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Chapter 1

Vector spaces

A vector space over some field F is an algebraic structure consisting of a non empty
set V on which are defined two binary operations referred to addition, and a scalar
multiplication in which elements of the vector space are multiplied by elements of the
given field F. These two operations are required to satisfy certain axioms .

1.1 Vector spaces over field [

Let F be a field and V be a non empty set. Assume that there is a binary operation
on V called "addition" which assigns to each pair of elements « and v of V' a unique
sum u® v € V. Assume that there is a second operation, called "scalar multiplication"
which assigns to any k € F and any v € V a unique scalar multiple k® ve V.

Definition 1.1.1 Let V' be a non empty set equipped by two binary operations
denoted addition (&) and scalar multiplication (®). We say that (V,®, ®) isa
vector space over a field F if and only if

O (V, @) is an abelian group.
@ The scalar multiplication satisfies these conditions Va,B €, Yu,veV

(@ a®(uev)=a®uda®v
b) (a+P)eu=ausefou
© (@f)eu=a®(fou)

d 1®u=u
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In other words,

Definition 1.1.2 Let V be a non empty set together with two binary operations
addition (&) and scalar multiplication (®). (V,®, ®) isa vector space over [F if]
the following axioms are satisfied.
Axioms for vector addition

@ Visclosed under® : ifuandvareinV, thenu®v isinV.
@ ® is commutative : u®v=veéu forallu and v inV.
® isassociative : u®(vew)=(uev)dw forallu,v andwinV .

@ Existence of the identity element : An elementQy in V exists such that
ve0y=v=0y®v foreveryvinV.

@ Existence of the symmetric elements : for each v in 'V, an element —v in
V exists such that—ve v=0y and v® (—v) =0y.

Axioms for scalar multiplication

V closed under scalar multiplication ® :
ifvisinV,thena®visinV forall a inF.

Distributivity property of multiplication over addition :
a®(vew)=a®vea®w forall vand w in V andall a inF.

Distributivity property of scalar multiplication :
(a+b)ev=a®vebev forall vin V andall a and b in F.

Associativity of scalar multiplication :
a®(bev)=(ab)®v forall v in V andall a and b in[.

@ 1®v=v forallvinV .(Where 1 is the unity element of the filed [ ).

Then V is called a vector space over F.

Remark 1.1.1
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1. The elements of the underlying field F are called scalars and the elements of the
vector space are called vectors.

2. Note also that we often restrict our attention to the case whenlF =R orC.

3. A vector space over a field F is sometimes called an [F- vector space or simply [-
space . A vector space over the real field is called a real vector space and a vector
space over the complex field is called a complex vector space.

Example 1.1.1 Every field F is a vector space over .
R isa R - vector space. C isa C - vector space.

Example 1.1.2 Let F be a field, let n € N*. Then the set F"* of n -tuples of elements of
F is a vector space over F.

F'=FxFxFxx--F,={(x1,x2,...,%p) : xi€F fori=1,2,---, n}
nt;rmes

where

(xl)x2} CE) xn)“‘(J/l,J/z, )yn) = (x1+J/1>x2+J/2; ES) xn"‘)’n),
A(x1, X2, .., %) = (Ax1, AXo, ..., AX},)

for all elements (xy, X2, ..., x,) and (y1,¥2,...,Vn) of F" and for all elements A of F.

Example 1.1.3 Let X anonemptyset and V a [ - vector space. we denote # (X, V) =
{f : X —V, f function} we define two binary operations over & (X, V)

o FX,VxFX,V)—FX, V) ® FxFX,V)—ZFX, V)
(fLe—rfeog MLi—Aef
(fegx)=f(x)+gx) A fHx)=Af(x)

We show that (Z (X, V), &, ®) is aF- vector space.

Example 1.1.4 LetP, be the set of all polynomials of degree at most 2 with coefficients
from afield F, i.e., expressions of the form

p(x) = ax2+ bx+c, wherea, b, ceF.
Define addition and scalar multiplication of polynomials in the usual way, i.e.,

(ax®+bx+ c)+(a,x2 v b x+ cl) =(a+ cz,)x2 +(b+ b,)x+ (c+ c,)

a.(ax’* + bx+c) = aax® + abx + ac.

Then P, is a vector space .
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Proposition 1.1.1 Let (V,®, ®) be a vector space over a fieldF. for all elements c
of F and elements v of V .The following properties are satisfied

1. ¢c®0y =0y
2. p®v =0y
3. (-)ev=-v
4. (-o)®v=—(c®V)=c®(-V)
5 (a-p)ev=a®v-Fou.
6. If cev=0y then c=0f or v=_0y.
Proof 1.1.0.1
1. The zero element Oy of V satisfies Oy ® Oy = 0y. Therefore c® 0y & c® 0y =

c® Oy ®0y)=c®0y. Soc®0y =0y (justadd the additive inverse of c ® Oy )

The zero element Of of the field F satisfies Of + Of = Of. Therefore O v®0F® v =
OF+0p)®@v=0r® v so Op ® v =0y (justadd the additive inverse of O ® v)

ve((-eov)=>10ov)e((-1)® )
=1+-D)ev
=0F® v =0y.

So the inverse of vis—v=(-1)®v

We have (—c)@v=((-1)®c)ev=(-1)®@(c®v)=—(c® V)

(@a-pPev=(a+(-p)ov
=a®ve(-fev
=a®v-pev

We assume that c® v =0y. If c =0 then we have c® v =0y. Ifc #Of, since F is
afield then ¢! exists. so v=10v=(c.c)@v=c'le(cov)=c 10y =0y
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Remark 1.1.2 Be careful, the additive identity of the field is not a vector .
more generally, nothing in the field is a vector. We regard elements of the field and ele-
ments of the vector space as separate.

1.2 Vector subspaces

Definition 1.2.1 If V is a vector space over a field F, then a subspace H of V is
asubset Hc 'V such that H is a vector space over F with the same addition and
scalar multiplication as V .

Proposition 1.2.1 If V is a vector space over a fieldF, and H is a subset of V ,
then H is a vector subspace of V' if and only if

1. H#®

2. Forany u,ve H, then u+ve H.
(H is closed under addition).

3. Forany a€F and ue H,then aue€ H.
( H is closed under scalar multiplication )

Proposition 1.2.2 Let V be a vector space over F. H be a subset of V.

H#@.

W e st oyl = { VYVaelF, Vu,ve Hau+ve H.
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Proof1.2.0.1

1. let’s show the direct implication (=)
We assume that H is a vector subspace then

(a) Since H is a vector subspace, then the identity element belongs to H. thus
H#¢

(b) Since H is a vector subspace thenVYa € F,Yu,ve Hyau+ve H

2. Show the inverse implication (<),
we assumethat H# @ andVa e F,Yu,ve H,au+ v € H and show that H is closed
under addition and scalar multiplication.
Justtakea =1, weobtainu+ve H, Yu,ve H so H is closed under addition.
to show that H is closed under scalar multiplication , just take v =0, we obtain
aue H, YVaelF,ue H.

Proposition 1.2.3 (necessary condition) Let V be a vector space over a field F
and H be a subset of V.

H is a vector subspace of V.— 0y € H
( Oy is the identity element of V)

Proof 1.2.0.2 Since H is a vector subspace of V then H is closed under scalar multipli-
cation, that meansVa eF,Yve H,a.ve H.
If we put a = Of, then we have Of . v=0y € V ( see the proposition above).

Remark 1.2.1 The converse of this implication is false as this following example shows
Example 1.2.1 In the R - vector spaceR?, the subset
F={(x,y)eR* : xy=0}

is not a vector space, although it contains the identity element (0,0). We have F is not
closed under addition, (1,0), (0,1)e F but (1,0)+0,1)=(1,1) ¢ F.

Example 1.2.2
1. Theset {0} <V isalways a subspaceof V .

2. Theset VcV isalways a subspace of V.



CHAPTER 1. VECTOR SPACES 8

3. R? isan R - vector space.
@ F={(x,y)€R?® : y=0} isan R - vector subspace of R*

() F={(x,y)€R? : x+y=2} isnotan R - vector subspace of R
(©) Fs={(x,y) €R? : x+y=0} isan R - vector subspace of R?

Proposition 1.2.4 Let V be a F - vector space. We consider a set of vector sub-
spaces (H;)ie; then ey H; is a vector subspace.

Proof1.2.0.3

1. From the above proposition the Oy vector is in all subspaces H;,Vi€ I, thenitis
in Nijer Hi which means that (ijer H; # 9.

2. VYaeF,Yu, UEﬂl'e]Hi
au+ Ve?ﬂielH,-

uve(\Hi=uve H;,Viel.
iel
= au+veH;Viel. (because H;isa vector subspace of V)

= au+ve(H;.
iel

Therefore ey H; is a vector subspace of V.
Remark 1.2.2 The union of subspaces is not a subspaces, in general.

Example 1.2.3 R? is a vector space over R. Let

F={(x,y) eR* : x=0}.
G={(x,y)eR*: y=0}.

are two vector spaces of R?.
FUG={(x,y)eR?: x=0or y=0}.
is not a subspace , because it is not closed under the addition. we have

(1,00e FUG and (0,1) e FUG but(1,0).+(0,1)=(1,1) ¢ FUG.
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Proposition 1.2.5 The union of two subspaces is a subspace if and only if one
of the subspaces is contained in the other.In other words let Fy, F» two subset of]
vector space E. we have this equivalence

F,UF, isavector space of E < FycF, or F, C F}

Proof1.2.0.4

1. Show (<=) This is the easy direction.
IfFLcF, or F,cF, then FTUF, =F, or FfUF, =F, isasubspace of E.

2. Show (=)) This is the harder direction.

We suppose that F1 U F, is a subspace, prove that F1 c F, or F» < F1. By using a
contradiction reasoning, we assume that Fy SZ F and F» SZ K
which means there exists x,y such thatx€ Fy and x ¢ F, andye€ F, and y ¢ F; .

We have

x,yeFiUFb =x+yeFUF,
= x+yeForx+yekh
= (—x)+x+y)eFH or(x+y)+(-y) ek
(because Fy and F» are subspaces then the inverse of x € F, exist
and the inverse of y € F» exist also.

= yeF orxeh

Contradiction , because we assumed that y ¢ F, and x ¢ F,. Therefore, the union of two
subspaces is a subspace if and only if one of the subspaces is contained in the other.

1.3 Linear Dependence, Spanning Sets and Bases

Definition 1.3.1 (Linear Combinations) LetV be an arbitrary vector space over
fieldF, and let vy, vo,---,v, beelementsof V. Let ay, as, ..., a, bescalars
(elements of F). An expression of type

a1V + a2 +a3v3+--+auly

is called a linear combination of v, v, ..., v,
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Spanning Set of vectors

Definition 1.3.2 The collection of all linear combinations of elements

V1, U2, ..., Uy isdenoted span{vy, vo, ..., Vp}. 0r{vy, Vs, ..., Up).

Proposition 1.3.1 Let W = span{vy, v, ..., v,} be theset of all linear combina-
tions of vy, vy, ...,v, then W is a subspace of V.

Proof 1.3.0.1

1. Show that W is closed under addition.
Letay, as, ..., an, P1, B2, ..., Bn bescalars. Then

(111}1+a2U2+C¥3U3+"'+anUn+,61U1+ﬁ21}2+ﬁ31}3+-“+ﬁnvn

= (a1+ pvi+(az+ P2vo+ (as+P3) vz + -+ (an + Pn)Un
Thus the sum of two elements of W is again an element of W.

2. Show that W is closed under scalar multiplication.
if A is a scalar, then

AMaivi+azvs +asvs+--+a,v,) = Aav; + Aaz v + Aasvs+ -+ Aa, vy,

is a linear combination of vy, v, ..., vy, and hence is an element of W.
3. We have
0=0.7+0.v2+0.v3+---+0.v,

is an element of W

This proves that W is a subspace of V.

Definition 1.3.3 WecallSpan{v,, ..., v,} the subspace spanned (or generated)
by{vy, ..., v,}.

Given any subspace H of V , a spanning (or generating) set for H is a set
{v1, ..., vy} in H such that H = Span{vy, ..., vg}.

Definition 1.3.4 (Span of a set of vectors) Let V be a vector space over some
field F, and let S be a set of vectors (i.e. a subset of V). The span of S is the
set of all linear combinations of elements of S. In symbols, we have

spanS:{aqu + ...+ agl : Uy,..., Uy € Sanda, ... ,ake[F}.
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Remark 1.3.1 Be careful, even when the set S is infinite, each individual element v €
spansS is a linear combination of only finitely many elements u,, ...,,uy of S. The
definition does not talk about infinite linear combinations a,u, + aup + asus +....

Linear dependence
Definition 1.3.5 Let V be a vector space over the field F, and let vy, v, ...,v,
be elements of V. We shall say that vy, v, ..., v, are linearly dependent over [F

if there exist elements ay, ap, ..., a, inF not all equal to 0 such that
a1 +avp+asvs+---+a,v, =0

If there do not exist such numbers, then we say that vy, v», ..., v, are linearly
independent. In other words, vectors vy, Vo, ..., v, are linearly independent if
and only if the following condition is satisfied:

Yay, as,...,an€F: ayv1 +apvy+asvs+---+a,v, =0 = aj=a,=:---=a,=0.

Example 1.3.1 Show that the vectors (1,1) and (-3,2) are linearly independent. Let
a, B be two numbers such that

a(1,1) + B(=3,2) = (0,0).
Writing this equation in terms of components, we find
a-36=0, a+26=0.

This is a system of two equations which we solve for a and B. Subtracting the sec-
ond from the first, we get —5[ = 0, whence = 0. Substituting in either equation, we
find a =0. Hence a, f areboth0, and our vectors are linearly independent.

Example 1.3.2

1. Let V =K" and consider the vectors

e1=(1,0,0,...,0)
e2=(0,1,0,...,0)

e, =1(0,0,0,...,1)
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Theney, ..., e, arelinearly independent. Indeed, let ay, ---, a, be numbers such
that

ajep+ -+ape,; =0
sinceaie) + -+ +ane, = (a1, ay, ..., ay), it follow thatall a; = 0.

2. LetV be the vector space of all functions. Let fi, ---, f, be n functions.
To say that they are linearly dependent is to say that there exists n numbers ay, ..., &,
an not all equal to 0 such that

a1 fi(x) + @z fo(x) + +a, fn(x) =0 forall value of x.
The two functions e*,e** are linearly independent.

ae’+pfe**=0=a=H=0.

Theorem 1.3.1 Let V bea vector space. Let vy, ..., v, belinearly independent
elementsof V. Let ay, ..., a, and B, ..., Bn bescalars. Suppose that we have

arv1+ -+ apvp=Pprvi+ -+ Buvn.

Thena;=pi, Vi=1, ..., n.

Proof 1.3.0.2 Subtracting the right-hand side from the left-hand side, we get
avi+ -+ apvp -y — o+ P =0 = (1 - P+ -+ (@ —Pr)vy,=0
Since vy, ..., v, are linearly independent , then we deduce that
a;—pB;=0,Vi=1, ..., n.
Thereby proving our assertion.

Definition of Basis of vector space

If elements vy, ..., v, of V generate V and in addition are linearly independent,
then {vl, . Un} is called a basis of V. We shall also say that the elements vy, ---, v,
constitute or form a basis of V.
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Definition 1.3.6 A collection of vectors in V which is both linearly independent
and spans 'V is called a basis of V.

Example 1.3.3

1. Theser B =1{(1,0,0), (0,1,0), (0,0,1)} is a basis of the vector space R®. Ideed, First
we prove that B spans R3
Given any (x,y,z) € R® we have

(x,y,2) =x(1,0,0) + y(0,1,0) + z(0,0,1).

So, for any (x,y,z) €R3, (x,y,2) € span(B). So,

R3 = Span(B).
Secondly, B is linearly independent, because

a(1,0,0) + 5(0,1,0) +y(0,0,1) = (0,0,00 = a ==y =0.
So, B is a basis of R3.
2. Similarly, a basis of the vector space R is given by the set
B={ej, e,..., en}

where,

e1= (1,0,0,...,0)
ex= (0,1,0,...,0)
e3s= (0,0,1,...,0)

e,= (0,0,0,...,1)

This one is called the standard basis of R".

3. Let P3 be a vector space of all polynomials of degree less of equal to 3. Then

B={1,x, x2, x3}
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is a basis of Ps.
Indedd, clearly span(B) = P3. Also B is linearly independent, because

aol+a1x+agx2+a3x3:Op3 = apg=a; =ay=a3=0.

where, Op,, the identity element, is equals to : Op, =0+0.x+0.x*+0.x>. Also, as
in R", abasis of P, the vector space of all polynomials of degree less of equal to
n, is given by the set

B={l,x,x% ..., x"}

we called B a standard basis of P,

Coordinates of a vector

Let V be a vector space, and let {vl, ety vn} be a basis of V. The elements v of V
can be represented by n-tuples relative to this basis,

U=(X1V1+ cee anvn

The n-tuple (aj, ..., @;) is uniquely determined by v.( according to theorem 1.3.1).
We call (a, ..., a,) the coordinates of v with respect to basis, and we call «; the
i-th coordinate.

Example 1.3.4 Find the coordinates of (1,0) with respect to the two vectors (1,1) and
(—1,2), which form a basis. We must find numbers «,  such that

a(l,1) + p(-1,2) = (1,0).
Writing this equation in terms of coordinates, we find
a-f=1, a+26=0.

Solving for a and B, wefind p== and a = % Hence the coordinates of (1,0) with

3 1

respectto (1,1) and (—1,2) are -5 —3).

Example 1.3.5 Show that the vectors (1,1) and (~1,2) form a basis of R?. We have to
show that they are linearly independent and that they generate R?.
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1. To prove linear independence, suppose that a, b are scalars such that
a(l,1)+p(-1,2) = (0,0).
Then
a-p=0anda+26=0.

Subtracting the first equation from the second , we obtain 3 =0, so that = 0.
then from the first equation, a =0, thus proving that our vectors are linearly
independent.

2. Next, let (x,y) be an arbitrary element of R2. We have to show that there exist
numbers a,b such that

(x,y)=a(l,1)+p(-1,2).
In other words, we must solve the system of equations
(e
a+2f=y
Again subtract the first equation from the second. We find 3b = y — x,whence.

p=2—*
3

and finally
a:ﬁ+x:1§f+x

According to our definitions, (a, ) are the coordinates of (x,y) with respect to the
basis {(1,1), (-1,2)}.

Exercise 1.3.1 Let v, w be elements of a vector space and assume that v #0. If v, w
are linearly dependent, show that there is a scalar A such that w = Av.

Exercise 1.3.2 Let (x,y) and (x, y') be two vectors in the vector space R?. If xy' -
yx’ =0, show that they are linearly dependent. If x y' - yx’ # 0, show that they are
linearly independent.
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Exercise 1.3.3 Show that the following vectors are linearly independent (over C or R).

1. (1,1,1) and (0,1,-2).

2. (-1,1,0) and (0,1,2).

3. (7,0) and (0,1).

4. (1,1,0),(1,1,1), and (0,1,-1).
5. (1,0) and (1,1).

6. (2,-1) and (1,0).

7. (1,2) and (1,3).

8. (0,1,1),(0,2,1), and (1,5,3).

Exercise 1.3.4 Express the given vector X as a linear combination of the given vectors

A, B, and find the coordinates of X with respectto A, B.
1. X=(1,0),A=(1,1),B=(0,1).
2. X=02,1,A=(1,-1),B=(1,1).
3. X=01,1),A=(2,1),B=(-1,0).

4. X=04,3),A=(2,1),B=(-1,0).

1.4 Finite dimensional vector spaces

Definition 1.4.1 A vector V is called finite dimensional if it is spanned by a fi-
nite set of vectors. Otherwise, V is called infinite dimensional.

1.4.1 Dimension of a vector spaces

The main result of this section is that any two bases of a vector space have the same

number of elements. To prove this, we first have an intermediate result.

Theorem 1.4.1 Let V be a vector space over the field F. Let {vl, ey vm} be a
basis of V over F. Let wy, ..., w, beelementsof V, and assume that n > m.
Then wn, ..., w, are linearly dependent.
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Proof 1.4.1.1 Assume that wn, ..., w, are linearly independent. Since{vl, . vm} is
a basis, there exist elements ay, ..., a,, €F such that

wi=a1v1+a202 +a3v3+---+amUm

Since wy, ..., wy, are linearly independent, then w, # 0. So some scalar a; # 0 . After
re- numbering vy, ..., Uy, if necessary, we may assume without loss of generality that
say ay # 0. then

a1V =W —A202 —A3V3— - —Aplp.

V] = al_lwl —al_lagvg—al_lagvy,— ---—al_lanvn

The subspace of V generated by w, ..., vy, contain vy, and hence must be all of V
since vy, ..., Uy, generate V. The idea is now to continue our procedure stepwise, and
to replace successively vy, v3 ... by wy, wa, ... until all the elements vy, ..., vy, are
exhausted and w,, ..., w,, generate V.

Let us now assume by induction that there is an integer r with 1 <r < m such that, after
a suitable renumbering of vy, ..., vy, theelements w, ..., Wy, Vr41, ..., Uy, generate
V. There exist elements B1, B2, ..., Brs Yr+1, Yr+2, ---»Ym Such that

Wre1 =Prwr+ -+ Brwr +Yr1 Vi1 + o+ YmUm.

We cannot havey; =0 for j=r+1,...,m, for otherwise, we get a relation of linear
dependence between wn, ..., Wry1, contradicting our assumption. After renumbering
Vrsl, ---, Um If necessary, we may assume without loss of generality that say y,+1 # 0.
We then obtain

Yre1Vr+1 = Wrs1— Prwr— = BrWr —Yr42Vri2 = = YmUnm-

Dividing by y,+1 we conclude that v,y is in the subspace generated by

Wi, ..., Wr+1,Vr42, .-+, Um

By our induction assumption, it follows that wy, ..., Wri1,Vrs2, ..., Uy generate V.
Thus by induction, we have proved that w, ..., w,, generate V. Ifn>m, then there
exist elements A4, ..., Ay, € F such that

wn:A1w1+)12wz+ +/lmwm

therefore, proving that wy, ..., wy, are linearly dependent. This proves our theorem.
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Theorem 1.4.2 Let V be a vector space and suppose that one basis has n ele-
ments, and another basis has m elements. Then m = n.

Proof 1.4.1.2 We apply Theorem (1.4.1) to the two bases. Theorem 1.4.1 implies that
both alternatives n>m and m > n areimpossible, and hence m = n.

Definition 1.4.2 Let V be a vector space having a basis consisting of n ele-
ments. We shall say that n is the dimension of V.

Remark 1.4.1

1. IfV={0} , then V does not have a basis, and we shall say that V has dimension
0.

2. The dimension of a vector space V over F will be denoted by dimg V', or simply
dimV.

3. A vector space which has a basis consisting of a finite number of elements, or the
zero vector space, is called finite dimensional. Other vector spaces are called infi-
nite dimensional.

4. Whenever we speak of the dimension of a vector space in the sequel, it is assumed
that this vector space is finite dimensional.

Example 1.4.1 Let F be a field. Then F is a vector space over itself, and it is of di-
mension 1. In fact, the element 1 of F forms a basis of F over F, because any element
x €F has a unique expression as x = x.1.

Example 1.4.2 The vector space R" has dimension n over R, the vector space C"
has dimension n over C. More generally for any field F, the vector space F" has
dimension n over F. Indeed, the n vectors

e1=(,0,...,0),e=(0,1,...,0), ..., e,=(0,0,...,1)

form a basis of F" over F.

Definition 1.4.3 (Maximal subset of linearly independent) Let {v1,, ..., v,}
be a set of elements of a vector space V. Letr be a positive integer less than
n. We shall say that {vl,, e vr} is a maximal subset of linearly independent
elements if vy,, ..., v are linearly independent, and if in addition, given any
v; withi>r, theelements vy,, ..., vy, v; are linearly dependent.
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Theorem 1.4.3 Let {vl,, so0f vn} be a set of generators of a vector space V.
Let {vy, ..., v} be a maximal subset of linearly independent elements. Then
{wi, ..., v} isabasisof V.

Proof 1.4.1.3 We must prove that vy, ..., v, generate V. We shall first prove that each
v, (for i >r) isa linear combination of v, ..., v,. By hypothesis, given v; there
existscalarsa;, ..., ar, B notall0.

v +ava+ o+ apvr+ fri=0

Furthermore, § #0, because otherwise, we would have a relation of linear dependence
for vy, ..., v, Hence we can solve for v;

a a ar

thereby showing that V; is a linear combination of vy, ..., v, .
Next, let v be any element of V. There exist numbers cy, Co, ..., ¢, Ssuch that

V=ClV1+CUr+ -+ Culp

In this relation, we can replace each v; (i > r) by a linear combination of vy, ..., Uy,
then we collect terms, we find that we have expressed v as a linear combination of
V1, ..., vy This proves that vy, ..., v, generate V , and hence form a basis of V.
Theorem 1.4.4 Let V be a vector space of dimension n, and let vy, ..., v, be
linearly independent elements of V. Then vy, ..., v, constitute a basis of V.

Proof 1.4.1.4 According to the theorem 1.4.1, vy, ..., v, is a maximal set of linearly in-

dependent elements of V. Hence it is a basis by Theorem 1.4.3.

Proposition 1.4.1 Let V be a F-vector space of finite dimension n. Let Bc V
be a subset of V . If |B| = n ( The cardinality of B is equal todim V), then

Bisabasis < Bis linearly independent < B generatesV.

Corollary 1.4.1 Let V be a vector space and let W be a subspace. If
dimW =dimV then V=W.

Proof 1.4.1.5 A basis for W must also be a basis for V by Theorem 1.4.4.
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Corollary 1.4.2 Let V be a vector space of dimension n. Let r be a positive in-
teger with r < n, andletvy,..., v. belinearly independent elements of V. Then
there exist elements v;i1, ..., Un Such that {vl, U,y ..., vn} is a basis of V.

Theorem 1.4.5 Let V be a finite dimensional vector space dimV = n. Let W
be a subspace which does not consist of 0 alone. Then W has a basis, and
dimW <dimV.

1.4.2 Sums and direct sums

Definition 1.4.4 Let V be a vector space over the field K. Let U, W be subspaces
of V. We define the sum of U and W to be the subset of V consisting of all sums
u+w with ueU and we W . Wedenote this sum by U + W

Proposition 1.4.2 Let V be a vector space over the field K. Let U,W be sub-
spaces of V. then the subset U +V is a subspace of V.

Proof 1.4.2.1 Indeed, if uy,u, € U and wy, wp € W then (u;+ wy)+ (up + wp) =
(U1 +u)+(wy +wy) e U+ W. So, U+ W is closed under addition.
If ceK, then

clim+w)=cuy+cweU+W.

So U+ W is closed under scalar multiplication.
We have Oy +0y =0y e U+ V,s0U+ V # @. This prove that U + W is a subspace of V.

Theorem 1.4.6 (Grassmann Formula) Let V be a vector space and U and
W two vector subspaces of V then

|dim(U + W) =dimU +dim W —-dim(U n W) |

Proof1.4.2.2 Let Bynw = {v1, ..., Um} be a base of U W. If we extend the basis to
By={vi, ..., , Um, Ums1, .., ur} and Bw ={v1, ..., Um, Wm+1, ..., Ws} then

S:{UI,VZ, o Umy Um+l, oo Uy, Wt ooy ws}

is a generating set of U+ W. . Now I have to prove that S is linearly independent:

m r s m r s
0= ajvi+ Y Pjuj+ Y, Mwe=v=) avi+ Y Pjuj=— Y Awg
=1 =

j=m+1 k=m+1 i=1 j=m+1 k=m+1
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isavector of UNW. and then

r m
Z ,Bjuj:v—ZaivieUmW.

j=m+1 i=1
So, Z;:m+1 Bjuj =0 because the vectors ums1, ..., Uy arenotinVnW.We deduce
that pj =0, since By isindependent.
Therefore
m S
= Za,-v,-+ Z Ak Wy (1.4.1)
i=1 k=m+1

and, since By is independent we have that a; = A =0., and

|dim(U + W) =dimU +dim W — dim(U n W) |

Definition 1.4.5 We shall say that V is a direct sum of U and W if for every
element v of V there exist unique elements uc U and w € W such that
v=u+w. whenV isthe direct sum of subspaces U, W we write

V=UsW

Theorem 1.4.7 Let V be a vector space over the field K, and let U,W be sub-
spaces. IfU+W =V, and if UnW = {0}, then V is the direct sum of U
and W.

Proof 1.4.2.3 Given v € V, by the first assumption, there exist elements u € U and
w € W such that v=u+w. Thus V isthesumof U and W. To prove it is the direct
sum, we must show that these elements u,w are uniquely determined. Suppose there
exist elements u € U and w € W suchthat v=u +w'. Thus

/ ’
u+w=u +w.

thenu—u =w — w. Butu—u € Uand w-weWw . By the second assumptlon, we
conclude that u—u =0 and w —w=0, whence u=u and w=w, so proving our
theorem.
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Complementary subspaces

Theorem 1.4.8 Let V be a finite dimensional vector space over the field F. Let
W' be a subspace. Then there exists a subspace U such that V is the direct sum
of W and U.

Proof 1.4.2.4 We select a basis of W , and extend it to a basis of V, using Corollary
1.4.2. The assertion of our theorem is then clear. In the notation of that theorem, if
{v1, ..., v} isabasisof W, then welet U be the space generated by {v:+1, ..., Un}

Example 1.4.3 LetU = {(x,0) : xe R}, W={(0,) : yR} be two subspaces of R* then
U+W={x,y) : x yeR}

Example 1.4.4 Let U = {(a,0,0) : a € R}, W ={(0,b,0) : aR} be two subspaces of
R3.Then

U+W={(a,b0) : a beR}

Example 1.4.5 Let U = {(x,y,0) : x, ye R}, W =1{(0,0,2) : z € R} two subspaces of R®
then

U+W={x,y2) : x,y,zelR%}:lR%3
One unique way to write
(x,5,2) = (x,¥,0)+ (0,0, 2).

Any vector inR3 can be written as a unique way, so U and W are in direct sum of R3. we
write Ue W =R3.

Example 1.4.6 LetU ={(a,b,0) : a, be R}, W ={(0,¢,d) : c,d € R} two subspaces of
R3 then

U+W={(ab+cd : ab, c,de[RZ}:[RZ3

we can see that there is many way to write an element of R® as sum of element of V and
element of W.

(1,2,3)=(1,2,0)+(0,0,3) or
=(1,0,0) +(0,2,3) or
=(1,1,0)+(0,1,3) or

so U and W are not in direct sum of R3
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Definition 1.4.6 Let V be a vector space over F, U and W two subspaces of
V. U and W are called complementary subspaces in V if U+ W is direct
sum and equal to V. Thus

U and W are complements inV < V=Ue®W.
S UnNnW=0y andU+W =V.

Remark 1.4.2

1. Wecall U a complement of W in V . Note that this complement is not unique

in general.

2. We note that given the subspace W, there exist usually many subspaces U such

that V isthedirect sumof W and U.

Theorem 1.4.9 If V is a finite dimensional vector space over [F, and is the di-
rect sum of subspaces U, W then

dimV =dimU + dim W.

Proof 1.4.2.5 We can apply the grassmann formula, since U N W = {0y}, then

dimU+V)=dimU +dim W —dim(U n W)
=dimU+dimW -0
=dimU + dim W.

Rank of a set of vectors.

Definition 1.4.7 (Rank) LetV be a vector space over F and S ={v, va, ..., U}
be a set of vectors of V . Therank of S is the dimension of the subspace spanned
by S or, equivalently the maximum number of independent vectors of S.

Example 1.4.7 Ler S = {v; = (1,0), vz = (-1,0), v3 = (4,0)} be a set of vectors of R*. we
can easily see that the rank of S is 1. (rank(S) = 1) there is only one vector which linearly

independent.
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Example 1.4.8 Let S = {w; = (1,0,0), wo = (1,0,1), w3 = (0,0,1)} be a set of vectors of
R3. we can easily see that the rank of S is 3. (rank(S) = 3) because S is linearly indepen-
dent.

Va,B,yeR, aw; + pwr+yws=(0,0,00 =a=LF=y=0.

let to reader the check .



