Cours de Structure machine (1ère année MI) - Série de TD N°2 (2013-2014)

Séance de TD n°5 (Semaine du dimanche 09 au jeudi 13 mars 2014)

Exo-1 : Déduire, en utilisant le principe de dualité, une formule à partir de l'égalité a suivante :

$$(x + \bar{x}.y) + z = x + y + z$$

Réponse : $(x + \bar{x}.y) + z = x + y + z$ peut être écrite comme ceci $(x + (\bar{x}.y)) + z = x + y + z$ sa formule duale est : $(x.(\bar{x}+y)).z = x.y.z$

Exo-2: Opérateur NAND

A - Démontrer que l'opérateur NAND n'est pas associatif. Indication : Utilisez le symbole ↑ pour représenter l'opérateur NAND.

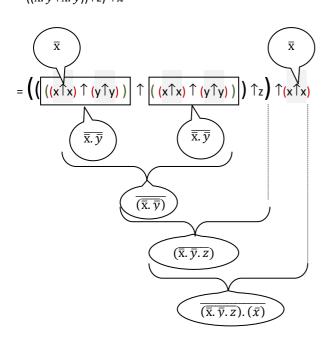
Réponse : on se propose de montrer que $(x \uparrow y) \uparrow z$ est différent de $x \uparrow (y \uparrow z)$

Il suffit de trouver un contre exemple. Pour (x,y,z)=(0,0,1)

la valeur de $(x\uparrow y)\uparrow z = \overline{x.\overline{y}.z} = \overline{0.0.1} = \overline{0.1} = \overline{1.1} = \overline{1} = 0$ la valeur de $x\uparrow (y\uparrow z) = \overline{x.(\overline{y.z})} = \overline{0.(\overline{0.1})} = \overline{0} = 1$ On voit bien qu'il existe au moins une situation où $(x\uparrow y)\uparrow z \neq x\uparrow (y\uparrow z)$

B - soit la fonction $F(x, y, z) = \bar{x}.\bar{y}.z + x$, exprimez cette fonction uniquement en utilisant l'opérateur NAND.

$$\begin{array}{ll} \textbf{Réponse}: \ F(x,y,z) = \overline{x}.\,\overline{y}.\,z + x \\ = \overline{(\overline{x}.\,\overline{y}.\,z + x)} &= \overline{(\overline{x}.\,\overline{y}.\,z)}.\,(\overline{x}) \\ = \overline{(\overline{x}.\,\overline{y}.\,z)}.\,(\overline{x}) &= (\overline{x}.\,\overline{y}.\,z) \uparrow \overline{x} \\ = ((\overline{x}.\,\overline{y}) \uparrow z) \uparrow \overline{x} &= (\overline{x}.\,\overline{y} \uparrow z) \uparrow \overline{x} \end{array}$$



Attention, cette solution est la plus compliquée. En réalité, en appliquant le théorème d'inhibition, on aurait pu simplifier l'équation de F comme suit :

$$F(x, y, z) = \overline{x} \cdot \overline{y} \cdot z + x = x + \overline{y} \cdot z$$

Donc il s'agit de trouver une formule à base de NAND équivalent à: $x + \bar{y}$. z

$$F(x, y, z) = \overline{y}. z + x$$

$$= \frac{\overline{(\overline{y}. z + x)}}{(\overline{y}. \overline{z}). (\overline{x})}$$
ce qui donne : $((y \uparrow y)) \uparrow z) \uparrow (x \uparrow x)$

Exo-3 Trouver l'équation de la fonction définie par la table de vérité suivante : Indication : Rappelez-vous la formule suivante : $F(x,y,z)=\sum_{i=0}^{7}v_im_i \quad \text{avec } m_i : \text{les mintermes et } v_i \text{ les valeurs de}$

vérité de F correspondant à

chaque terme m_i .

	х	У	Z	$F_2(x,y,z)$
m_0	0	0	0	0
m_1	0	0	1	0
m ₂	0	1	0	0
m_3	0	1	1	1
m ₄	1	0	0	0
m_5	1	0	1	1
m_6	1	1	0	1
m ₇	1	1	1	1
	m ₁ m ₂ m ₃ m ₄ m ₅ m ₆	$ \begin{array}{c c} m_0 & 0 \\ m_1 & 0 \\ m_2 & 0 \\ m_3 & 0 \\ m_4 & 1 \\ m_5 & 1 \\ m_6 & 1 \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

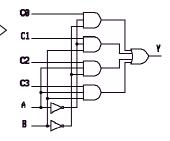
Réponse : $F(x,y,z) = m_3 + m_5 + m_6 + m_7$

Je rappel les expressions des minternes:

Mintermes	Termes associés
m_0	$\bar{x}.\bar{y}.\bar{z}$
m_1	$\bar{x}.\bar{y}.z$
m_2	$\bar{x}.y.\bar{z}$
m_3	$\bar{x}.y.z$
m_4	$x. \bar{y}. \bar{z}$
m_5	$x.\bar{y}.z$
m_6	$x.y.\bar{z}$
m ₇	x. y. z

ce qui fait : $F(x,y,z) = \bar{x} \cdot y \cdot z + x \cdot \bar{y} \cdot z + x \cdot y \cdot \bar{z} + x \cdot y \cdot z$

Exo-4 Donnez l'équation de sortie du circuit suivant :



Réponse : $Y = A.B.C3 + A.\overline{B}.C2 + \overline{A}.B.C1 + \overline{A}.\overline{B}.C0$

Exo-5 Ecrivez sous sa forme canonique disjonctive la fonction suivante : $F_1(x, y, z) = \bar{x}. \bar{y}. z + x + z$ puis donnez sa table de vérité.

Réponse :
$$F_1(x, y, z) = \bar{x} \cdot \bar{y} \cdot z + x + z$$

$$= \bar{x}.\bar{y}.z + x(y + \bar{y}) + (x + \bar{x})z$$

$$= \bar{x}.\bar{y}.z + xy + x\bar{y} + xz + \bar{x}z$$

$$= \bar{x}.\bar{y}.z + xy(z+\bar{z}) + x\bar{y}(z+\bar{z}) + xz(y+\bar{y}) + \bar{x}z(y+\bar{y})$$

$$= \bar{x}.\bar{y}.z + xyz + xy\bar{z} + x\bar{y}z + x\bar{y}\bar{z} + xyz + x\bar{y}z + \bar{x}yz + \bar{x}\bar{y}z$$

$$= \bar{x}.\bar{y}.z + \bar{x}yz + x\bar{y}\bar{z} + x\bar{y}z + xy\bar{z} + xyz$$

$$F_1(x, y, z) = m_1 + m_3 + m_4 + m_5 + m_6 + m_7$$

Séance de TD n°6 (Dimanche 16 au jeudi 20 mars)

Exo-6: On définie un opérateur OU exclusif (ou XOR) par la formule suivante: $a \oplus b = \bar{a}.b + a.\bar{b}$

A - Trouvez : à quoi correspondent : $0 \oplus x$, $x \oplus 0$ et $x \oplus x$ Que déduisez-vous par rapport à la commutativité et l'idempotence?

Réponse :

$$0 \oplus x = \overline{0}. x + 0. \overline{x} = 1. x = x$$

$$x \oplus 0 = \overline{x}. 0 + x. \overline{0} = x. 1 = x$$

$$x \oplus x = \overline{x}. x + x. \overline{x} = 0$$

Par rapport à la commutativité on ne peut rien déduire. En effet, on trouve que $0 \oplus x = x \oplus 0$ mais cela ne suffit pas pour dire que l'opérateur \oplus est commutatif.

Cela dit si on se réfère à la définition de l'opérateur \oplus . On pourrait facilement démontrer qu'il est commutatif:

$$a \oplus b = \bar{a}.b + a.\bar{b} = \bar{b}.a + b.\bar{a} = b \oplus a$$

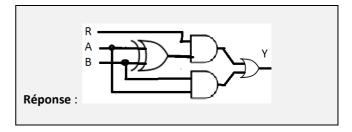
Par contre le fait de trouver que $x \oplus x = 0$ montre clairement que l'opérateur \oplus n'est pas idempotent!

Je rappelle que l'idempotence est la propriété qui fait qu'en composant une variable avec elle même donne la variable. (x *opérateur* x) = x. Par exemple "x.x=x".

B - Voici le symbole représentant le XOR:

$$x$$
 y
 $x \oplus y$

Donnez le schéma logique (logigramme) de l'équation suivante: $Y = (A \oplus B).R + A.B$



Exo-7: Trois interrupteurs I_1 , I_2 et I_3 commandent l'allumage de 2 lampes L_1 et L_2 suivant les conditions suivantes :

- Dès qu'un ou plusieurs interrupteurs sont activés, la lampe L₁ doit s'allumer.
- La lampe L₂ ne doit s'allumer que si au moins 2 interrupteurs sont activés.

A - Donnez la table de vérité des fonctions régissant l'allumage des lampes L_1 et L_2 .

Réponse :

11	12	13	L1	L2
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1
	0 0 0 0 1 1	0 0 0 0 0 1 0 1 1 0 1 0	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 0 1	0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 1

B- Déduisez les équations de L1 et L2 (sous forme canonique disjonctive)

Réponse :

$$\begin{split} \mathsf{L}_1 &= \mathsf{m}_1 + \mathsf{m}_2 + \mathsf{m}_3 + \mathsf{m}_4 + \mathsf{m}_5 + \mathsf{m}_6 + \mathsf{m}_7 \\ L_1 &= \ \overline{I_1}. \overline{I_2}. I_3 + \overline{I_1}. I_2. \overline{I_3} + \overline{I_1}. I_2. I_3 + I_1. \overline{I_2}. \overline{I_3} + I_1. \overline{I_2}. I_3 \\ &+ I_1. I_2. \overline{I_3} + I_1. I_2. I_3 \end{split}$$

$$L_2 = m_3 + m_5 + m_6 + m_7$$

$$L_2 = \overline{I_1}. I_2. I_3 + I_1. \overline{I_2}. I_3 + I_1. I_2. \overline{I_3} + I_1. I_2. I_3$$

C - Simplifiez ces équations

Réponse : Afin de ne pas surcharger l'écriture, je vais poser $x=I_1$, $y=I_2$ et $z=I_3$

$$\begin{split} L_1 &= \ \bar{x}.\,\bar{y}.\,z + \bar{x}.\,y.\,\bar{z} + \bar{x}.\,y.\,z + x.\,\bar{y}.\,\bar{z} + x.\,\bar{y}.\,z + x.\,y.\,\bar{z} \\ &+ x.\,y.\,z \\ L_1 &= \ \bar{x}.\,\bar{y}.\,z + \bar{x}.\,y.\,(z + \bar{z}) + x.\,\bar{y}.\,(z + \bar{z}) + x.\,y.\,(z + \bar{z}) \\ L_1 &= \ \bar{x}.\,\bar{y}.\,z + \bar{x}.\,y + x.\,\bar{y} + x.\,y \end{split}$$

$$L_1 = \bar{x}.\bar{y}.z + \bar{x}.y + x.(\bar{y} + y)$$

$$L_1 = \bar{x}.\bar{y}.z + \bar{x}.y + x = \bar{x}.\bar{y}.z + (x + \bar{x}.y)$$

$$= \bar{x}.\bar{y}.z + x + y = (x + \bar{x}.\bar{y}.z) + y = (x + \bar{y}.z) + y$$

$$= x + (y + \bar{y}z) = x + y + z = I_1.I_2.I_3$$

$$L_{2} = \bar{I}_{1}.I_{2}.I_{3} + I_{1}.\bar{I}_{2}.I_{3} + I_{1}.I_{2}.\bar{I}_{3} + I_{1}.I_{2}.I_{3}$$

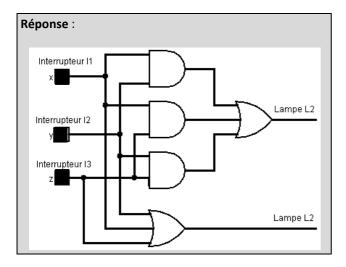
$$= \bar{x}yz + x\bar{y}z + xy\bar{z} + xyz$$

$$= \bar{x}yz + x\bar{y}z + xy(\bar{z} + z) = \bar{x}yz + x\bar{y}z + xy =$$

$$= \bar{x}yz + x(\bar{y}z + y) = \bar{x}yz + x(y + \bar{y}z) = \bar{x}yz + x(y + z)$$

$$= \bar{x}yz + xy + xz = (xz + \bar{x}yz) + xy = xy + xz + yz$$

D - Dessinez le logigramme correspondant à L₁ et L₂.



Exo.8 Donnez des expressions plus simples des fonctions suivantes:

$$F_{1} = (x. \bar{y} + z). (x + \bar{y}). z$$

$$F_{2} = (a + b + c). (\bar{a} + b + c) + a. b + b. c$$

$$F_{3} = \bar{a}. b. c + a. c + (a + b). \bar{c}$$

Réponse :

$$F_{1} = (x.\bar{y} + z).(x + \bar{y}).z =$$

$$= (x.\bar{y}z + z.z).(x + \bar{y}) = (x.\bar{y}z + z).(x + \bar{y})$$

$$= (x\bar{y}z + xz + \bar{y}z) = xz(1 + \bar{y}) + \bar{y}z = xz + \bar{y}z$$

$$= (x + \bar{y})z$$

$$F_{2} = (a + b + c).(\bar{a} + b + c) + a.b + b.c$$

$$= (a\bar{a} + ab + ac + b\bar{a} + bb + bc + c\bar{a} + cb + cc) + ab + bc$$

$$= ab + ac + \bar{a}b + b + \bar{a}c + c + bc$$

$$= ab + \bar{a}b + ac + \bar{a}c + b + c(1 + b)$$

$$= (a + \bar{a})b + (a + \bar{a})c + b + c = b + c + b + c$$

$$= b + c$$

$$F_{3} = \bar{a}.b.c + a.c + (a + b).\bar{c}$$

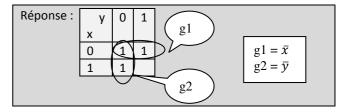
$$= (a + \bar{a}.b)c + a\bar{c} + b\bar{c} = (a + b)c + a\bar{c} + b\bar{c}$$

 $=ac+bc+a\bar{c}+b\bar{c}=a(c+\bar{c})+b(c+\bar{c})=a+b$

Séance de TD n°7 (dimanche 06 au jeudi 10 avril)

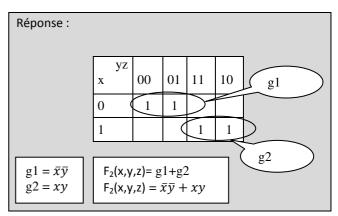
Exo9 Simplifier par la méthode de Karnaugh la fonction F₁ décrite par la table de vérité suivante

Х	У	F ₁ (x,y)
0	0	1
0	1	1
1	0	1
1	1	0



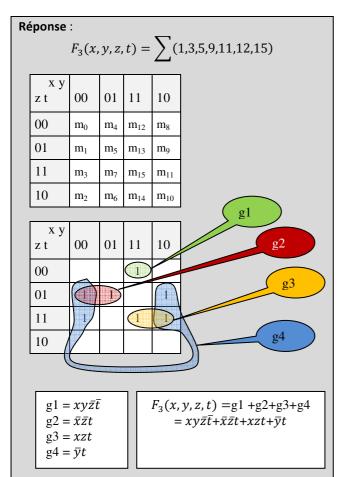
Exo10 Simplifier par la méthode de

_	Х	У	Z	$F_2(x,y,z)$
~	0	0	0	1
	0	0	1	1
	0	1	0	0
	0	1	1	0
	1	0	0	0
	1	0	1	0
	1	1	0	1
	1	1	1	1



Exo11 Simplifier par la méthode de Karnaugh les fonctions F_3 et F_4 décrites par les formules suivantes :

$$F_3(x,y,z,t) = \sum (1,3,5,9,11,12,15)$$



$$F_4(x, y, z, t, u) = \sum (1,3,5,9,12,15,20,21,23,30,31)$$

