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Abstract-A high-resolution, finite difference numerical study is reported on three-dimensional steady- 
state natural convection of air, for the Rayleigh number range 10’ < Ra < 106, in a cubical enclosure, 
which is heated differentially at two vertical side walls. The details of the three-dimensional flow and 
thermal characteristics are described. Extensive use is made of state-of-the-art numerical flow visualizations. 
The existence of the transverse z-component velocity, although small in magnitude, is clearly shown. 
Comparison of the present three-dimensional results with the two-dimensional solutions is conducted. The 

three-dimensional data demonstrate reasonable agreement with the experimental measurements. 

INTRODUCTION 

NATURAL convection flow analysis in enclosures has 
many thermal engineering applications, such as 
cooling of electronic devices, energy storage systems 
and compartment fires. In the present paper, a 
numerical study is reported on steady-state three- 
dimensional natural convection in an air-filled cubical 
enclosure, which is heated differentially at two vertical 
side walls. As shown in Fig. 1, the temperature of the 
right vertical side wall (at x = L,,) is r,,, and that of 

the left side wall (x = 0) is T,, where TH > T,. The 
remaining four walls are thermally insulated. The pre- 
sent geometry and the boundary conditions are math- 
ematically well posed and they provide a basic model 
for relevant thermal engineering systems. 

Two-dimensional numerical analyses for a square 
cavity filled with air have been carried out in the past 
over a wide range of Rayleigh numbers. Results for 

IO3 6 Ra < lo6 were presented in Markatos and Per- 
icleous [l]. The laminar flow regime was assumed up 
to the Rayleigh number of 106, and for higher Ray- 
leigh numbers, the k-E turbulence model was used. 
For lo3 < Ra < lo6 and a Boussinesq fluid of 
Pr = 0.71, a set of benchmark solutions has been sug- 
gested by de Vahl Davis [2]. By resorting to systematic 
grid refinement practise and by concurrent use of the 
Richardson extrapolation to obtain grid-independent 
data, these solutions were claimed to be within an 
accuracy of 1% 

In order to simulate practical situations, three- 
dimensional flow calculations are highly desirable. 

1 Author to whom all correspondence should be addressed. 

Three-dimensional laminar flows have been studied 
for enclosures of the depth aspect ratio, Ai, varying 
from 2 to 4 [3, 41. Gross features observed in the 
enclosures revealed highly three-dimensional struc- 
tures of the flow. The enclosures with A, = 1 and 2 

were considered in Lankhorst and Hoogendoorn [S] ; 
they were computed for three Rayleigh numbers: 
Ra = IO’, 4 x 10’ and 10”. In the last two cases, the 

k--E turbulence model was employed. However, it is 
emphasized that these previous calculations were 

executed by using relatively coarse finite difference 

meshes, of up to 45 x 45 x 20. 
The present investigation is implemented on a much 

finer mesh system with a view toward delineating 
steady-state three-dimensional structures of the fields 
with sufficient resolution. The numerical resolution in 
the present three-dimensional calculations is com- 

parable to the highest one among the preceding two- 
dimensional results [2]. The Rayleigh number ranges 
from lo3 to 106. The Prandtl number of the fluid is 

held fixed at 0.71. Comprehensive details of the flow 
and temperature fields are presented by displaying 
elaborate three-dimensional color graphics and 
illustrative field quantities. By inspecting these results 
of the realistic three-dimensional calculations, the 
validity of the prior two-dimensional results can be 

also assessed. 
The majority of the past experimental works have 

studied high aspect ratio enclosures (e.g. A 2 5), but 
relatively little research endeavor has been devoted to 
the cases of small aspect ratio cavities [6-l 11. In most 
of these experimental investigations, care was taken 
to justify the two-dimensional approximation. Depth 
aspect ratios, A;, greater than 5 were adopted in refs. 
[6-81 in an effort to minimize the end effect of the finite 
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NOMENCLATURE 

A aspect ratio, (enclosure height/width) 7‘,, reference temperature. (7; + r-,, )~2 
.4; depth aspect ratio, (enclosure I,.. 7;, cooled and heated side wall 

depth/width) temperatures 

(‘,a specific heat at constant pressure II,, reference velocity. [y*B*l,,,( rH - r, )] ’ ’ 
F/ Froude number, u$y* L,, Ll. I’. I\’ velocity components in the Y-. )‘- and 

Y gravitational acceleration :-directions 
k thermal conductivity .Y. j‘. 1 Cartesian coordinates. 
I 20 reference length (enclosure height) 

P pressure Greek symbols 

PO reference pressure (hydrostatic pressure) a thermal expansion coefficient 
Pl Prandtl number. c,*p*:k* (3 overheat ratio, (T,, - r, ),‘T’,, 
Rrr Rayleigh number. I’ viscosity 

g*/j*c;T[‘*‘L:,( T,, - T( )//L*k* I’ density. 

R? Reynolds number, l-,*~r,,L,,I’p* 

t time Superscript 
T temperature * dimensional quantities. 

enclosure. By using a Mach -Zehnder interferometer 
technique. Bajorek and Lloyd [6] visualized the tcm- 

perature field in square enclosures, with and without 
partitions, for 1.7 x 10’ < Ru < 3 x IO”. The media 
considered were air and carbon dioxide gas. Laser 
Doppler velocity measurements in the identical 

geometry were conducted in ref. [7] for air at Rayleigh 
numbers of 10’ and 10”. The same measurement 

techniques were utilized by Krane and Jessee [8]. who 
acquired both velocity and temperature distributions 

at Ra = 1.89 x IO’ and for air. 
In actual experiments, it is nearly impossible to 

perfectly insulate the surfaces, especially when air is 
chosen as the medium. Heat transfer from the sup- 
posedly adiabatic walls is unavoidable. The effects of 

conducting horizontal walls have been of considerable 
interest. The behavior of steady periodic oscillations 
in the flow field was the subject of the experimental 
work by Briggs and Jones [9] with a cubical enclosure 
having a linear temperature profile on the horizontal 

FIG. I. The flow geometry in a cube of length L,. The solid 
walls are thermally insulated. except for x* = 0 and L,, as 

noted. 

walls. Bohn et ul. [IO] constructed a water-tilled cube 
with isothermal walls, and the combined effects of the 
side and bottom heating on the heat transfer rate for 
water were studied. 

A recent investigation [I I] was conducted in a 
differentially heated cubical enclosure (the geometry 

of present interest) for a high Prandtl number fluid 

(Pr = 6000). Visualization experiments with liquid 

crystal tracers suspended in mixtures of glycerol and 
water were made for IO’ < Ra < 2 x IO’ : the Ray- 
leigh number range overlaps that of the present analy- 

sis. The streamline patterns were compared with the 

parallel numerical results executed on a finite differ- 
cnce mesh system of 31’. Global features were in 

agreement, although the changes in the structure 

of the streamlines occurred at different Rayleigh 
numbers between the measurements and the 

computations. 
The primary itnpetus of the present work is to por- 

tray the details of the three-dimensional local charac- 
teristics of the fields. Given the fact that any realistic 

laboratory experiment is three-dimensional in nature. 
the two-dimensional numerical simulations to date 
have been unable to fully describe the salient features 
associated with the real systems. As mentioned earlier, 
the existing three-dimensional numerical simulations 

arc still in a rudimentary stage. The existing numerical 
studies have. by and large, suffered from insufficient 
resolution : the prominent characteristics of com- 
plicated three-dimensional situations have not been 
described in sufficient depth. In particular, at high 
Raylcigh numbers, greatly enhanced numerical capa- 
bilities are essential to depict the significant dynamic 

features in thin boundary layers. 
In the present study, a massive utilization of the 

state-of-the-art computational resources has been 
made. The vastly expanded hardware capabilities. 

together with such advanced computational tech- 
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niques, will enable us to implement the three-dimen- ence procedure. Numerical solutions are acquired by 

sional numerical simulations of the flow and heat an iterative method, together with the pressure cor- 

transfer properties in the enclosure. These numerical rection algorithm, SIMPLE [12]. The present tech- 

results will allow proper verification of the exper- nique employs the Strongly Implicit Scheme (SIP) 

imental observations. It is also noteworthy that, by [13] to accelerate convergence characteristics of the 

cross-checking the results, the extent of the applic- solutions. SIP is applied to the planes of constant z 

ability of the earlier two-dimensional results to actual in order to determine simultaneously the dependent 

three-dimensional systems will be illuminated. variables in the x- and y-directions on each plane. 

MATHEMATICAL MODEL 

The flow field is described by the incompressible 
Navier-Stokes equations and the energy equation. 
The Boussinesq approximation is invoked for the fluid 

properties. The non-dimensionalized form of the 
governing equations can be expressed in tensor 

notation as 

- 
2+&uJ= -g+tz+i$* 

I I I 

g (2) 

(3) 

where 6, is the Kronecker delta (6, = 1 if i =j, and 

a,, = 0 otherwise). The viscous dissipation and the 
pressure work terms are neglected in the energy equa- 
tion. 

The physical quantities are non-dimensionalized in 
the following manner : 

(X,Y, 4 = (x*,Y*, z*)l-LI, h u, 4 = cu*, u*, w*)/uo, 

t = t*u,/L,, p = (p*-po)/p*u& T = T*/T, 

where an asterisk (*) denotes dimensional values. The 
reference scales for length, velocity, pressure and tem- 
perature are the enclosure height (L,), the convective 
velocity (uO = [g*b*L,,(TH- Tc)]‘12), the hydro- 
static pressure (p,,) and the film temperature 

(To = (T,+ T,)/2), respectively. In the present non- 
dimensionalization, the Rayleigh, Prandtl and Reyn- 
olds numbers are related as Ra = Re2 Pr. The Prandtl 
number is held fixed at 0.71 for air in the present 
study. 

The boundary conditions are 

u = v = w = 0 on all the walls (4) 

T=(2-6)/2atx=O, T=(2+6)/2atx= 1, 

and8T/an=Oaty=O,landz=O,l (5) 

where n indicates the coordinate normal to the surface. 
The overheat ratio, S, is set equal to 0.1 in the present 
analysis. 

SOLUTION METHOD 

A discretized form of the governing equations (l)- 
(3) is secured by a control-volume based finite differ- 

The convection terms in the momentum equation 

(2) are treated by the QUICK methodology [14, IS]. 
The QUICK scheme involves a third-order accurate 

upwind differencing, which possesses the stability of 
the first-order upwind formula and is free from sub- 

stantial numerical diffusion experienced with the usual 

first-order techniques. In the present numerical pro- 
cedure, a non-uniform grid version is adopted. The 

convection terms in the energy equation (3) are dealt 
with by a hybrid scheme [ 121. 

The entire enclosure constitutes the full com- 

putational domain. The number of grid points for 

computations is 62 x 62 x 62, except for the case of 
Ra = IO’, in which a 32 x 32 x 32 mesh network is 

chosen. Variable grid spacing is introduced to resolve 

steep gradients of the velocity and the temperature 
near the walls. The configuration of non-uniform grid 
systems is determined with the aid of parallel two- 
dimensional computations. The predictions of these 

two-dimensional computations have been satis- 
factorily compared with the benchmark solutions of 

de Vahl Davis [2]. The mesh distribution was altered 
systematically until the differences in the maximum 
velocity and the average Nusselt number at the iso- 
thermal walls fell less than 3 and 1.5%, respectively, 
of the reference data [2] at Ra = 106. Differences of 
less than 1% were achieved for the lower Rayleigh 
numbers. 

The grid independency of the solutions has been con- 

firmed at Ra = lo6 by a test computation in which the 
number of grid points in the x-direction was doubled. 

This was done because the maximum gradients of the 
fields occur in the x-direction, in particular, within the 
boundary layers along the isothermal walls. Changes 
in the maximum velocities are approximately 2% as 
the number of grid points varied. The variance in the 

average Nusselt number at the isothermal walls was 
even smaller, i.e. less than 0.2%. When the Rayleigh 
number is lower, the differences are anticipated to 
decrease further. 

Convergence of computations is declared when the 
following convergence criterion is satisfied : 

ld4-4”-II 
14, Imaximum 

,< 10m4 for all f$ (6) 

where 4 represents any dependent variable, and 
n refers to the value of $J at the nth iteration 
level. 

At each Rayleigh number, the converged solution 
for a lower Rayleigh number is used as the initial 
guess. In actual computations, transient calculations 



arc conducted by an implicit method to generate 
steady-state solutions. 

RESULTS AND DISCUSSION 

Steady states were reached for all the Rayleigh num- 

bers studied. Computations were performed on a 

HITACHI S-820/80 supercomputer system at the 
Institute of Computational Fluid Dynamics (ICFD) 
in Tokyo, Japan. The system has a maximum CPU 

speed of 3 GFLOPS and a maximLIm incore memory 
of 512 MB. A typical cornp~ltat~~~n required CPU time 
of 30 min with 600 iterations and 100 MB of memory. 
The three-dimensional graphics wcrc produced by an 
interactive graphic software [16]. which runs on a 
FUJITSU VP-200 supcrcomputer system at the 
ICFD. 

The global field characteristics arc cxamincd by 

viewing comprehensive three-dimensional contours of 
the temperature and Bow fields. Results for two Ray- 
leigh numbers arc inspected in detail in the following 
two subsections : Ru = 10’ and IO”. The former cast 
exemplifies a flow field in which the relative import- 

ancc of convection is generally less significant. 
However. the latter case is representative of the Row 

structure in which convection is intense such that 
distinct boundary layers are discernible near the 
isothermal solid walls. 

The isotherm surfaces are depicted in Fig. 2. The 
overall isotherm patterns on the constant z-planes arc 

qualitatively similar to those of the two-dimensional 
flows ; however, three-dimensional variations in the z- 
direction are also notable. As previously stated. the 
entire flow field collst~tutes the cotnputational 

domain. The right half domain in 0.5 < ; < i is sym- 
metric to the left half (0 < : < 0.5) with respect to the 
plane of: = 0.5. In addition, the flow on each con- 
stant z-plane is centro-symmetric with respect to the 

center of the cavity, (.\- = 0.5, J’ = 0.5). The thrcc- 
dimensional variations in the z-direction. although 

generally weak in magnitude, are noticed in Fig. 2. 
Figure 3 displays isosurfaces of constant velocities 

for each componeni (u. I’ and II.). As can bc inferred 
from the knowledge of two-dimensional Rows, the I- 
component velocity (u), which constitutes the main 
flow, is concentrated in the regions near the horizontal 
walls (,j, = 0 and 1). Similarly, the _r-component vcl- 
ocity (I.) has large values near the isothermal vertical 
walls (.u = 0 and I). Combining thcsc descriptions. 
the bulk of the enclosure is occupied principally bq a 
single cell. As is clear in Figs. 3(a) and (b). the thrcc- 
dimellsion~l~it~es in the tnain streams (14 atid I’ fields) 
are less conspicuous in much of the interior region. 
Figure 3(c) illustrates the transverse velocity com- 
poncnt (w). Note that 11‘ is, in general, an order of 
magnitude smaller than the dominant main stream 
flows (u and I.). It should be pointed out that 11‘ van- 
ishcs at the end waits (z = 0 and I) and at the mid- 

symmetry plane (z = 0.5). The transverse flows, which 
are noticeable in the enclosure, are II direct mani- 
fcstation of the three-dimensional nature of the flo\\ 

Another physical variable, which is informative in 
depicting the gross flow field char~lctci-istics. is the 
vorticity. Figure 4 illustrates the absolute value of the 

vorticity. which is defined as the magnitude of the 
vorticity vector. This figure gives a direct indication 
of the vclocitv sradicnts. As is clearI> dsmonstratcd in , ” 
Fig. 4. the gradients of How arc substantial in narroa 

regions in the vicinity of the solid b~~undar~ ~valls. 
The plots of’ the isovorticity surfaces also reflect the 
existence of a dominant unicellular structure in much 
of the enclosure. 

The computed results at this high Raylcigh number 
arc characterized by a combination of the distinct 

boundary layers near the side walls (.Y = 0 and 1) and 
the almost stagnant interior core. Thcsc arc clearI> 
cupturcd in the isotherm surfaces shown in Fig. 5. The 
cxistencc of the thin boundary layers on the vertical 
is~)tllcrmal walls, and of the near-linear temper~it~l1.c 
stratification in the interior. is cvidcnt. The thrcc- 
dimensional variations arc noticeahlc very near IhLi 

end walls (z = 0 and I). 
The regions of large velocities (II and 1.) arc nou 

confined into the areas near the walls. as rcvealcd in 
Figs. 6(a) and (b). Notice that. in c~)nlp~~l.is[~n to the 
cast of Rtr = IO’ (XC Fig. 3). the co!~ccntrati~~n of 
dominant flows is more pronounced and the boundary 

layer thickness is smaller at this Rayleigh number. 
The z-variations of the HOW arc appreciable. 
especiafly near the solid walls. In particular. as can he 
noted in Fig. b(c). strong transvcrsc flows (11.) arc 
generated near the corners. The trilnsvcrse vclocit) 

component is again found to be one order of mag- 
nitude lower than the dominant velocity components 

(I( and 1.). 

The contours of the absolute magnitude of the bar- 
ticit!, S~OWI in Fig. 7, clearly demonstrate again the 
combined structure of the distinct b~~Llndary Iagcrs 
and the near-stagnant interior core. Thrce-dimcn- 
sionalities are prominent only near the end walls : this 
is similar to the behavior of the temperature field 
discussed carlicr. It is noteworthy that areas of \\cak 

vortices arc found in the regions whore the isothermal 
vertical side walls (Y = 0 and I) abut the adiabatic 
vertical end walls (: = 0 and I ). Thcsc regions cvtend 
over the cntirc height of the enclosure. The prcscncc 
of thcsc secondary vortices has also been documcntcd 
by the numerical simulations of Lunkhorst and Hoog- 
endoor [S]. who dealt with an enclosure of aspect 

ralii). ;1 of‘:. 

Ilrwt trtit~s~~r. dmwcttvistics 

The non-dimensionalized heat transfer rate al the 
isothermal walls is represented by the Nusselt 
numbers. These quantities are defined as follows: 
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FIG. 2. The temperature field at Ra = lo4 (contour levels: 0.9667 (purple), 0.9833 (blue), 1.0 (green), 1.017 
(yellow), 1.033 (red)). 
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Y 

J 
Z 

FIG. 4. Isosurfaces of the absolute values of the vorticity at Ra = IO4 (contour levels : 0.9 (purple), 1.8 
(blue), 2.7 (green), 3.6 (yellow), 4.5 (red)). 
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FIG. 5. The temperature field at Ra = lo6 (contour levels : 0.9667 (purple), 0.9833 (blue), 1.0 (green), 1.017 
(yellow), 1.033 (red)). 
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Y 

FIG. 7. Isosurfaces of the absolute values of the vorticity at Ra = IOh (contour levels: 3.6 (purple), 7.2 
(blue), 10.8 (green), 14.4 (yellow), 18.0 (red)). 
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1.0 

2.0 b 3.0 

a Y 

FIG. 8. Local Nusselt number distributions at the heated wall (x = 1) : (a) Ra = lo4 ; (b) Ra = 106. 

’ WY,4 
hn,,“(4 = ~ J I ax dy 

0 x= Oor.r= I 

(s 
I 

= NW,,,, (Y, 4 dy (7) 
0 

N~ov,,,, = J’ demean (4 dz. 
0 

Variations of the local Nusselt number at the heated 
wall (x = 0) are illustrated in Fig. 8 for the cases 
of Ra = lo4 and 106. At a high Rayleigh number 
(Ra = 106), the Nu,,,,, distribution demonstrates 
prominent convection activities. The Nusselt number 
changes rapidly in the vertical direction. The z-vari- 

ations of Nu,,,,, are apparent only in the areas near 
the end walls (z = 0 and I). The symmetric patterns 
are obtained for Nu,,,,, at the cooled wall (x = 0, not 

shown). 
Figure 9 represents the profiles of the mean Nusselt 

number along the z-direction at each Rayleigh number 
studied. For the Rayleigh numbers smaller than 105, 
the mean Nusselt number increases as the symmetry 
plane is approached, and its peak value occurs at 
the symmetry plane located at z = 0.5. However, at 
Ra = lo6 two minor peaks appear at z = 0.2 and 0.8. 
The presence of the intense convective flow in the z- 
direction enhances the heat transfer in these regions 
at a high Rayleigh number. 

The overall Nusselt number is tabulated in Table 1, 
and it is also illustrated in Fig. 8. In Table 1, the 
deviations from the two-dimensional predictions are 
also included. For the Rayleigh numbers smaller than 
lo’, the overall three-dimensional Nusselt numbers 
are found to be appreciably smaller than for the two- 
dimensional results. At Ra = 106, the difference is 
considerably small compared with the cases of lower 
Rayleigh numbers. This can be explained by noting 

that Nn,,,,,, is almost uniform along the z-direction 
until it drops off sharply near the end walls for high 
Rayleigh numbers. 

Utilizing the above numerical results, heat transfer 
correlations over lo3 < Ra < IO6 for the three- 
dimensional enclosure are proposed as 

Nu,,,,(z = 0.5) = 0.1378R~~.~~“ (9) 

NM,,,,,,, = 0.1307Ra0,304. (10) 

The above expressions give a maximum error of 
within 1% of the Nusselt number presented in Tables 

1 and 2. 

Characteristic field values in the symmetry plane 
(z = 0.5) 

Comparisons of several important field variables in 
the symmetry plane (z = 0.5) with the two-dimen- 
sional data are attempted in this subsection. These will 

test the validity of the two-dimensional assumption, 
which has been routinely invoked for numerical stud- 
ies. Table 2 reproduces the representative quantities 
of the flow field and the heat transfer rates in the 
symmetry plane. The differences between the two- 
and three-dimensional results are also indicated. The 
discrepancies in the local quantities (the peak vel- 

ocities and the minimum and maximum Nusselt num- 
bers) are as large as lo%, while those in the averaged 

quantity (the mean Nusselt number) are within 2%. 
In general, the changes are small at Ra = 10”. At 
a high Rayleigh number, three-dimensionalities are 

insignificant in the bulk of the flow field, except in the 
regions near the end walls (z = 0 and l), as previously 

remarked. 

Comparison of the numerical predictions with the 
experimental measurements 

As discussed in the previous section, several exper- 
imental studies have been conducted for the differ- 
entially heated cubical enclosure. In this subsection, 
comparison with the laboratory data is undertaken to 
verify the present numerical results. It is to be noted 
that, except for one set of measurements [I I], en- 
closures with large depth aspect ratios (A= > 5) were 
usually employed in the experiments ; this precludes 
precise quantitative comparisons of each set of data. 

Figure 10 represents the temperature distribution 
in the symmetry plane at Ra = 10’. These numerical 
predictions are compared with the experimental data 
at Ra = 1.89 x 10’ acquired by a Mach-Zehnder 
interferometry technique [8]. The temperature profile 
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FIG. 9. Distribution of the mean Nusselt number in the z-direction (---, NIL,,,,,(;) (three-dimensional) : 
‘1 Nu,,,, ,,,/, : l , Nu,,,,,,(-_) (two-dimensional)): (a) Ra = IO’:(b) Ru = IO’: (c) Ra = IO’:(d) Ru = 10” 

Table 1. The overall Nusselt number at the isothermal walls 

RLI IO’ IO” IO‘ IO” 

J~u”L,,.,ll 1.085(-4.52%~) 2.100(-X.29”/0) 4.361(--4.75%) X.770(-1.88’““) 

Note : the figures in parentheses indicate the difference between the three- and two- 
dimensional data. 

Table 2. Representative field values in the symmetry plane (z = 0.5) 

Rd IO’ IO’ IO‘ IO” 

u ,,,,,, O.l314(-3.30%) 0.2013(4.47%) 0.1468(7.X3?‘“) 0.08416(5.60%) 

1’ 0.200 0.1833 0.1453 0.1443 

t.,,,I, 0.1320(~4.39’1/“) 0.2252(-3.95”/0) 0.2471(-5.1X%) 0.2588(-1.31%) 
x 0.8333 0.8833 0.9353 0.9669 

Nu ,~,,, I .420( - 5.85’S’“) 3.652(3.12%) 7.795(2.450/o) 17.67(1.13”/“) 

? 0.08333 0.6232 0.08256 0.03793 

.W,,,> 0.7639(4.45%/a) 0.6110(-2.00%) 0.7867(-9.06%) 1.257(-1.51”/;) 

? I.0 1.0 1.0 I .o 

N%l,,,, l.l05(-2.62%) 2.302( I .22%) 4.646( I .6X%) 9.012(0.854’1/0) 
_-..___ __.__.~. 

Note : the figures in parentheses indicate the difference between the three- and t&o- 
dimensional data. 
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FIG. 10. Comparison of the temperature profiles in the symmetry plane at z = 0.5 (Ra = 105) (solid curves, 
present numerical results; symbols, measurements at Ra = 1.89 x 10' [Sl) : (a) at various heights: (b) at 

x = 0.5. 

at the mid-height (y = 0.5) agrees well with the 
measurements. The discrepancy between the com- 
putations and the measurements increases as the hori- 
zontal walls are approached. This may be attributed to 
the unavoidable heat transfer through the horizontal 
walls in the actual experimental situations. This is 
clearly observed in the measured temperature dis- 
tribution at the enclosure center depicted in Fig. 10(b). 
In the experiments, the perfect insulator condition 
(which is routinely assumed in the numerical study) 
could not be strictly realized [8]. This is perhaps the 
reason for the discrepancy shown in Fig. IO(b). 

Comparison of the velocity fields is shown for two 
Rayleigh numbers. Figure 11 illustrates the profiles of 
the horizontal and vertical velocity components at 
selected locations in the enclosure symmetry plane at 
Ra = IO’. The velocity measurements by laser Dop- 
pler techniques (for Ra = 1.03 x 10' [7] and 1.89 x 10’ 

1.0 

0.9 

0.8 

0.7 
S? 2 0.6 
F 8 0.5 

3 j, 0.4 

0.3 

0.2 

0.1 

0.0 

[SJ) are also plotted in the same figure. The exper- 
imental data of Krane and Jessee [S], at a slightly 
higher Rayleigh number than that considered in the 
present computation, agree reasonably well with the 
numerical predictions. Slight deviations are found in 
the peak values of the vertical velocity (E’) near the 
isothermal walls and in the locations where they occur, 
as well as in the values of the peaks of the horizontal 
velocity. These may reflect the effects of intensified 
convective activities at a higher Rayleigh number. The 
results of Bilski et al. (71 exhibit considerable asym- 
metry in the profiles even though the overheat ratio 
of their experiments is small, 6 < 0.03. When the 
overheat ratio is large (6 > 0.2), the effects of the 
non-uniform fluid properties may have a measurable 
impact on the field characteristics ; thus, the asym- 
metric fields will be formed, as reported in the two- 
dimensional numerical studies for differentially 

0.4 0.6 0.8 1.0 

x-Coordinate 

FIG. 11. Comparison of the velocity profiles in the symmetry plane at z = 0.5 (Ra = 10') (solid curves. 
present numerical results ; 0, measurements at Ra = 1.03 x 10’ [?J ; A, measurements at Ra = 1.89 x 10S 

[S]) : (a) at x = 0.5 ; (b) at y = OS. 



(01 (b) 

heated square enclosures [17-191. ‘No clear cxpln- 
nations were given in ref. [7] as to the cause of the 

asymmetric velocity profiles, which appeared at the 
small overheat ratio used. 

The horizontal velocity (SE) profiles of both exper- 
iments indicate the existence of a region of very low 
velocities near the mid-height of the enclosure. This is 
not quite evident in the numerical predictions. in 
which the velocity changes gradually from a peak 

to another peak almost finearty. The effects of the 
extraneous heat transfer through the horizontat walls 
in the experiments could be the sources of the dis- 

crepancy [6--S]. 
The results at Ra = IOh arc shown in Fig. 12, in 

which the experimental data obtained by Bilski CJ~ al. 
[7] for Ru = 1.13x 10” are included. Again, at this 
Rayfeigh number, the asymmetry of the profiles is 
noticeable in the measurements. However, the degree 
ofthe asymmetry decreased in comparison to the case 

of the lower Rayleigh number discussed previously. 
The experimental results overpredict the peak values 
of the horizontal velocity components compared to 
the ~urner~~~ results, white they show reasonable 
agreement for the vertical vciocity profles. 

CONCLUSIONG 

In the present numerical study+ three-dimensional 

steady flow analyses have been made on natural con- 
vection in a di~ere~tia1~~ heated cubical enclosure. 
The detaifed structures of the thre~~dimensiona~ fields 
were scrutinized by using high-resolution com- 
putational results over the range of Rayleigh numbers 
studied, IO’ < Rn d IOh. 

~xa~ina~io~s of the perspective tb~ee-d~rnensjotla~ 
fields revealed that the variations in the z-direction 
were evident particularly near the end walls t.= = 0 and 
I). As the Rayleigh number increases. the convective 
activities intensify, and significant :-variations tend to 
be confined into narrower areas close to the end walls. 

The w velocity was found to be an order of mag- 

nitude smaller than the dominant velocities (21 and 1”) 
over the cntirc Rayleigh number rungc studied. The 
non-zero values of the w velocity were noticed in the 

end wall regions, specifically near the corners. The size 
of these areas becomes smaller as RU increases. At 
high Rayleigh numbers, the secondary vortices form 
along the vertical edges ; these affect the mean Nusselt 
number distribution. 

The predicted overall Nusseh numbers show con- 
siderable discrepancies from the corresponding two- 

dimensional solutions. The maximum difTerence was 
found to occur near KZ = fOJ, which is near the tran- 
sition point bctwecn the conduction dominant Row 
and the boundary layer-type how structure. 

The present three-dimensional data are found to be 
in fair consistency with the available cxperimentai 
nleasurem~nts. Comparisons with the prior exper- 

imental results for air suggest that the thermal bound- 
ary condition at the horizontal walls has a con- 

siderable influence on the vertical profiles of flow 
variables. 

Note : ~hc interested reader should contact the first 
author for the quantitalive resuhs of these three- 
dimensional computations. 

,I;M~ U&M 10 /~~--lt has come to our attention that 3 
similar work was recently performed by using the finite 
clement method. 

A~Lnoll,/~~~~clenrpnt---The authors are grateful to Dr Elaine S. 
Oran of the Naval Research Laboratory, Washington, [)c‘. 
for her discussions and comments. 

REFERENCES 

f. iv. f. hhrkatos and K. A. Pericleous. Lzminsr and 
turhuicnt natural convection in an enciosed cavily. Iwi. 
J. Hcut Mms Trumfer 27, 155 772 (1984). 

2. G. de V&l Davis, Natural convection of air in a square 
cavity : a bench mark numerical solution, Inf. /. Names. 
Meth. Fkinlv 3,249- 264 (1987). 



A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure 1557 

3 

4 

5 

6 

7 

8 

G. D. Mallinson and G. de Vahl Davis, Three-dimen- 
sional natural convection in a box : a numerical study, 
J. Fluid Mech. 83, l-31 (1977). 
T. S. Lee, G. H. Son and J. S. Lee, Numerical predictions 
of three-dimensional natural convection in a box, Proc. 
1st KSME-JSME Thermal and Fluids Engng Conf, Vol. 
2, pp. 278-283 (1988). 
A. M. Lankhorst and C. J. Hoogendoorn, Three-dimen- 
sional numerical calculations of high Rayleigh number 
natural convective Aows in enclosed cavities, Proc. 1988 
Natn. Heat Transfer Con/Y. ASME HTD-96, Vol. 3, op. 
463470 (1988). ” .’ 

. . 

S. M. Bajorek and J. R. Lloyd, Experimental inves- 
tigation of natural convection in partitioned enclosures, 
J. Heat Transfer 104,527-532 (1982). 
S. M. Bilski, J. R. Lloyd and K. T. Yang, An exper- 
imental investigation of the laminar natural convection 
velocity in square and partitioned enclosures, Proc. 8th 
Int. Heat Transfer Conf., Vol. 4, pp. 151331518 (1986). 
R. J. Krane and J. Jessee, Some detailed field measure- 
ments for a natural convection flow in a vertical square 
enclosure, Proc. 1st ASME-JSME Thermal Engng Joint 
Conf., Vol. I, pp. 3233329 (1983). 
D. G. Briggs and D. N. Jones, Two-dimensional periodic 
natural convection in a rectangular enclosure of aspect 
ratio one, J. Heat Tran@r 107, 85&854 (1985). 
M. S. Bohn, A. T. Kirkpatrick and D. A. Olson, Exper- 
imental study of three-dimensional natural convection 
high-Rayleigh number. J. Heat Transfer 106, 339-345 
(1984). 
W. J. Hiller, S. Koch, T. A. Kowalewski, G. de Vdhl 

12. 

13. 

14. 

IS. 

16. 

17. 

18. 

19. 

ETUDE NUMERIQUE DE LA CONVECTION TRIDIMENSIONNELLE DANS UNE 

Davis and M. Behnia, Experimental and numerical 
investigations of natural convection in a cube with two 
heated side walls, Proc. IUTAM Symp.. pp. 717-726 
(1990). 
S. V. Patankar, Numerical Heat Transfer and Fluid Flow, 
Chap. 6. Hemisphere, Washington, DC (1980). 
H. L. Stone, Iterative solution of implicit approxi- 
mations of multi-dimensional partial differential equa- 
tions, J. Numer. Analysis 5, 530--558 (1968). 
B. P. Leonard, A stable and accurate convection model- 
ing procedure based on quadratic upstream inter- 
polation. Comput. Meth. ilppl. Mech. Engn,q 19, 59-98 
(1979). 
C. J. Freitas, R. L. Street, A. N. Findikakis and J. R. 
Koseff, Numerical simulation of three-dimensional flow 
in a cavity, Int. J. Numer. Meth. F/&s&561-575 (1985). 
S. Shirayama and K. Kuwahara, Patterns of three- 
dimensional boundary layer separation, 25th Aerospace 
Sciences Meeting, AIAA Paper 87-0461 (1987). 
E. Leonardi and J. A. Reizes, Convective flows in closed 
cavities with variable fluid properties. In Numerical 
Methods in Heat Transfer (Edited by R. W. Lewis, K. 
Morgan and 0. C. Zienkiewicz), Chap. 18. Wiley, New 
York (1981). 
Z. Y. Zhong, K. T. Yang and J. R. Lloyd, Variable 
property effects in laminar natural convection in a square 
enclosure, J. Heat Transfir 107, 133-138 (1985). 
J. M. Hyun and J. W. Lee, Transient natural convection 
in a square cavity of a fluid with temperature-dependent 
viscosity, Int. J. Heat Fluid Flow 9, 278-285 (1988). 

CAVITE CUBIQUE CHAUFFEE DIFFERENTIELLEMENT 

R&sum-n rapporte une etude numerique, par differences finies a haute resolution, de la convection 
naturelle permanente tridimensionnelle de l’air pour un nombre de Rayleigh IO3 < Ra < 106, dans une 
cavite cubique dont deux parois verticales sont chauffees differentiellement. On d&t les details de 
l’ecoulement tridimensionnel et des caracteristiques thermiques. On utilise les visualisations graphiques de 
l’ecoulement. L’existence de la composante de vitesse selon z, est clairement visible bien que de faible 
valeur. On fait la comparaison des presents resultats tridimensionnels avec les solutions bidimensionnelles. 

Les premiers montrent un accord raisonnable avec les mesures experimentales. 

NUMERISCHE UNTERSUCHUNG DER DREIDIMENSIONALEN KONVEKTION IN 
EINEM UNGLEICHMASSIG BEHEIZTEN WURFELFORMIGEN HOHLRAUM 

Zusammenfassung-Die stationare, dreidimensionale nattirliche Konvektion von Luft in einem wiirfel- 
fiirmigen Hohlraum, in dem zwei Seitenwinde unterschiedlich beheizt werden, wird mit Hilfe eines 
hochaufliisenden Differenzenverfahrens im Bereich IO3 < Ra Q IO6 numerisch untersucht. Die drei- 
dimensionale Striimung und die thermischen Vorgange werden eingehend beschrieben. Dazu werden 
moderne Verfahren der Sichtbarmachung von berechneten Striimungen eingesetzt. Das Vorhandensein 
einer Geschwindigkeitskomponente in z-Richtung wird nachgewiesen, obwohl diese sehr klein ist. Die 
Ergebnisse dieser dreidimensionalen Berechnungen werden mit denen zweidimensionaler Verfahren ver- 

glichen. Die dreidimensionalen Berechnungen stimmen gut mit Versuchswerten iiberein. 

‘.iHCJIEHHOE RCCJIEAOBAHME TPEXMEPHOn KOHBEKUHH B HEOAHOPO~HO 
HAI-PEBAEMOO KYBHsECKOR I-IOJIOCTH 

Anuo~a~lTp~soanTcn pe3yJrbraTbr ~~Cnexirioro HccneAonamin xosieqrro-pa3riocrriblM M~TOAOM 
B~ICOK~T~ pa3pememin TpexMepHoii cTamiotiapHok ec~ecr=miofi K~HB~KWH eo3Ayxa npH 3HaveHHKx 

Y&iura Paen, si3MetimoIUHxCx B mrTepnane I@ Q Ra Q 106, B ~y6~recnoZt nonocr~ c AB~MX pasnsis~o 
H~Ba‘ZMldMH ~THKanbHbIME CTeHElME. OIlHCbI8aroTCS A.ZTUIH TpeXMepHOrO TeeSeHHR H TeMOBbIe 

XapaKTepHcTHKa. mSiwK0 llpHMeHIM)TCR cospehfemibte qticnetiribre MeToAbI nEi3yami3aqHr TeYeHHII. 
%‘TKO IIOKa3bIBaeTCK IiaAli'fHe lIOIlePeqHO% KOMlIOHeHTbl CKOpOCml HR%tOTpK Ha W MU~ylo BtSlEiWiHy. 

II~oBoAETCK cpanHemenony9eHxmxTpexrdepHblxpe3ynbTaToscAByMepHbIMR pememinrmi. TpexMep- 
HbIe~3yJIbTaTbIAeMOHcTpkij+'IoT yAOBJIeTBOpHTeJIbHOeCOUIaCHeC3KCIlepHMeHTaJIbHbIhlHAaHHbIMli. 


