

Par définition, la pression (p) exercée sur une surface égale à l'intensité de la force (perpendiculaire) appliquée divisée sur la valeur de la surface (S) sur laquelle cette force est exercée.

- Ecrire l'équation aux dimensions de la pression.
- Soit l'équation suivante : $A = \rho v^2/2 + \rho.g.h + c$ dans laquelle : (ρ) indique une masse volumique d'un liquide ; (v) : une vitesse, (g) : la gravitation terrestre et (h) : une hauteur.
- Les deux termes ($\rho v^2/2$) et (ρ .g.h) ont ils la même équation aux dimensions ?
- Sachant que l'expression (A) est une loi physique, déduire les équations aux dimensions de (c) et (A) et la grandeur physique désignée par (A).

Exercice 3:

Les gaz réels obéissent à la relation de Van der Waals suivante : $(p + a/V_m).(V_m - b) = R.T$

avec : (p) la pression du gaz ; (V_m) le volume molaire du gaz ; (T) la température absolue de ce gaz et (a), (b) et (R) sont des constantes physiques.

- Déterminer les équations aux dimensions des constantes physiques précédentes.
- Quelles sont les unités de mesure de ces constantes physiques ?

Exercice 4:

Dans la résolution d'un exercice donné dans un examen de physique, un étudiant a oublié l'expression correcte qui lui permet de calculer l'énergie cinétique de rotation (E_c) d'un disque qui tourne autour d'un axe de rotation fixe. Cet étudiant a eu une confusion entre les trois versions possibles de la relation de l'énergie cinétique de rotation :

$$E_c = I. v^2/2r$$
(1) $E_c = I^2. v^2/2r$ (2) $E_c = I. v^2/2r^2$ (3)

Avec : (I) le moment d'inertie du disque, unité : Kg. m²; (v) : vitesse linéaire d'un point du disque et (r) : distance entre ce point et l'axe de rotation.

- Si vous êtes à la place de cet étudiant, quelle est la méthode à utiliser pour identifier la relation physique correcte ?
- **Exercice 5 :** Nous supposons qu'une tribu primitive possède les trois grandeurs fondamentales suivantes dans leur système de mesure: la force, le volume et la masse volumique.
- Ecrire les équations aux dimensions de la masse (m) et de l'énergie potentielle de pesanteur (E_{pp}) dans le système supposé.