Département :MI
1 ^{ème} année
Durée: 2h00
04 Juin 2012

EMD de structure machine

Nom & Prénom :	

Page	1/4
1 450	1, 1

Indication importante: Les calculatrices sont interdites

//
20/

CHAPITRE I – LES SYSTÈMES DE NUMÉRATION (sur 7 points)

Q1 -	Conversion (1 point): $(100,24)_8 = (?)_2$ et $(ABCD,EF)_{16} = (?)_8$	
	$(100,24)_8 = ($)2
	(ABCD,EF) ₁₆ =(.)8

Q2 - <u>Conversion</u> (**1 point**) : $(100,24)_5 = (?)_6$

Étapes	Donnez ici uniquement le résultat (la partie décimale sur 2 chiffres)
$(100)_5 = (?)_6$	
$(0,24)_5 = (?)_6$	
$(100,24)_5 = (?)_6$	

Q3 – <u>Conversion</u> (0,5 point) : $(165)_{32} = ($?)2
--	-----

$(165)_{32} =$	()
----------------	---	---

Q4 – <u>Représentation des nombres signés</u> (**1,5 points**) : En supposant que le nombre « 10110011 » est en complément à 1 sur 8 bits quelle est sa valeur :

En décimal :	
En complément à 2 :	
En S+VA:	

Q5 – <u>Soustraction binaire</u> (**0,5 point**) :

En binaire pur (sur 5 bits), donnez le résultat de la soustraction suivante $(4)_{10}$ – $(3)_{10}$

En décimal	En binaire pur
4	
-3	
= 1	

$(25)_{10} = ? ($) ₂ \Rightarrow ($(-25)_{10} = ? ($) _{C1}
(8) ₁₀ = ? () ₂ ⇒ ($(-8)_{10} = ? ($)c1
Faites le calcul dans le cadra	nt ci-dessous :			
Q7 – <u>Division binaire</u> (0,5 poin	t):			
En binaire pur (sur 5 bits), faire	la division :			
$(25)_{10} \div (3)_{10}$	Ta division .			
(23/10 . (3/10				
Indication : contentez-vous d chiffres après la virgule pour				
Q8 – <u>Multiplication binaire</u> (0,5	point) :		1	0 1 1 1
			x 0	0 1 1 1 0 0 1 1
Q8 – <u>Multiplication binaire</u> (0,5 En binaire pur, faire la multiplic suivante :				
En binaire pur, faire la multiplic				
En binaire pur, faire la multiplic				
En binaire pur, faire la multiplic				

Nom & Prénom :	Groupe:	Page 3/4

CHAPITRE III - CIRCUITS LOGIQUES COMBINATOIRES (sur 4 points)

Q9 – <u>Analyse de circuits</u> (1 point) : Donnez l'équation de la fonction « Y »	C0					
représentée par le logigramme suivant :	C1					
$X = f(C0,C1, C2, A, B) = \dots$	C2 C3					
	A B					
Q10 – <u>Détecteur de débordement</u> (1 point) Faite la synthèse d'un circuit per capacité lors d'un calcul d'addition de deux nombres ayant pour signes S1 et S signe SR .	mettant de détecter le débordement de S2 et donnant un résultat ayant pour					
Q11 – <u>Utilisation d'un décodeur</u> (2 points) Réaliser la fonction suivante en vo	ous servant d'un décodeur:					
$A = f_1(x, y, z, t) = m_1 + m_2 + m_4 + m_7$ et $B = f_2(x, y, z, t) = m_1 + m_2 + m_4 + m_7$	n ₁ +m ₃ +m ₄ +m ₇ +m ₁₃ +m ₁₄					

CHAPITRE II - ALGÈBRE DE BOOLE ET CIRCUITS LOGIQUES (sur 9 points)

Q12 – <u>Théorèmes</u> (4 points) : Démontrez les théorèmes suivants :
Théorème 1 : $x + x = x$
Théorème 2 : $x + (\overline{x}y) = x + y$
Théorème 3 : $x + 1 = 1$
Théorème 4 : $\overline{\overline{x}} = x$

Nom & Prénom :		Groupe:		Page 5/6		
			, ,	~ T	7	
13 – <u>Table de vérité et forme canonique</u> (2 points) : Trouv – Trouver la forme canonique disjonctive de la fonction <i>F(a</i>)	,b,c):		b,c) =	a.b -	+ a.b	+ <i>c</i>
a,b,c) =						
			a	b	С	F(a,b,c)
- Donnez la table de vérité de la fonction $F(a,b,c)$:						
Donnez la table de vente de la fonction $F(a,b,c)$:						
14 – <u>Opérateur Non OU</u> (1 points) : Vérifiez si l'opérateur	Non OU (NOR : Not OR) est	asso	ciatif		

..........

Q15 – <u>Système logique complet</u> (1,5 points) : Démontrez que l'ensemble composé des opérateurs ET et NON constitue un système logique complet						
Q16 – <u>Simplification de fonctions logiques</u> (1,5 points) : En vous servant de la table de karnaugh, simplifiez le fonction suivante : $f(a,b,c,d) = m1+m2+m7+m8+m14+m15$						