Département de tronc commun (L1)

Examen de rattrapage de physique

Exercice 1 :(5 points)

On donne la période de vibration (T) d'un pendule simple de longueur (1), par la relation: $\mathrm{T}=2 \pi \sqrt{\frac{l}{g}}$ où g : constante de gravitation terrestre. Sachant que : $1=(30,2 \pm 0,1) \mathrm{cm}$ et $T=1,1$ s mesurée avec une précision de 6%.

1. Ecrire l'équation aux dimensions de la grandeur g.
2. Que représente les valeurs $\pm 0,1 \mathrm{~cm}$ et 6%.
3. Déterminer les incertitudes relative et absolue de la valeur de g (utiliser l'une des deux méthodes).

Exercice 2 :(5 points)

Dans une base orthonormée $(0, \vec{i}, \vec{j}, \vec{k})$, soient les deux vecteurs: $\vec{A}(1,1,0), \vec{B}(1,-1,1)$, et la fonction $f(x, y, z)=3 x^{2} y z+x^{6}+5$

1. Quelle est le module de la projection du vecteur \vec{A} sur la direction du vecteur \vec{B}. Commenter le résultat
2. Calculer la surface du parallélogramme construit sur la base des deux vecteurs \vec{A} et \vec{B}
3. Calculer grad f et Δf au point $M(2,1,0)$

Exercice3: (5 points)

Un tube en U de diamètre $D=2 \mathrm{~cm}$ contient du mercure $\left(d_{\text {mercure }}=13,6\right)$. On verse d'un côté $50 \mathrm{~cm}^{3}$ d'eau et de l'autre côté $100 \mathrm{~cm}^{3}$ de benzène $\left(d_{\text {benzène }}=0,88\right)$ (voir la figure ci-contre). On donne : $\rho_{\text {eau }}=1 \mathrm{~g} / \mathrm{cm}^{3}$.

Si les liquides ne sont pas miscibles (ils ne se mélangent pas) :

1. Calculer la hauteur de la colonne d'eau h_{1} ?
2. Calculer la différence des hauteurs $\Delta \mathrm{h}$?

Exercice 4: (5 points)

Un réservoir de forme cylindrique de section (S) et de diamètre (D) est constitué de deux tubes horizontaux de mêmes diamètres (d) et séparés d'une hauteur h. (voir le schéma).

Les orifices de ces deux tubes sont fermés. On remplit le réservoir par l'eau sur une hauteur initiale $h_{0}=1 \mathrm{~m}$. Nous supposons que l'eau est un liquide parfait et incompressible:

1. Que signifie l'expression: l'eau est un liquide parfait?
2. Sachant que le diamètre $D=10 . d$, montrer que la vitesse verticale d'écoulement de l'eau dans le réservoir cylindrique est négligeable par rapport à sa vitesse dans chacune des deux tubes horizontaux.
3. L'eau s'écoule dans les deux tubes horizontaux, calculer les vitesses de son écoulement initial dans chaque tube sachant que la hauteur qui les sépare est $h_{1}=20 \mathrm{~cm}$.
4. Que faut- il faire pour maintenir ces vitesses constantes sans modifier la géométrie du réservoir et des tubes horizontaux?

Données: gravitation terrestre $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ masse volumique de l'eau $\rho=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$

Corrigé de l'examen de rattrapage de physique (M 2.1.1)

Exercice1 :(5 points)

1) On a $g=(2 \pi)^{2} \frac{l}{T^{2}}(\mathbf{0 . 5 P t s}) \Rightarrow[g]=\frac{[l]}{[T]^{2}}(\mathbf{0} .25 \boldsymbol{P t s})=\frac{L}{T^{2}}=L * \boldsymbol{T}^{-2}(\mathbf{0 . 5 P t s})$
2) Les valeurs $\pm 0,1 \mathrm{~cm}$ et 6% représentent respectivement l'incertitude absolue ($\mathbf{0 . 5} \mathbf{P t s}$) et l'incertitude relative ($\mathbf{0 . 5} \mathbf{P t s}$) de la grandeur g.
3) $\Delta \mathrm{g}$ et $\frac{\Delta \mathrm{g}}{\mathrm{g}}=\left\{\begin{array}{l}\text { Technique de la différenciation logarithmique } \\ \text { Technique de la différentielle totale }\end{array}\right.$

a/ Technique de la différentiation logarithmique :

On a $g=(2 \pi)^{2} \frac{l}{T^{2}}=9,84 \frac{m}{s^{2}}(\mathbf{0 . 2 5 P t s})$

$$
\Rightarrow \ln (g)=2 \ln (2 \pi)+\ln (l)-2 * \ln (T)(0.5 \text { Pts })
$$

On aura $\frac{\mathrm{dg}}{\mathrm{g}}=\frac{\mathrm{dl}}{\mathrm{l}}+2 * \frac{\mathrm{dT}}{\mathrm{T}}(\mathbf{0 . 5} \mathbf{P t s}) \Rightarrow \frac{\Delta \mathrm{g}}{\mathrm{g}}=\left|\frac{\Delta \mathrm{l}}{\mathrm{l}}\right|+2 *\left|\frac{\Delta \mathrm{~T}}{\mathrm{~T}}\right|$ ($\mathbf{0 . 5} \boldsymbol{P} \boldsymbol{t s}$)

$$
\begin{gathered}
\frac{\Delta \mathrm{g}}{\mathrm{~g}}=0,12 \rightarrow 12 \%(\mathbf{0} . \mathbf{5} \mathbf{P t s}) \\
\Delta \mathrm{g}=1.20 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}(\mathbf{0}, 5 \mathbf{P t s}) \Rightarrow g=9.84 \pm 1.20 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{gathered}
$$

b/Technique de la différentielle totale:

$$
\begin{gathered}
d \mathrm{~g}=\frac{\partial \mathrm{g}}{\partial l} * d l+\frac{\partial \mathrm{g}}{\partial T} * d T(\mathbf{0}, \mathbf{5} \mathbf{P t s}) \\
\Rightarrow \Delta \mathrm{g}=\left|\frac{\partial \mathrm{g}}{\partial l}\right| * \Delta l+\left|\frac{\partial \mathrm{g}}{\partial T}\right| * \Delta T(\mathbf{0}, \mathbf{5 P t s})=\left|\frac{(2 \pi)^{2}}{T^{2}}\right| * \Delta \mathrm{l}+\left|-2 *(2 \pi)^{2} * \frac{l}{T^{3}}\right| * \Delta T(\mathbf{0}, \mathbf{5 P t s}) \\
\Delta \mathrm{g}=1.19 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}(\mathbf{0}, \mathbf{5 P t s}) \Rightarrow g=9.84 \pm 1.19 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \Rightarrow \frac{\Delta \mathrm{~g}}{\mathrm{~g}}=0.12 \rightarrow 12 \%(\mathbf{0}, \mathbf{5 P t s})
\end{gathered}
$$

Exercice 2:(5 points)

1) $\vec{A} * \vec{B}=\|\vec{A}\| *\|\vec{B}\| * \cos \alpha=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$

Module de projection $\|\vec{A}\| * \cos \alpha$?

$$
\|\vec{A}\| * \cos \alpha=\frac{A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}}{\|\vec{B}\|}(\mathbf{0 . 2 5} \text { Pts })
$$

A. $\mathrm{N}:\|\vec{A}\| * \boldsymbol{\operatorname { c o s }} \boldsymbol{\alpha}=\mathbf{0}(\mathbf{0} .25 \mathrm{Pts})$

Commentaire: Les deux vecteurs sont perpendiculaires. (0.5 Pts)
2) La surface du parallélogramme est donnée par: $\|\vec{A} \times \vec{B}\|$ produit vectoriel.(0.25 Pts)
3)

$$
\begin{gathered}
\|\vec{A} \times \vec{B}\|=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
1 & 1 & 0 \\
1 & -1 & 1
\end{array}\right|(\mathbf{0 . 2 5} \mathbf{P t s})=1 \vec{\imath}-1 \vec{\jmath}-\mathbf{2} \vec{k}(\mathbf{0 . 2 5 P t s}) \\
\|\vec{A} \times \vec{B}\|=\sqrt{\mathbf{6}}(\mathbf{0 . 2 5} \mathbf{P t s}) \quad \text { Unité de surface }
\end{gathered}
$$

4) Par définition $\overrightarrow{g r a d} f=\frac{\partial f}{\partial x} \vec{\imath}+\frac{\partial f}{\partial x} \vec{\jmath}+\frac{\partial f}{\partial x} \vec{k}(\mathbf{0 . 5}$ Pts)

$$
\overrightarrow{\operatorname{grad}} f=\left(6 x y z+6 x^{5}\right) \vec{\imath}+3 x^{2} z \vec{\jmath}+3 x^{2} y \vec{k}(\mathbf{0 . 5} \text { Pts })
$$

Au point $\mathrm{M}(2,1,0): \overrightarrow{\operatorname{grad} f}=192 \vec{\imath}+12 \vec{k}(\mathbf{0} .5$ Pts $)$

1) Par définition $\Delta f=\frac{\partial f^{2}}{\partial^{2} x}+\frac{\partial f^{2}}{\partial^{2} y}+\frac{\partial f^{2}}{\partial^{2} z}(0.5 \mathrm{Pts})$

$$
\Delta f=6 y z+30 x^{4}(\mathbf{0 . 5} \text { Pts })
$$

Au point $\mathrm{M}(2,1,0): \Delta f=480 .(\mathbf{0 . 5} \mathbf{P t s})$

Exercice3:(5 points)

1) La hauteur h_{1} de là hauteur d'eau:

$$
\begin{gathered}
V_{\text {eau }}=h_{1} * S(0.5 \text { Pts }) \Rightarrow h_{1}=\frac{V_{\text {eau }}}{s}=\frac{V_{\text {eau }}}{\pi\left(\frac{D}{2}\right)^{2}}(0.5 \text { Pts }) \\
h_{1}=15,92 \mathrm{~cm}(\mathbf{0 . 5 ~ P t s})
\end{gathered}
$$

2) La différence des hauteurs Δh :

En appliquant le principe fondamental de l'hydrostatique entre les points (a) et (b):

$$
\begin{gather*}
P_{a}=P_{b}(\mathbf{0 . 5 P t s}) \\
\left\{\begin{array}{c}
P_{a}=P_{0}+\rho_{\text {Benzene }} g h_{1}(\mathbf{0 . 5 ~ P t s}) \\
P_{b}=P_{0}+\rho_{\text {eau }} g h_{1}+\rho_{H g} g \Delta h
\end{array}\right. \tag{2}
\end{gather*}
$$

De (1) et par analogie

$$
\begin{equation*}
h_{2}=\frac{V_{\text {Benzene }}}{\pi\left(\frac{D}{2}\right)^{2}}(\mathbf{0} .5 \mathbf{P t s}) \tag{4}
\end{equation*}
$$

De (2) et (3): $\rho_{\text {Benzene }} h_{2}=\rho_{\text {eau }} h_{1}+\rho_{H g} \Delta h(\mathbf{0 . 5 P t s})$
Alors : $\Delta h=\frac{\rho_{\text {Benzene }} h_{2}-\rho_{\text {eau }} h_{1}}{\rho_{H g}}=\frac{d_{\text {Benzene }} h_{2}-d_{\text {eau }} h_{1}}{d_{H g}}(\mathbf{0 . 5 ~ P t s})$

$$
\Delta h=0,89 \mathrm{~m}(\mathbf{0 . 5} \mathbf{P t s})
$$

Exercice 4: (5 points)

1) «L'eau est un liquide parfait» signifie que nous avons négligé les forces de frottement entre les molécules de l'eau lors de l'écoulement de ce liquide. Dans ce cas, on suppose que les molécules d'eau se déplacent librement les unes par rapport aux autres.($\mathbf{0} 5 \mathrm{P}$ Pts)
2) Démonstration de $v_{1} \lll v_{2}$ et $v_{1} \lll v_{3}$:

En appliquant l'équation de continuité, nous aurons $\mathrm{Q}_{\mathrm{v} 1}=\mathrm{Q}_{\mathrm{v} 2}=\mathrm{Q}_{\mathrm{v} 3}=$ constante (conservation des débits volumiques).

$$
\begin{aligned}
Q_{V_{1}}=Q_{V_{2}} \Leftrightarrow & S_{1} v_{1}(\mathbf{0 . 2 5 P t s})=S_{2} v_{2} \Leftrightarrow \pi\left(\frac{D}{2}\right)^{2} v_{1} \\
= & \pi\left(\frac{d}{2}\right)^{2} v_{2}
\end{aligned}
$$

On en déduit que : $\frac{v_{1}}{v_{2}}=\left(\frac{d}{D}\right)^{2}(\mathbf{0 . 2 5 P t s})$ Donc $\frac{v_{1}}{v_{2}}=10^{-2} \Rightarrow v_{2}=100 * v_{1} \Rightarrow \mathrm{v}_{1}$ est très faible devant $\mathrm{v}_{2}(\mathbf{0 . 2 5} \boldsymbol{P t s})$.
De même que $Q_{V_{1}}=Q_{V_{2}} \Leftrightarrow S_{1} v_{1}=S_{3} v_{3}(\mathbf{0 . 2 5 P t s}) \Leftrightarrow \pi\left(\frac{D}{2}\right)^{2} v_{1}=\pi\left(\frac{d}{2}\right)^{2} v_{3} \Rightarrow v_{3}=$ $100 * v_{1}(\mathbf{0} 25 \mathbf{P t s})$
Nous pouvons dire que « v_{1} 》 est très faible devant v_{2} et $\mathrm{v}_{3}(\mathbf{0 . 2 5} \boldsymbol{P} \boldsymbol{t s})$.
3) Calcul des vitesses (v_{2}) et $\left(v_{3}\right)$:

Appliquant le théorème de Bernoulli sur la même ligne de courant qui relie les points (1) et (2). On obtient :

$$
\begin{gathered}
P_{1}+\frac{1}{2} \rho_{0} v_{1}^{2}+\rho_{0} g h_{0}=P_{2}+\frac{1}{2} \rho_{0} v_{2}^{2}+\rho_{0} g h_{1}(\mathbf{0 . 5} \mathbf{P t s}) \\
v_{2}=\sqrt{2 g\left(h_{0}-h_{1}\right)}(\mathbf{0 . 5} \mathbf{P t s})
\end{gathered}
$$

A . $\mathrm{N}: \mathrm{v}_{2}=3,95 \mathrm{~ms}^{-1} \cdot(\mathbf{0 . 5} \boldsymbol{P t s})$
En appliquant la méthode on pourra déduire v_{3}.

$$
v_{3}=\sqrt{2 g h_{0}}(0.5 \mathrm{Pts})
$$

$$
\mathrm{A} \cdot \mathrm{~N}: \mathrm{v}_{3}=4,42 \mathrm{~ms}^{-1} \cdot(\mathbf{0} \cdot \mathbf{5 P t s})
$$

4) Pour maintenir les valeurs des vitesses d'écoulement $\left(v_{2}\right)$ et $\left(v_{3}\right)$, il faut:

D'après les relations obtenues : $v_{2}=\sqrt{2 g\left(h_{0}-h_{1}\right)}$ et $v_{3}=\sqrt{2 g h_{0}}$ que ($h_{0}=$ constant).

Cela veut dire que la hauteur de l'eau dans le réservoir doit être constante.
Donc, on doit ajouter de l'eau pour qu'on puisse garder la même hauteur initiale $\left(h_{0}\right)$ de l'eau dans ce réservoir.

