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Chapter 1

Vector spaces

A vector space over some field F is an algebraic structure consisting of a non empty
set V on which are defined two binary operations referred to addition, and a scalar
multiplication in which elements of the vector space are multiplied by elements of the
given field F. These two operations are required to satisfy certain axioms .

1.1 Vector spaces over field F

Let F be a field and V be an non empty set. Assume that there is a binary operation
on V called "addition" which assigns to each pair of elements u and v of V a unique
sum u ⊕v ∈V . Assume that there is a second operation , called "scalar multiplication"
which assigns to any k ∈ F and any v ∈V a unique scalar multiple k ⊗ v ∈V .

Definition 1.1.1 Let V be a non empty set equipped by two binary operations
denoted addition (⊕) and scalar multiplication (⊗). We say that (V ,⊕, ⊗) is a
vector space over a field F if and only if

Ê (V , ⊕) is an abelian group.

Ë The scalar multiplication satisfies theses conditions ∀α,β ∈ F, ∀u, v ∈V

(a) α⊗ (u ⊕ v) =α⊗u ⊕β⊗ v

(b) (α+β)⊗u =α⊗u ⊕β⊗u

(c) (αβ)⊗u =α⊗ (β⊗ v)

(d) 1⊗u = u
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In other words,

Definition 1.1.2 Let V be a non empty set together with two binary operations
addition (⊕) and scalar multiplication (⊗). (E ,⊕, ⊗) is a vector space over F if
the following axioms are satisfied.
Axioms for vector addition

A1 If u and v are in V , then u ⊕ v is in V .

V is closed under ⊕.

A2 u ⊕ v = v ⊕u for all u and v in V .
⊕ is commutative

A3 u ⊕ (v ⊕w) = (u ⊕ v)⊕w for all u, v and w in V .
⊕ is associative

A4 An element 0V in V exists such that v ⊕0V = v = 0V ⊕ v for every v in V .

there exists an identity element denoted 0V .

A5 For each v in V , an element −v in V exists such that −v ⊕ v = 0 and v ⊕
(−v) = 0.
Each element v has an inverse denoted −v under ⊕.

Axioms for scalar multiplication

S1 If v is in V , then a ⊗ v is in V for all a in F.
V closed under scalar multiplication ⊗.

S2 a ⊗ (v ⊕w) = a ⊗ v ⊕a ⊗w for all v and w in V and all a in F.
distributivity property

S3 (a +b)⊗ v = a ⊗ v ⊕b ⊗ v for all v in V and all a and b in F.
distributivity property

S4 a ⊗ (b ⊗ v) = (ab)⊗ v for all v in V and all a and b in F.
associativity of scalar multiplication.

S5 1⊗ v = v for all v in V .

Then V is called a vector space over F.
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Remark 1.1.1

1. The elements of the underlying field F are called scalars and the elements of the
vector space are called vectors.

2. Note also that we often restrict our attention to the case whenF=R orC.

3. A vector space over a field F is sometimes called an F- vector space or simply F-
space . A vector space over the real field is called a real vector space and a vector
space over the complex field is called a complex vector space.

Example 1.1.1 Every field F is a vector space over F.
R is a R - vector space. C is a C - vector space.

Example 1.1.2 Let F be a field , let n ∈N∗. Then the set Fn of n -tuples of elements of
F is a vector space over F.

Fn = F×F×F××·· ·F.︸ ︷︷ ︸
n times

= {
(x1, x2, ..., xn) : xi ∈ F for i = 1, 2, · · · , n

}
where

(x1, x2, ..., xn)+(y1, y2, ..., yn) = (x1 + y1, x2 + y2, ..., xn + yn),

c.(x1, x2, ..., xn) = (cx1,cx2, ...,cxn)

for all elements (x1, x2, ..., xn) and (y1, y2, ..., yn) of Fn and for all elements c of F.

Example 1.1.3 Soit X a non empty set and V a F -space. we denote F (X , V ) = {
f :

X −→V , f function
}

we define two binary operations over F (X , V )

⊕ F (X , V )×F (X , V ) −→F (X , V ) ⊗ F×F (X , V ) −→F (X , V )

( f , g ) 7→ f ⊕ g (λ, f ) 7→λ⊗ f

( f ⊕ g )(x) = f (x)+ g (x) (λ⊗ f )(x) =λ f (x)

We show that (F (X , V ), ⊕, ⊗) is a F-space.

Example 1.1.4 Let P2 be the set of all polynomials of degree at most 2 with coefficients
from a field F, i.e., expressions of the form

p(x) = ax2 +bx + c, where a, b, c ∈ F.
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Define addition and scalar multiplication of polynomials in the usual way, i.e.,

(ax2 +bx + c)+(aâ2
x2 +bâ2

x + c
′
) = (a +aâ2

)x2 + (b +bâ2
)x + (c + câ2

)

α.(ax2 +bx + c) =αax2 +αbx +αc.

Then P2 is a vector space .

Proposition 1 Let (V ,⊕, ⊗) be a vector space over a field F. for all elements c of F
and elements v of V .The following properties are satisfied

1. c ⊗0V = 0V

2. 0F⊗ v = 0V

3. (−1)⊗ v =−v

4. (−c)⊗ v =−(c ⊗ v) = c ⊗ (−v)

5. (α−β)⊗ v =α⊗ v −β⊗ v.

6. If c ⊗ v = 0V then c = 0F or v = 0V .

Proof 1.1.0.1

1. The zero element 0V of V satisfies 0V ⊕ 0V = 0V . Therefore c ⊗ 0V ⊕ c ⊗ 0V =
c ⊗ (0V ⊕0V ) = c ⊗0V . So c ⊗0V = 0V ( just add the additive inverse of c ⊗0V )

2. The zero element 0F of the field F satisfies 0F+0F = 0F. Therefore 0F⊗v ⊕0F⊗v =
(0F+0F)⊗ v = 0F⊗ v so 0F⊗ v = 0V ( just add the additive inverse of 0F⊗ v)

3.

v ⊕ ((−1)⊗ v) = (1⊗ v)⊕ ((−1)⊗ v)

= (1+ (−1))⊗ v

= 0F⊗ v = 0V .

So the inverse of v is −v = (−1)⊗ v

4. We have (−c)⊗ v = ((−1)⊗ c)⊗ v = (−1)⊗ (c ⊗ v) =−(c ⊗ v)



CHAPTER 1. VECTOR SPACES 6

5.

(α−β)⊗ v = (α+ (−β))⊗ v

=α⊗ v ⊕ (−β)⊗ v

=α⊗ v −β⊗ v

6. We assume that c ⊗v = 0V . If c = 0F then we have c ⊗v = 0V . If c 6= 0F, since F is
a field then c−1 exists. so v = 1⊗v = (ôřc c−1)ôř⊗v = c−1⊗(c⊗v) = c−1⊗0V = 0V

Remark 1.1.2 Be careful, the additive identity of the field is not a vector .
more generally, nothing in the field is a vector. We regard elements of the field and ele-
ments of the vector space as separate.

1.2 Vector subspaces

Definition 1.2.1 If V is a vector space over a field F, then a subspace W of V
is a subset W ⊂V such that W is a vector space over F with the same addition
and scalar multiplication as V .

Proposition 2 If V is a vector space over a field F, and W is a subset of V , then
W is a vector subspace of V if and only if

1. W 6=
2. For any w, w

′ ∈W , then w +w
′ ∈W .

( W is closed under addition).

3. For any α ∈ F and w ∈W , then αâw ∈W .
( W is closed under scalar multiplication )

Example 1.2.1

1. The set {0} ⊂V is always a subspace of V .

2. The set V ⊂V is always a subspace of V .

Proposition 3 Let V be a vector space over a field F and H be a subset of V
then if H is a vector subspace of V then H contains the identity element of V (
0V ∈ H ).



CHAPTER 1. VECTOR SPACES 7

Proof 1.2.0.1 Since H is a vector subspace of V then H is closed under scalar multipli-
cation, that means ∀α ∈ F,∀v ∈ H ,α.v ∈ H .
If we put α= 0F, then we have 0F . v=0V ∈V ( see the proposition above).

1.3 Linear Dependence, Spanning Sets and Bases

Definition 1.3.1 (Linear Combinations) Let V be an arbitrary vector space over
field F, and let v1, v2, · · · , vn be elements of V . Let α1, α2, · · · , αn be scalars (
elements of F). An expression of type

α1v1 +α2v2 +α3v3 +·· ·+αn vn

is called a linear combination of v1, v2, · · · , vn

Spanning Set of vectors

Definition 1.3.2 The collection of all linear combination of element
{v1, v2, . . . , vn} is denoted span{v1, v2, . . . , vn}.

span{v1, v2, . . . , vn} = {
α1v1 +α2v2 +α3v3 +·· ·+αn vn , for any α1, α2, · · · , αn ∈ F}

Proposition 4 Let W = span{v1, v2, . . . , vn} be the set of all linear combinations
of v1, v2, . . . , vn then W is a subspace of V .

Proof 1.3.0.1

1. Show that W is closed under addition.
Let,β1, β2, · · · , βn be scalars. Then

α1v1 +α2v2 +α3v3 +·· ·+αn vn +β1v1 +β2v2 +β3v3 +·· ·+βn vn

= (α1 +β1)v1 + (α2 +β2)v2 + (α3 +β3)v3 +·· ·+ (αn +βn)vn

Thus the sum of two elements of W is again an element of W

2. Show that W is closed under scalar multiplication.
if λ is a scalar, then

λ(α1v1 +α2v2 +α3v3 +·· ·+αn vn) =λα1v1 +λα2v2 +λα3v3 +·· ·+λαn vn

is a linear combination of v1, v2, . . . , vn , and hence is an element of W .
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3. We have

0 = 0.v1 +0.v2 +0.v3 +·· ·+0.vn

is an element of W

This proves that W is a subspace of V

Definition 1.3.3 We call Span{v1, . . . , vn} the subspace spanned (or generated)
by {v1, . . . , vn}.
Given any subspace H of V , a spanning (or generating) set for H is a set
{v1, . . . , vn} in H such that H = Span{v1, . . . , vn}.

Definition 1.3.4 (Span of a set of vectors) Let V be a vector space over some
field F, and let S be a set of vectors (i.e., a subset of V ). The span of S is the
set of all linear combinations of elements of S. In symbols, we have

span S =
{
a1u1 + ...+ak uk : u1, . . . , uk ∈ S and a1, . . . , ak ∈ F} .

Remark 1.3.1 Be careful, even when the set S is infinite, each individual element v ∈
spanS is a linear combination of only finitely many elements u1, . . . , , uk of S. The
definition does not talk about infinite linear combinations a1u1 +a2u2 +a3u3 + . . . . In-
deed, such infinite sums do not typically exist. However, different elements v, w ∈ spanS
can be linear combinations of a different (finite) number of vectors of S. For example,
it is possible that v is a linear combination of 5 elements of S, and w is a linear com-
bination of 50 elements of S.

Definition 1.3.5 Let V be a vector space over the field F, and let v1, v2, . . . , vn

be elements of V . We shall say that v1, v2, . . . , vn are Iinearly dependent over F
if there exist elements a1, a2, · · · , an in F not all equal to 0 such that

a1v1 +a2v2 +a3v3 +·· ·+an vn = 0

If there do not exist such numbers, then we say that v1, v2, . . . , vn are linearly
independent. In other words, vectors v1, v2, . . . , vn are linearly independent if
and only if the following condition is satisfied:

∀a1, a2, . . . , an ∈ F, if a1v1 +a2v2 +a3v3 +·· ·+an vn = 0 then ai = 0, for all i = 1, . . . ,n.

1.4 Finite-Dimensional Vector Spaces


