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Chapter 1

Vector spaces

A vector space over some field F is an algebraic structure consisting of a non empty
set V on which are defined two binary operations referred to addition, and a scalar
multiplication in which elements of the vector space are multiplied by elements of the
given field F. These two operations are required to satisfy certain axioms .

1.1 Vector spaces over field [

Let F be a field and V be an non empty set. Assume that there is a binary operation
on V called "addition" which assigns to each pair of elements u and v of V' a unique
sum u® v € V. Assume that there is a second operation, called "scalar multiplication"
which assigns to any k € F and any v € V a unique scalar multiple k® ve V.

Definition 1.1.1 Let V' be a non empty set equipped by two binary operations
denoted addition (&) and scalar multiplication (®). We say that (V,®, ®) isa
vector space over a field F if and only if

O (V, @) is an abelian group.
® The scalar multiplication satisfies theses conditions Va,BeF, YVu,ve V

(@ a®(usv)=a®uefev
b) (a+P)eu=a0usefou
© @fp)eu=ax (o)

d 1®u=u
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In other words,

Definition 1.1.2 Let V be a non empty set together with two binary operations
addition (&) and scalar multiplication (®). (E,®, ®) isa vector space over[F if]
the following axioms are satisfied.
Axioms for vector addition

Ifu and v areinV, thenu®v isinV .
V is closed under &.

@ uev=veéeu forallu and v in V.
® is commutative

usd(vew)=(usev)ow forallu,v andw inV .

& is associative

@ An elementQy in V exists suchthatve Oy =v=0y @ v foreveryvinV.
there exists an identity element denoted Oy .

@ Foreach v inV, an element —v in V exists such that —ve v =0 and v ®
(=v)=0.
Each element v has an inverse denoted —v under &.

Axioms for scalar multiplication

IfvisinV,thena®visinV foralla inF.
V closed under scalar multiplication ®.

a®(vew)=a®véa®w forallvand w inV and all a inF.
distributivity property

(a+b)ev=a®vebevforallvinV andalla andb infF.
distributivity property

a®(bev)=(ab)®v forallvinV andall a and b inF.
associativity of scalar multiplication.

@ 1ev=vforallvinV.

Then V is called a vector space over F.
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Remark 1.1.1

1. The elements of the underlying field F are called scalars and the elements of the
vector space are called vectors.

2. Note also that we often restrict our attention to the case whenlF =R orC.

3. A vector space over a field F is sometimes called an [F- vector space or simply [ -
space . A vector space over the real field is called a real vector space and a vector
space over the complex field is called a complex vector space.

Example 1.1.1 Every field F is a vector space over[F.
R isa R - vector space. C isa C - vector space.

Example 1.1.2 Let F be a field, let n € N*. Then the set F"* of n -tuples of elements of
[ is a vector space over F.

F'=FxFxFxx--F,={(x1,%,...%,) : x;€Ffori=1,2, -+, n}
n%es

where

(xlvxZ) ---,xn)+(J/1;J/2,---,J/n) = (xl + Jyiu, X2 + Y2,.., Xn + J/n);
c.(x1,%2,..., X,) = (Ccx1,CX2,...,CXy)

for all elements (xy, X2, ...,x,) and (y1,¥2,....yn) of F"* and for all elements c of F.

Example 1.1.3 Soit X a non empty set and V a F -space. we denote (X, V) = {f :
X — V, f function} we define two binary operations over & (X, V)

o FX, VNxFX,V)—FX, V) ® FxFX,V)—ZFX, V)
(f,e)— fog A fHl—mAef
(fegx)=f(x)+gx) A fHx)=Af(x)

We show that (¥ (X, V), &, ®) is aF-space.

Example 1.1.4 LetP, be the set of all polynomials of degree at most 2 with coefficients
froma field F, i.e., expressions of the form

p(x) = axy+bx+c, wherea, b, ceF.
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Define addition and scalar multiplication of polynomials in the usual way, i.e.,

(axo+ bx + c)+(clézx2 + b32x+ c/) =(a+ aﬁz)x2 +(b+ béz)x+ (c+ céz)

a.(ax’ + bx+c¢) = aax® + abx + ac.

Then P, is a vector space .

Proposition 1 Let (V,®, ®) be a vector space over a fieldF. for all elements c of F
and elements v of V .The following properties are satisfied

1. ¢®0y =0y

2. @ v =0y

3. Dev=-v

4. (—0)®v=—(c®V)=c®(-D)

5 (a-p)ev=alv-Lo.

6. If cev =0y then c=0f or v=_0y.

Proof1.1.0.1

1. The zero element Oy of V satisfies Oy ® Oy = 0y. Therefore c® 0y & c® 0y =
c® Oy ®0y)=c®0y. Soc®0y =0y (justadd the additive inverse of c ® Oy )

2. The zero element O of thefield F satisfies O +Of = Of. Therefore Or®@ v®0OF® v =
OF+0p)®@v=0r® v so OF ® v =0y (justadd the additive inverse of O ® v)

ve((-Dev)=(10ov)e((-1)ev)
=1+(-D)®v
=0r®v=0y.

So the inverseof vis—v=(-1)®v

4. Wehave(-c)eov=((-1)eoc)ev=(-1)®(c®v)=—(c® V)
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(@a-pPev=(a+(-p))ev
=aove(—-fev
=a®v-foUv

6. Weassume that c® v=_0y. If c =0 then we have c® v =_0y. Ifc # O, since [ is
afield then ¢! exists. so v=1®v = (6fcc )of®@v=c'®(c®v)=c'®0y =0y

Remark 1.1.2 Be careful, the additive identity of the field is not a vector .
more generally, nothing in the field is a vector. We regard elements of the field and ele-
ments of the vector space as separate.

1.2 Vector subspaces

Definition 1.2.1 If V is a vector space over a field F, then a subspace W of V
is a subset W c V' such that W is a vector space over F with the same addition
and scalar multiplication as V .

Proposition 2 If V isa vector space over a fieldF, and W isasubsetof V , then
W is a vector subspace of V if and only if

1. W#

2. Forany w, w e W, then w + wew.
(W is closed under addition).

3. Forany a€lF and we W, then aaweW.
(W is closed under scalar multiplication )

Example 1.2.1
1. Theset {0} cV isalways a subspace of V .

2. Theset VcV isalways a subspace of V.

Proposition3 Let V be a vector space over a field F and H be a subset of V
then if H is a vector subspace of V then H contains the identity element of V (
Oy e H).
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Proof 1.2.0.1 Since H is a vector subspace of V then H is closed under scalar multipli-
cation, that meansVa €F,Yve H,a.ve H.
If we put a = Of, then we have Of . v=0y € V ( see the proposition above).

1.3 Linear Dependence, Spanning Sets and Bases

Definition 1.3.1 (Linear Combinations) LetV be an arbitrary vector space over
field F, and let vy, vo, -+, v, be elementsof V. Let ay, az, -+, a, be scalars (
elements of F). An expression of type

a1V +a02 +A3V3+ -+ AUy

is called a linear combination of vy, vo, -+, Uy,

Spanning Set of vectors

Definition 1.3.2 The collection of all linear combination of element
{v1, v2, ..., vy} isdenoted span{vy, vs, ..., Uy}
spanf{vy, s, ..., Up} = {a1 V1+ Qoo +Qsvs+---+ @y, forany ay, as, -+, an€ [F}

Proposition 4 Let W = span{v, vy, ..., v,} bethesetof all linear combinations
of vi, vy,...,v, then W is a subspace of V.

Proof1.3.0.1

1. Show that W is closed under addition.
Let, By, B2, -+, Bn bescalars. Then

a1v1+a2v2+a3v3+~--+anvn+,61v1+,62v2+,33v3+---+,6nvn

=(a1+p)vi+(az+ Ba)va+ (@3 + B3)vs+ -+ (@n+ Pr)vn
Thus the sum of two elements of W is again an element of W

2. Show that W is closed under scalar multiplication.
if A is a scalar, then

AMajvyy+arvs+azvs+---+a,v,) = Aavy + Aaxvs + Aasvs + -+ Aay, vy,

is a linear combination of vy, v, ..., vy, and hence is an element of W.
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3. We have
0=0.7+0.v2+0.v3+---+0.v,
is an element of W

This proves that W is a subspace of V

Definition 1.3.3 Wecall Span{v,, ..., v,} the subspace spanned (or generated)
by{vy, ..., v,}.

Given any subspace H of V , a spanning (or generating) set for H is a set
{v1, ..., vy} in H such that H = Span{vy, ..., vg}.

Definition 1.3.4 (Span of a set of vectors) Let V be a vector space over some
field F, and let S be a set of vectors (i.e., a subset of V). The span of S is the
set of all linear combinations of elements of S. In symbols, we have

spanS={auy +...+ agug : wy,...,ur€Sanday, ... ,ap€F}|.

Remark 1.3.1 Be careful, even when the set S is infinite, each individual element v €
spansS is a linear combination of only finitely many elements u,, ...,,uy of S. The
definition does not talk about infinite linear combinations a;u, + aup + asus +.... In-
deed, such infinite sums do not typically exist. However, different elements v, w € spanS
can be linear combinations of a different (finite) number of vectors of S.  For example,
it is possible that v is a linear combination of 5 elements of S, and w is a linear com-
bination of 50 elements of S.

Definition 1.3.5 Let V be a vector space over the field F, and let vy, vo, ..., v,
be elements of V. We shall say that vy, v, ..., v, are linearly dependent over F
if there exist elements ay, ap, -+, a, inF not all equal to 0 such that

a1 +ayvs+asvs+---+a,v, =0

If there do not exist such numbers, then we say that vy, v», ..., v, are linearly
independent. In other words, vectors vy, Vs, ..., U, are linearly independent if
and only if the following condition is satisfied:

Yay, ay,...,an, €F, ifayvy + apvo + asvs +---+ apv, =0then a; =0, foralli=1,...,n.

1.4 Finite-Dimensional Vector Spaces



