Cours de Structure machine (1ère année MI) - Série de TD N°2

Exo1 - Déduire, en utilisant le principe de dualité, une formule à partir de la suivante : $\overline{(x+y)(x+\bar{x})} = x+y$

Exo2 - Démontrer, en utilisant la table de vérité, le théorème de Morgan appliqué à une fonction à 3 variables

Exo3 - Trouver l'équation de la fonction définie par la table de vérité suivante : $F(x,y,z) = \sum_{i=0}^{7} v_i m_i$ avec m_i : les mintermes et v_i les valeurs de vérité de F correspondant à chaque terme m_i .

m_i	X	у	Z	F(x,y,z)
m_0	0	0	0	1
m_1	0	0	1	0
m_2	0	1	0	1
m_3	0	1	1	1
m_4	1	0	0	1
m_5	1	0	1	0
m_6	1	1	0	1
m_7	1	1	1	0

Exo4 - Donner la table de vérité des fonctions suivantes : $F_1(x, y, z) = \bar{x} \cdot \bar{y} \cdot z + x \cdot y$ et $F_2(x, y) = \bar{y} + x \cdot y$

Exo5 - Dire si les fonctions suivantes sont dans leur forme canonique :

$$F_1(x, y) = x \cdot y + x \cdot y$$

$$F_2(x, y, z) = y + x$$

Exo6 - Montrer que l'opérateur NAND constitue un système logique complet minimisé.

Exo7 - Déterminer le complément de l'expression : $A + \overline{ABC}$

Exo8 - Simplifier au maximum les expressions logiques suivantes :

(a): $\bar{x}y + xy + x\bar{y}$ (b): $(x + y)(x + \bar{y})(\bar{x}.y)$ (c): x(x + y)(d): $x + xy\bar{z} + (x + xyz)t$

Exo9 - Soit la fonction $f(x, y, z) = xyz + \bar{x}y$

Exprimer f(x,y,z) en ne se servant que de l'opérateur NAND.

Indication : Utilisez le symbole ↑ pour représenter l'opérateur NAND.

Exemple : $(\overline{x+x}) = (x \uparrow y)$.

Exo10 - Soit la fonction suivante : $f(x, y, z) = \overline{x \cdot y \cdot z} + yz$

• A – Exprimer cette fonction sous une forme canonique disjonctive

• B – Etablir sa table de vérité

• C – Simplifier la fonction F par la méthode de Karnaugh

Exo12 – Compléter la table de Karnaugh suivante et donner la fonction simplifiée qui en découle

Exo11 - Soit la fonction $f(x, y, z) = \overline{xz + \overline{x}y}$

- A Donner la forme canonique disjonctive de f(x,y,z)
- B Déduire la forme canonique conjonctive de f(x,y,z)

	X										
		(0		1						
yz											
t u											
		1					1				
			1				1				
			1								
	1							1			