Faculté de Technologie

Département d'ATE

2^{ème} année licence Automatique

Module : Systèmes Asservis Linéaires et Continus

Test TP

Exercice 1:

Soit le système défini par la fonction F(p) suivante :

$$F(p) = \frac{b T}{s(s + a T)}$$

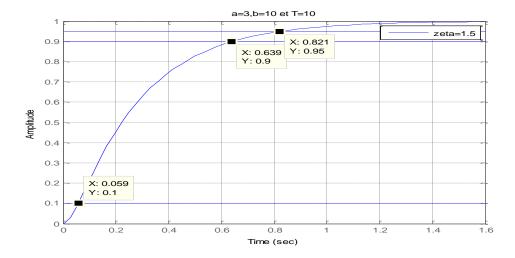
- 1. Donner la fonction de transfert en boucle fermée avec un retour unitaire.
- 2. Montrer que cette fonction peut se mettre sous la forme d'un système deuxième ordre
- 3. Exprimer K, ζ et ω_0 en fonction de a, b et T.

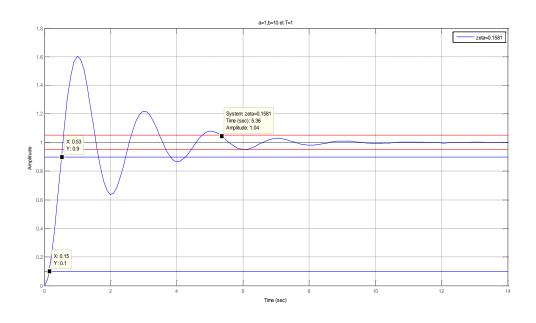
Pour les différentes valeurs de a, b et T, compléter le tableau ci-dessous (l'entrée est un échelon unitaire) :

		tr	t _m	D	ζ	Courbe de la réponse
Test 1	a=3					A
	b=10					
	T=10					+
Test 2	a=1					↑
	b=10					
	T=1					

Commenter les résultats du tableau (temps de réponse, temps de montée, dépassement, coefficient d'amortissement,).

Exercice 2:


En utilisant la commande 'lsim' tracez la réponse du système de fonction de transfert $F_5(s) = \frac{100s}{(2s+10)^2}$ à une entrée sinusoïdale $u(t) = 5\sin(2\pi t)$ pendant un temps de 5sec.

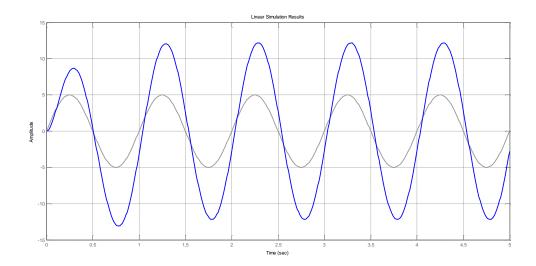

Bonne chance

Exercice 1:

$$FTBF = \frac{b\,T}{s^2 + a\,Ts + b\,T} \qquad \text{Sous la forme} \qquad \frac{K\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$$

$$K = 1, \;\; \omega_0 = \sqrt{bT}, \;\; \zeta = \frac{aT}{2\sqrt{bT}}$$

		$\mathbf{t_r}$	t _m	D	ζ	Courbe de la réponse
Test 1	a=3 b=10 T=10	0.821	0.58	/	1.5	<u></u>
Test 2	a=1 b=10 T=1	5.36	0.38	0.6	0.1581	<u></u>



Commentaire:

- ζ >1 régime apériodique (pas de dépassement) ...système stable... le système est lent
- ζ<0.7 régime pseudo périodique ... (y'a des dépassements) ... système instable ... le système est rapide

Exercice 2:

```
F5=tf([100 0][4 40 100]);
t=0:0.01:5;
ut=5*sin(2*pi*t);
lsim(F5,ut,t)
```

