Algebra 2 (Linear algebra)

Said AISSAOUI

February 3, 2025

Contents

1	Vector spaces	2
	1.1 Vector spaces over field \mathbb{F}	. 2
	1.2 Vector subspaces	. 6
	1.3 Linear Dependence, Spanning Sets and Bases	. 7
	1.4 Finite-Dimensional Vector Spaces	. 8

Chapter 1

Vector spaces

A vector space over some field \mathbb{F} is an algebraic structure consisting of a non empty set *V* on which are defined two binary operations referred to addition, and a scalar multiplication in which elements of the vector space are multiplied by elements of the given field \mathbb{F} . These two operations are required to satisfy certain axioms .

1.1 Vector spaces over field F

Let \mathbb{F} be a field and *V* be an non empty set. Assume that there is a binary operation on *V* called "addition" which assigns to each pair of elements *u* and *v* of *V* a unique sum $u \oplus v \in V$. Assume that there is a second operation, called "scalar multiplication" which assigns to any $k \in \mathbb{F}$ and any $v \in V$ a unique scalar multiple $k \otimes v \in V$.

Definition 1.1.1 Let V be a non empty set equipped by two binary operations denoted addition (\oplus) and scalar multiplication (\otimes). We say that (V, \oplus, \otimes) is a **vector space over a field** \mathbb{F} if and only if

- **(** V, \oplus) is an abelian group.
- **2** The scalar multiplication satisfies theses conditions $\forall \alpha, \beta \in \mathbb{F}, \forall u, v \in V$
 - (a) $\alpha \otimes (u \oplus v) = \alpha \otimes u \oplus \beta \otimes v$
 - (b) $(\alpha + \beta) \otimes u = \alpha \otimes u \oplus \beta \otimes u$
 - (c) $(\alpha\beta) \otimes u = \alpha \otimes (\beta \otimes v)$
 - (d) $1 \otimes u = u$

In other words,

Definition 1.1.2 Let V be a non empty set together with two binary operations			
addition (\oplus) and scalar multiplication (\otimes). (E, \oplus, \otimes) is a vector space over \mathbb{F} if			
the following axioms are satisfied.			
Axioms for vector addition			
Al	If u and v are in V , then $u \oplus v$ is in V . V is closed under \oplus .		
A2	$u \oplus v = v \oplus u$ for all u and v in V . \oplus is commutative		
(A3)	$u \oplus (v \oplus w) = (u \oplus v) \oplus w$ for all u, v and w in V . \oplus is associative		
(A4)	An element 0_V in V exists such that $v \oplus 0_V = v = 0_V \oplus v$ for every v in V . there exists an identity element denoted 0_V .		
(A5)	For each v in V , an element $-v$ in V exists such that $-v \oplus v = 0$ and $v \oplus (-v) = 0$. Each element v has an inverse denoted $-v$ under \oplus .		
Axioms for scalar multiplication			
(SI)	If v is in V , then $a \otimes v$ is in V for all a in \mathbb{F} . V closed under scalar multiplication \otimes .		
<u>(S2</u>)	$a \otimes (v \oplus w) = a \otimes v \oplus a \otimes w$ for all v and w in V and all a in \mathbb{F} . distributivity property		
S3	$(a+b) \otimes v = a \otimes v \oplus b \otimes v$ for all v in V and all a and b in \mathbb{F} . distributivity property		
<u>(S4</u>)	$a \otimes (b \otimes v) = (ab) \otimes v$ for all v in V and all a and b in \mathbb{F} . associativity of scalar multiplication.		
<u>(\$5</u>)	$1 \otimes v = v$ for all v in V .		

Then *V* is called a vector space over \mathbb{F} .

Remark 1.1.1

- 1. The elements of the underlying field \mathbb{F} are called scalars and the elements of the vector space are called vectors.
- *2. Note also that we often restrict our attention to the case when* $\mathbb{F} = \mathbb{R}$ *or* \mathbb{C} *.*
- 3. A vector space over a field 𝔽 is sometimes called an 𝔽- vector space or simply 𝔽space. A vector space over the real field is called a real vector space and a vector space over the complex field is called a complex vector space.

Example 1.1.1 *Every field* \mathbb{F} *is a vector space over* \mathbb{F} *.* \mathbb{R} *is a* \mathbb{R} *- vector space.* \mathbb{C} *is a* \mathbb{C} *- vector space.*

Example 1.1.2 Let \mathbb{F} be a field, let $n \in \mathbb{N}^*$. Then the set \mathbb{F}^n of n-tuples of elements of \mathbb{F} is a vector space over \mathbb{F} .

$$\mathbb{F}^{n} = \underbrace{\mathbb{F} \times \mathbb{F} \times \mathbb{F} \times \cdots \mathbb{F}}_{n \text{ times}} = \{(x_{1}, x_{2}, ..., x_{n}) : x_{i} \in \mathbb{F} \text{ for } i = 1, 2, \cdots, n\}$$
where
$$(x_{1}, x_{2}, ..., x_{n}) + (y_{1}, y_{2}, ..., y_{n}) = (x_{1} + y_{1}, x_{2} + y_{2}, ..., x_{n} + y_{n}),$$

$$c_{\cdot}(x_1, x_2, ..., x_n) = (cx_1, cx_2, ..., cx_n)$$

for all elements $(x_1, x_2, ..., x_n)$ and $(y_1, y_2, ..., y_n)$ of \mathbb{F}^n and for all elements c of \mathbb{F} .

Example 1.1.3 Soit X a non empty set and V a \mathbb{F} -space. we denote $\mathscr{F}(X, V) = \{f : X \longrightarrow V, f \text{ function}\}$ we define two binary operations over $\mathscr{F}(X, V)$

$$\begin{split} \oplus \quad \mathscr{F}(X, V) \times \mathscr{F}(X, V) & \longrightarrow \mathscr{F}(X, V) \\ \quad & (f,g) \mapsto f \oplus g \\ \quad & (f \oplus g)(x) = f(x) + g(x) \end{split} \qquad \otimes \quad \mathbb{F} \times \mathscr{F}(X, V) \longrightarrow \mathscr{F}(X, V) \\ \quad & (\lambda, f) \mapsto \lambda \otimes f \\ \quad & (\lambda \otimes f)(x) = \lambda f(x) \end{split}$$

We show that $(\mathscr{F}(X, V), \oplus, \otimes)$ is a \mathbb{F} -space.

Example 1.1.4 Let \mathbf{P}_2 be the set of all polynomials of degree at most 2 with coefficients from a field \mathbb{F} , i.e., expressions of the form

$$p(x) = ax_2 + bx + c$$
, where $a, b, c \in \mathbb{F}$.

Define addition and scalar multiplication of polynomials in the usual way, i.e.,

$$(ax_{2} + bx + c) + (a^{\hat{a}^{2}}x^{2} + b^{\hat{a}^{2}}x + c') = (a + a^{\hat{a}^{2}})x^{2} + (b + b^{\hat{a}^{2}})x + (c + c^{\hat{a}^{2}})$$
$$\alpha \cdot (ax^{2} + bx + c) = \alpha ax^{2} + \alpha bx + \alpha c.$$

Then \mathbf{P}_2 is a vector space.

Proposition 1 Let (V, \oplus, \otimes) be a vector space over a field \mathbb{F} . for all elements c of \mathbb{F} and elements v of V. The following properties are satisfied

- 1. $c \otimes 0_V = 0_V$ 2. $0_F \otimes v = 0_V$
- 3. $(-1) \otimes v = -v$
- 4. $(-c) \otimes v = -(c \otimes v) = c \otimes (-v)$
- 5. $(\alpha \beta) \otimes v = \alpha \otimes v \beta \otimes v$.
- 6. If $c \otimes v = 0_V$ then $c = 0_F$ or $v = 0_V$.

Proof 1.1.0.1

- 1. The zero element 0_V of V satisfies $0_V \oplus 0_V = 0_V$. Therefore $c \otimes 0_V \oplus c \otimes 0_V = c \otimes (0_V \oplus 0_V) = c \otimes 0_V$. So $c \otimes 0_V = 0_V$ (just add the additive inverse of $c \otimes 0_V$)
- 2. The zero element $0_{\mathbb{F}}$ of the field \mathbb{F} satisfies $0_{\mathbb{F}} + 0_{\mathbb{F}} = 0_{\mathbb{F}}$. Therefore $0_{\mathbb{F}} \otimes v \oplus 0_{\mathbb{F}} \otimes v = (0_{\mathbb{F}} + 0_{\mathbb{F}}) \otimes v = 0_{\mathbb{F}} \otimes v$ so $0_{\mathbb{F}} \otimes v = 0_{V}$ (just add the additive inverse of $0_{\mathbb{F}} \otimes v$)
- 3.

$$v \oplus ((-1) \otimes v) = (1 \otimes v) \oplus ((-1) \otimes v)$$
$$= (1 + (-1)) \otimes v$$
$$= 0_{\mathbb{F}} \otimes v = 0_{V}.$$

So the inverse of v is $-v = (-1) \otimes v$

4. We have $(-c) \otimes v = ((-1) \otimes c) \otimes v = (-1) \otimes (c \otimes v) = -(c \otimes v)$

5.

$$(\alpha - \beta) \otimes v = (\alpha + (-\beta)) \otimes v$$
$$= \alpha \otimes v \oplus (-\beta) \otimes v$$
$$= \alpha \otimes v - \beta \otimes v$$

6. We assume that $c \otimes v = 0_V$. If $c = 0_{\mathbb{F}}$ then we have $c \otimes v = 0_V$. If $c \neq 0_{\mathbb{F}}$, since \mathbb{F} is a field then c^{-1} exists. so $v = 1 \otimes v = (\hat{o}\check{r}cc^{-1})\hat{o}\check{r} \otimes v = c^{-1} \otimes (c \otimes v) = c^{-1} \otimes 0_V = 0_V$

Remark 1.1.2 Be careful, the additive identity of the field is not a vector. more generally, nothing in the field is a vector. We regard elements of the field and elements of the vector space as separate.

1.2 Vector subspaces

Definition 1.2.1 If V is a vector space over a field \mathbb{F} , then a subspace W of V is a subset $W \subset V$ such that W is a vector space over \mathbb{F} with the same addition and scalar multiplication as V.

Proposition 2 If V is a vector space over a field \mathbb{F} , and W is a subset of V, then W is a vector subspace of V if and only if

1. $W \neq$

- 2. For any $w, w' \in W$, then $w + w' \in W$. (*W* is closed under addition).
- 3. For any $\alpha \in \mathbb{F}$ and $w \in W$, then $\alpha \hat{a} w \in W$. (*W* is closed under scalar multiplication)

Example 1.2.1

- 1. The set $\{0\} \subset V$ is always a subspace of V.
- *2.* The set $V \subset V$ is always a subspace of V.

Proposition 3 Let V be a vector space over a field \mathbb{F} and H be a subset of V then if H is a vector subspace of V then H contains the identity element of V ($0_V \in H$).

Proof 1.2.0.1 Since *H* is a vector subspace of *V* then *H* is closed under scalar multiplication, that means $\forall \alpha \in \mathbb{F}, \forall v \in H, \alpha.v \in H$. If we put $\alpha = 0_{\mathbb{F}}$, then we have $0_{\mathbb{F}} . v=0_V \in V$ (see the proposition above).

1.3 Linear Dependence, Spanning Sets and Bases

Definition 1.3.1 (Linear Combinations) Let *V* be an arbitrary vector space over field \mathbb{F} , and let v_1, v_2, \dots, v_n be elements of *V*. Let $\alpha_1, \alpha_2, \dots, \alpha_n$ be scalars (elements of \mathbb{F}). An expression of type

 $\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_n v_n$

is called a **linear combination** of v_1, v_2, \cdots, v_n

Spanning Set of vectors

Definition 1.3.2 *The collection of all linear combination of element* $\{v_1, v_2, ..., v_n\}$ *is denoted span* $\{v_1, v_2, ..., v_n\}$ *.*

 $span\{v_1, v_2, ..., v_n\} = \{\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_n v_n, \text{ for any } \alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{F}\}$

Proposition 4 Let $W = span\{v_1, v_2, ..., v_n\}$ be the set of all linear combinations of $v_1, v_2, ..., v_n$ then W is a subspace of V.

Proof 1.3.0.1

1. Show that W is closed under addition. Let, β_1 , β_2 , \cdots , β_n be scalars. Then

> $\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_n v_n + \beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3 + \dots + \beta_n v_n$ = $(\alpha_1 + \beta_1) v_1 + (\alpha_2 + \beta_2) v_2 + (\alpha_3 + \beta_3) v_3 + \dots + (\alpha_n + \beta_n) v_n$

Thus the sum of two elements of W is again an element of W

2. Show that W is closed under scalar multiplication. if λ is a scalar, then

 $\lambda(\alpha_1v_1 + \alpha_2v_2 + \alpha_3v_3 + \dots + \alpha_nv_n) = \lambda\alpha_1v_1 + \lambda\alpha_2v_2 + \lambda\alpha_3v_3 + \dots + \lambda\alpha_nv_n$

is a linear combination of $v_1, v_2, ..., v_n$, and hence is an element of W.

3. We have

$$0 = 0.v_1 + 0.v_2 + 0.v_3 + \dots + 0.v_n$$

is an element of W

This proves that W is a subspace of V

Definition 1.3.3 *We call* $Span\{v_1, ..., v_n\}$ *the subspace spanned* (or *generated*) *by* $\{v_1, ..., v_n\}$.

Given any subspace H of V, a **spanning** (or **generating**) set for H is a set $\{v_1, ..., v_n\}$ in H such that $H = Span\{v_1, ..., v_n\}$.

Definition 1.3.4 (Span of a set of vectors) *Let* V *be a vector space over some field* \mathbb{F} *, and let* S *be a set of vectors (i.e., a subset of* V*). The span of* S *is the set of all linear combinations of elements of* S*. In symbols, we have*

 $span S = \{a_1u_1 + ... + a_ku_k : u_1, ..., u_k \in S and a_1, ..., a_k \in \mathbb{F}\}$

Remark 1.3.1 Be careful, even when the set S is infinite, each individual element $v \in$ spanS is a linear combination of only finitely many elements u_1, \ldots, u_k of S. The definition does not talk about infinite linear combinations $a_1u_1 + a_2u_2 + a_3u_3 + \ldots$ Indeed, such infinite sums do not typically exist. However, different elements $v, w \in$ spanS can be linear combinations of a different (finite) number of vectors of S. For example, it is possible that v is a linear combination of 5 elements of S, and w is a linear combination of S.

Definition 1.3.5 Let V be a vector space over the field \mathbb{F} , and let $v_1, v_2, ..., v_n$ be elements of V. We shall say that $v_1, v_2, ..., v_n$ are **linearly dependent over** \mathbb{F} if there exist elements $a_1, a_2, ..., a_n$ in \mathbb{F} not all equal to 0 such that

 $a_1v_1 + a_2v_2 + a_3v_3 + \dots + a_nv_n = 0$

If there do not exist such numbers, then we say that $v_1, v_2, ..., v_n$ are **linearly** independent. In other words, vectors $v_1, v_2, ..., v_n$ are linearly independent if and only if the following condition is satisfied:

 $\forall a_1, a_2, \dots, a_n \in \mathbb{F}, if a_1 v_1 + a_2 v_2 + a_3 v_3 + \dots + a_n v_n = 0 then a_i = 0, for all i = 1, \dots, n.$

1.4 Finite-Dimensional Vector Spaces