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Chapter 1

Vector spaces

A vector space over some field F is an algebraic structure consisting of a non empty
set V on which are defined two binary operations referred to addition, and a scalar
multiplication in which elements of the vector space are multiplied by elements of the
given field F. These two operations are required to satisfy certain axioms .

1.1 Vector spaces over field F

Let F be a field and V be a non empty set. Assume that there is a binary operation
on V called "addition" which assigns to each pair of elements u and v of V a unique
sum u ⊕v ∈V . Assume that there is a second operation , called "scalar multiplication"
which assigns to any k ∈ F and any v ∈V a unique scalar multiple k ⊗ v ∈V .

Definition 1.1.1 Let V be a non empty set equipped by two binary operations
denoted addition (⊕) and scalar multiplication (⊗). We say that (V ,⊕, ⊗) is a
vector space over a field F if and only if

Ê (V , ⊕) is an abelian group.

Ë The scalar multiplication satisfies these conditions ∀α,β ∈ F, ∀u, v ∈V

(a) α⊗ (u ⊕ v) =α⊗u ⊕α⊗ v

(b) (α+β)⊗u =α⊗u ⊕β⊗u

(c) (αβ)⊗u =α⊗ (β⊗u)

(d) 1⊗u = u

2
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In other words,

Definition 1.1.2 Let V be a non empty set together with two binary operations
addition (⊕) and scalar multiplication (⊗). (V ,⊕, ⊗) is a vector space over F if
the following axioms are satisfied.
Axioms for vector addition

A1 V is closed under ⊕ : if u and v are in V , then u ⊕ v is in V.

A2 ⊕ is commutative : u ⊕ v = v ⊕u for all u and v in V .

A3 ⊕ is associative : u ⊕ (v ⊕w) = (u ⊕ v)⊕w for all u, v and w in V .

A4 Existence of the identity element : An element 0V in V exists such that

v ⊕0V = v = 0V ⊕ v for every v in V .

A5 Existence of the symmetric elements : for each v in V , an element −v in

V exists such that −v ⊕ v = 0V and v ⊕ (−v) = 0V .

Axioms for scalar multiplication

S1 V closed under scalar multiplication ⊗ :
if v is in V , then a ⊗ v is in V for all a in F.

S2 Distributivity property of multiplication over addition :
a ⊗ (v ⊕w) = a ⊗ v ⊕a ⊗w for all v and w in V and all a in F.

S3 Distributivity property of scalar multiplication :
(a +b)⊗ v = a ⊗ v ⊕b ⊗ v for all v in V and all a and b in F.

S4 Associativity of scalar multiplication :
a ⊗ (b ⊗ v) = (ab)⊗ v for all v in V and all a and b in F.

S5 1⊗ v = v for all v in V .(Where 1 is the unity element of the filed F).

Then V is called a vector space over F.

Remark 1.1.1



CHAPTER 1. VECTOR SPACES 4

1. The elements of the underlying field F are called scalars and the elements of the
vector space are called vectors.

2. Note also that we often restrict our attention to the case whenF=R orC.

3. A vector space over a field F is sometimes called an F- vector space or simply F-
space . A vector space over the real field is called a real vector space and a vector
space over the complex field is called a complex vector space.

Example 1.1.1 Every field F is a vector space over F.
R is a R - vector space. C is a C - vector space.

Example 1.1.2 Let F be a field , let n ∈N∗. Then the set Fn of n -tuples of elements of
F is a vector space over F.

Fn = F×F×F××·· ·F.︸ ︷︷ ︸
n times

= {
(x1, x2, . . . , xn) : xi ∈ F for i = 1, 2, · · · , n

}
where

(x1, x2, . . . , xn)+(y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn),

λ.(x1, x2, . . . , xn) = (λx1,λx2, . . . ,λxn)

for all elements (x1, x2, . . . , xn) and (y1, y2, . . . , yn) of Fn and for all elements λ of F.

Example 1.1.3 Let X a non empty set and V a F - vector space. we denote F (X , V ) ={
f : X −→V , f function

}
we define two binary operations over F (X , V )

⊕ F (X , V )×F (X , V ) −→F (X , V ) ⊗ F×F (X , V ) −→F (X , V )

( f , g ) 7→ f ⊕ g (λ, f ) 7→λ⊗ f

( f ⊕ g )(x) = f (x)+ g (x) (λ⊗ f )(x) =λ f (x)

We show that (F (X , V ), ⊕, ⊗) is a F- vector space.

Example 1.1.4 Let P2 be the set of all polynomials of degree at most 2 with coefficients
from a field F, i.e., expressions of the form

p(x) = ax2+bx + c, where a, b, c ∈ F.

Define addition and scalar multiplication of polynomials in the usual way, i.e.,

(ax2 +bx + c)+(a
′
x2 +b

′
x + c

′
) = (a +a

′
)x2 + (b +b

′
)x + (c + c

′
)

α.(ax2 +bx + c) =αax2 +αbx +αc.

Then P2 is a vector space .
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Proposition 1.1.1 Let (V ,⊕, ⊗) be a vector space over a field F. for all elements c
of F and elements v of V .The following properties are satisfied

1. c ⊗0V = 0V

2. 0F⊗ v = 0V

3. (−1)⊗ v =−v

4. (−c)⊗ v =−(c ⊗ v) = c ⊗ (−v)

5. (α−β)⊗ v =α⊗ v −β⊗ v.

6. If c ⊗ v = 0V then c = 0F or v = 0V .

Proof 1.1.0.1

1. The zero element 0V of V satisfies 0V ⊕ 0V = 0V . Therefore c ⊗ 0V ⊕ c ⊗ 0V =
c ⊗ (0V ⊕0V ) = c ⊗0V . So c ⊗0V = 0V ( just add the additive inverse of c ⊗0V )

2. The zero element 0F of the field F satisfies 0F+0F = 0F. Therefore 0F⊗v ⊕0F⊗v =
(0F+0F)⊗ v = 0F⊗ v so 0F⊗ v = 0V ( just add the additive inverse of 0F⊗ v)

3.

v ⊕ ((−1)⊗ v) = (1⊗ v)⊕ ((−1)⊗ v)

= (1+ (−1))⊗ v

= 0F⊗ v = 0V .

So the inverse of v is −v = (−1)⊗ v

4. We have (−c)⊗ v = ((−1)⊗ c)⊗ v = (−1)⊗ (c ⊗ v) =−(c ⊗ v)

5.

(α−β)⊗ v = (α+ (−β))⊗ v

=α⊗ v ⊕ (−β)⊗ v

=α⊗ v −β⊗ v

6. We assume that c ⊗v = 0V . If c = 0F then we have c ⊗v = 0V . If c 6= 0F, since F is
a field then c−1 exists. so v = 1⊗ v = (c.c−1))⊗ v = c−1 ⊗ (c ⊗ v) = c−1 ⊗0V = 0V
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Remark 1.1.2 Be careful, the additive identity of the field is not a vector .
more generally, nothing in the field is a vector. We regard elements of the field and ele-
ments of the vector space as separate.

1.2 Vector subspaces

Definition 1.2.1 If V is a vector space over a field F, then a subspace H of V is
a subset H ⊂V such that H is a vector space over F with the same addition and
scalar multiplication as V .

Proposition 1.2.1 If V is a vector space over a field F, and H is a subset of V ,
then H is a vector subspace of V if and only if

1. H 6= ;
2. For any u, v ∈ H, then u + v ∈ H.

( H is closed under addition).

3. For any α ∈ F and u ∈ H, then αu ∈ H.
( H is closed under scalar multiplication )

Proposition 1.2.2 Let V be a vector space over F. H be a subset of V .

H is a subspace of V ⇐⇒
{

H 6= ;.
∀α ∈ F, ∀u, v ∈ H ,αu + v ∈ H .
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Proof 1.2.0.1

1. let’s show the direct implication ( =⇒)
We assume that H is a vector subspace then

(a) Since H is a vector subspace, then the identity element belongs to H. thus
H 6= ;

(b) Since H is a vector subspace then ∀α ∈ F,∀u, v ∈ H ,αu + v ∈ H

2. Show the inverse implication (⇐=),
we assume that H 6= ; and ∀α ∈ F,∀u, v ∈ H ,αu+v ∈ H and show that H is closed
under addition and scalar multiplication.
Just take α= 1, we obtain u + v ∈ H , ∀u, v ∈ H so H is closed under addition.
to show that H is closed under scalar multiplication , just take v = 0, we obtain
αu ∈ H , ∀α ∈ F,u ∈ H.

Proposition 1.2.3 (necessary condition) Let V be a vector space over a field F

and H be a subset of V .

H is a vector subspace of V =⇒ 0V ∈ H

( 0V is the identity element of V )

Proof 1.2.0.2 Since H is a vector subspace of V then H is closed under scalar multipli-
cation, that means ∀α ∈ F,∀v ∈ H ,α.v ∈ H .
If we put α= 0F, then we have 0F . v=0V ∈V ( see the proposition above).

Remark 1.2.1 The converse of this implication is false as this following example shows

Example 1.2.1 In the R - vector space R2, the subset

F = {
(x, y) ∈R2 : x y = 0

}
is not a vector space, although it contains the identity element (0,0). We have F is not
closed under addition , (1,0), (0,1) ∈ F but (1,0)+ (0,1) = (1,1) ∉ F .

Example 1.2.2

1. The set {0} ⊂V is always a subspace of V .

2. The set V ⊂V is always a subspace of V .
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3. R2 is an R - vector space.

(a) F1 =
{
(x, y) ∈R2 : y = 0

}
is an R - vector subspace of R2

(b) F2 =
{
(x, y) ∈R2 : x + y = 2

}
is not an R - vector subspace of R2

(c) F3 =
{
(x, y) ∈R2 : x + y = 0

}
is an R - vector subspace of R2

Proposition 1.2.4 Let V be a F - vector space. We consider a set of vector sub-
spaces (Hi )i∈I then

⋂
i∈I Hi is a vector subspace.

Proof 1.2.0.3

1. From the above proposition the 0V vector is in all subspaces Hi ,∀i ∈ I , then it is
in

⋂
i∈I Hi which means that

⋂
i∈I Hi 6= ;.

2. ∀α ∈ F,∀u, v ∈⋂
i∈I Hi

αu + v ∈? ⋂
i∈I Hi

u, v ∈ ⋂
i∈I

Hi =⇒ u, v ∈ Hi ,∀i ∈ I .

=⇒αu + v ∈ Hi ,∀i ∈ I . (because Hi is a vector subspace of V )

=⇒αu + v ∈ ⋂
i∈I

Hi .

Therefore
⋂

i∈I Hi is a vector subspace of V .

Remark 1.2.2 The union of subspaces is not a subspaces, in general.

Example 1.2.3 R2 is a vector space over R. Let

F = {
(x, y) ∈R2 : x = 0

}
.

G = {
(x, y) ∈R2 : y = 0

}
.

are two vector spaces of R2.

F ∪G = {
(x, y) ∈R2 : x = 0 or y = 0

}
.

is not a subspace , because it is not closed under the addition. we have

(1,0) ∈ F ∪G and (0,1) ∈ F ∪G but (1,0).+ (0,1) = (1,1) ∉ F ∪G .
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Proposition 1.2.5 The union of two subspaces is a subspace if and only if one
of the subspaces is contained in the other.In other words let F1,F2 two subset of
vector space E. we have this equivalence

F1 ∪F2 is a vector space of E ⇐⇒ F1 ⊂ F2 or F2 ⊂ F1

Proof 1.2.0.4

1. Show (⇐=) This is the easy direction.

If F1 ⊂ F2 or F2 ⊂ F1 then F1 ∪F2 = F1 or F1 ∪F2 = F2 is a subspace of E.

2. Show (=⇒)) This is the harder direction.

We suppose that F1 ∪F2 is a subspace , prove that F1 ⊂ F2 or F2 ⊂ F1. By using a
contradiction reasoning, we assume that F1 * F2 and F2 * F1

which means there exists x, y such that x ∈ F1 and x ∉ F2 and y ∈ F2 and y ∉ F1 .
We have

x, y ∈ F1 ∪F2 =⇒ x + y ∈ F1 ∪F2

=⇒ x + y ∈ F1 or x + y ∈ F2

=⇒ (−x)+ (x + y) ∈ F1 or (x + y)+ (−y) ∈ F2

(because F1 and F2 are subspaces then the inverse of x ∈ F1 exist

and the inverse of y ∈ F2 exist also.

=⇒ y ∈ F1 or x ∈ F2

Contradiction , because we assumed that y ∉ F1 and x ∉ F2. Therefore, the union of two
subspaces is a subspace if and only if one of the subspaces is contained in the other.

1.3 Linear Dependence, Spanning Sets and Bases

Definition 1.3.1 (Linear Combinations) Let V be an arbitrary vector space over
field F, and let v1, v2, · · · , vn be elements of V . Let α1, α2, . . . , αn be scalars
( elements of F). An expression of type

α1v1 +α2v2 +α3v3 +·· ·+αn vn

is called a linear combination of v1, v2, . . . , vn
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Spanning Set of vectors

Definition 1.3.2 The collection of all linear combinations of elements
v1, v2, . . . , vn is denoted span{v1, v2, . . . , vn}. or 〈v1, v2, . . . , vn〉.

Proposition 1.3.1 Let W = span{v1, v2, . . . , vn} be the set of all linear combina-
tions of v1, v2, . . . , vn then W is a subspace of V .

Proof 1.3.0.1

1. Show that W is closed under addition.
Letα1, α2, . . . , αn , β1, β2, . . . , βn be scalars. Then

α1v1 +α2v2 +α3v3 +·· ·+αn vn +β1v1 +β2v2 +β3v3 +·· ·+βn vn

= (α1 +β1)v1 + (α2 +β2)v2 + (α3 +β3)v3 +·· ·+ (αn +βn)vn

Thus the sum of two elements of W is again an element of W .

2. Show that W is closed under scalar multiplication.
if λ is a scalar, then

λ(α1v1 +α2v2 +α3v3 +·· ·+αn vn) =λα1v1 +λα2v2 +λα3v3 +·· ·+λαn vn

is a linear combination of v1, v2, . . . , vn , and hence is an element of W .

3. We have

0 = 0.v1 +0.v2 +0.v3 +·· ·+0.vn

is an element of W

This proves that W is a subspace of V .

Definition 1.3.3 We call Span{v1, . . . , vn} the subspace spanned (or generated)
by {v1, . . . , vn}.
Given any subspace H of V , a spanning (or generating) set for H is a set
{v1, . . . , vn} in H such that H = Span{v1, . . . , vn}.

Definition 1.3.4 (Span of a set of vectors) Let V be a vector space over some
field F, and let S be a set of vectors (i.e. a subset of V ). The span of S is the
set of all linear combinations of elements of S. In symbols, we have

span S =
{
a1u1 + . . . + ak uk : u1, . . . , uk ∈ S and a1, . . . , ak ∈ F} .



CHAPTER 1. VECTOR SPACES 11

Remark 1.3.1 Be careful, even when the set S is infinite, each individual element v ∈
spanS is a linear combination of only finitely many elements u1, . . . , , uk of S. The
definition does not talk about infinite linear combinations a1u1 +a2u2 +a3u3 + . . . .

Linear dependence

Definition 1.3.5 Let V be a vector space over the field F, and let v1, v2, . . . , vn

be elements of V . We shall say that v1, v2, . . . , vn are Iinearly dependent over F
if there exist elements a1, a2, . . . , an in F not all equal to 0 such that

a1v1 +a2v2 +a3v3 +·· ·+an vn = 0

If there do not exist such numbers, then we say that v1, v2, . . . , vn are linearly
independent. In other words, vectors v1, v2, . . . , vn are linearly independent if
and only if the following condition is satisfied:

∀a1, a2, . . . , an ∈ F : a1v1 +a2v2 +a3v3 +·· ·+an vn = 0 =⇒ a1 = a2 = ·· · = an = 0.

Example 1.3.1 Show that the vectors (1,1) and (−3,2) are linearly independent. Let
α, β be two numbers such that

α(1,1)+β(−3,2) = (0,0).

Writing this equation in terms of components, we find

a −3β= 0, α+2β= 0.

This is a system of two equations which we solve for α and β. Subtracting the sec-
ond from the first, we get −5β = 0, whence β = 0. Substituting in either equation, we
find α= 0. Hence α, β are both 0, and our vectors are linearly independent.

Example 1.3.2

1. Let V =Kn and consider the vectors

e1 = (1,0,0, . . . ,0)

e2 = (0,1,0, . . . ,0)

...

en = (0,0,0, . . . ,1)
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Then e1, . . . , en are linearly independent. Indeed, let α1, · · · , αn be numbers such
that

α1e1 + ·· ·+αnen = 0

since α1e1 + ·· ·+αnen = (α1, α2, . . . , αn), it follow that all αi = 0.

2. Let V be the vector space of all functions. Let f1, · · · , fn be n functions.
To say that they are linearly dependent is to say that there exists n numbers α1, . . . , αn

an not all equal to 0 such that

α1 f1(x)+α2 f2(x)+ +αn fn(x) = 0 for all value of x.

The two functions ex ,e2x are linearly independent.

αex +βe2x = 0 =⇒α=β= 0.

Theorem 1.3.1 Let V be a vector space. Let v1, . . . , vn be linearly independent
elements of V . Let α1, . . . , αn and β1, . . . , βn be scalars. Suppose that we have

α1v1 + ·· ·+αn vn =β1v1 + ·· ·+βn vn .

Then αi =βi , ∀i = 1, . . . , n.

Proof 1.3.0.2 Subtracting the right-hand side from the left-hand side, we get

α1v1 + ·· ·+αn vn −β1v1 − ·· ·+βn vn = 0 ⇐⇒ (α1 −β1)v1 + ·· ·+ (αn −βn)vn = 0

Since v1, . . . , vn are linearly independent , then we deduce that

αi −βi = 0, ∀i = 1, . . . , n.

Thereby proving our assertion.

Definition of Basis of vector space

If elements v1, . . . , vn of V generate V and in addition are linearly independent,
then

{
v1, . . . , vn

}
is called a basis of V . We shall also say that the elements v1, · · · , vn

constitute or form a basis of V .
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Definition 1.3.6 A collection of vectors in V which is both linearly independent
and spans V is called a basis of V .

Example 1.3.3

1. The set B = {
(1,0,0), (0,1,0), (0,0,1)

}
is a basis of the vector space R3. Ideed, First

we prove that B spans R3

Given any (x, y, z) ∈R3 we have

(x, y, z) = x(1,0,0)+ y(0,1,0)+ z(0,0,1).

So, for any (x, y, z) ∈R3, (x, y, z) ∈ span(B). So,

R3 = Span(B).

Secondly, B is linearly independent, because

α(1,0,0)+β(0,1,0)+γ(0,0,1) = (0,0,0) =⇒α=β= γ= 0.

So, B is a basis of R3.

2. Similarly, a basis of the vector space Rn is given by the set

B = {
e1, e2, . . . , en

}
where, 

e1 = (1,0,0, . . . , 0)
e2 = (0,1,0, . . . , 0)
e3 = (0,0,1, . . . , 0)

...
...

en = (0,0,0, . . . , 1)

This one is called the standard basis of Rn .

3. Let P3 be a vector space of all polynomials of degree less of equal to 3. Then

B = {
1, x, x2, x3}
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is a basis of P3.
Indedd, clearly span(B) = P3. Also B is linearly independent, because

α01+α1x +α2x2 +α3x3 = 0P3 =⇒α0 =α1 =α2 =α3 = 0.

where, 0P3 , the identity element, is equals to : 0P3 = 0+0.x+0.x2+0.x3. Also, as
in Rn , a basis of Pn , the vector space of all polynomials of degree less of equal to
n, is given by the set

B = {
1, x, x2, . . . , xn}

we called B a standard basis of Pn

Coordinates of a vector

Let V be a vector space, and let
{

v1, . . . , vn
}

be a basis of V . The elements v of V
can be represented by n-tuples relative to this basis,

v =α1v1 + ·· ·+ αn vn

The n-tuple (α1, . . . , αn) is uniquely determined by v .( according to theorem 1.3.1).
We call (α1, . . . , αn) the coordinates of v with respect to basis, and we call αi the
i-th coordinate.

Example 1.3.4 Find the coordinates of (1,0) with respect to the two vectors (1,1) and
(−1,2), which form a basis. We must find numbers α, β such that

α(1,1)+β(−1,2) = (1,0).

Writing this equation in terms of coordinates, we find

α−β= 1, α+2β= 0.

Solving for α and β, we find β= −1
3 and α= 2

3 . Hence the coordinates of (1,0) with
respect to (1,1) and (−1,2) are (−2

3 , −1
3 ).

Example 1.3.5 Show that the vectors (1,1) and (−1,2) form a basis of R2. We have to
show that they are linearly independent and that they generate R2.
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1. To prove linear independence, suppose that a, b are scalars such that

α(1,1)+β(−1,2) = (0,0).

Then

α−β= 0 and α+2β= 0.

Subtracting the first equation from the second , we obtain 3β = 0, so that β = 0.
then from the first equation, α = 0, thus proving that our vectors are linearly
independent.

2. Next, let (x, y) be an arbitrary element of R2. We have to show that there exist
numbers a,b such that

(x, y) =α(1,1)+β(−1,2).

In other words, we must solve the system of equations{ −β= x
α+2β= y

Again subtract the first equation from the second. We find 3b = y −x,whence.

b = y −x

3

and finally

α=β+x = y −x

3
+x

According to our definitions, (α,β) are the coordinates of (x, y) with respect to the
basis

{
(1,1), (−1,2)

}
.

Exercise 1.3.1 Let v, w be elements of a vector space and assume that v 6= 0. If v, w
are linearly dependent, show that there is a scalar λ such that w =λv.

Exercise 1.3.2 Let (x, y) and (x
′
, y

′
) be two vectors in the vector space R2. If x y

′ −
y x

′ = 0, show that they are linearly dependent. If x y
′ − y x

′ 6= 0, show that they are
linearly independent.
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Exercise 1.3.3 Show that the following vectors are linearly independent (over C or R).

1. (1,1,1) and (0,1,−2).

2. (−1,1,0) and (0,1,2).

3. (π,0) and (0,1).

4. (1,1,0), (1,1,1), and (0,1,−1).

5. (1,0) and (1,1).

6. (2,−1) and (1,0).

7. (1,2) and (1,3).

8. (0,1,1), (0,2,1), and (1,5,3).

Exercise 1.3.4 Express the given vector X as a linear combination of the given vectors
A, B, and find the coordinates of X with respect to A, B.

1. X = (1,0), A = (1,1),B = (0,1).

2. X = (2,1), A = (1,−1),B = (1,1).

3. X = (1,1), A = (2,1),B = (−1,0) .

4. X = (4,3), A = (2,1),B = (−1,0).

1.4 Finite dimensional vector spaces

Definition 1.4.1 A vector V is called finite dimensional if it is spanned by a fi-
nite set of vectors. Otherwise , V is called infinite dimensional.

1.4.1 Dimension of a vector spaces

The main result of this section is that any two bases of a vector space have the same
number of elements. To prove this, we first have an intermediate result.

Theorem 1.4.1 Let V be a vector space over the field F. Let
{

v1, . . . , vm
}

be a
basis of V over F. Let w1, . . . , wn be elements of V , and assume that n > m.
Then w1, . . . , wn are linearly dependent.
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Proof 1.4.1.1 Assume that w1, . . . , wn are linearly independent. Since
{

v1, . . . , vm
}

is
a basis, there exist elements α1, . . . , αm ∈ F such that

w1 =α1v1 +α2v2 +α3v3 +·· ·+αm vm

Since w1, . . . , wn are linearly independent, then w1 6= 0. So some scalar αi 6= 0 . After
re- numbering v1, . . . , vm if necessary, we may assume without loss of generality that
say α1 6= 0. then

α1v1 = w1 −α2v2 −α3v3 − ·· ·−αn vn .

v1 =α−1
1 w1 −α−1

1 α2v2 −α−1
1 α3v3 − ·· ·−α−1

1 αn vn

The subspace of V generated by w1, . . . , vm contain v1, and hence must be all of V
since v1, . . . , vm , generate V . The idea is now to continue our procedure stepwise, and
to replace successively v2, v3 . . . by w1, w2, . . . until all the elements v1, . . . , vm are
exhausted and w1, . . . , wm generate V .
Let us now assume by induction that there is an integer r with 1 < r < m such that, after
a suitable renumbering of v1, . . . , vm , the elements w1, . . . , wr , vr+1, . . . , vm generate
V . There exist elements β1, β2, . . . ,βr , γr+1, γr+2, . . . ,γm such that

wr+1 =β1w1 + ·· ·+βr wr +γr+1vr+1 + ·· ·+ γm vm .

We cannot have γ j = 0 for j = r + 1, . . . , m, for otherwise, we get a relation of linear
dependence between w1, . . . , wr+1, contradicting our assumption. After renumbering
vr+1, . . . , vm if necessary, we may assume without loss of generality that say γr+1 6= 0.
We then obtain

γr+1vr+1 = wr+1 −β1w1 − ·· ·−βr wr −γr+2vr+2 − ·· ·− γm vm .

Dividing by γr+1 we conclude that vr+1 is in the subspace generated by
w1, . . . , wr+1, vr+2, . . . , vm

By our induction assumption, it follows that w1, . . . , wr+1, vr+2, . . . , vm generate V.
Thus by induction, we have proved that w1, . . . , wm generate V . If n > m, then there
exist elements λ1, . . . , λm ∈ F such that

wn =λ1w1 +λ2w2 + ·· ·+λm wm .

therefore , proving that w1, . . . , wn are linearly dependent. This proves our theorem.
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Theorem 1.4.2 Let V be a vector space and suppose that one basis has n ele-
ments, and another basis has m elements. Then m = n.

Proof 1.4.1.2 We apply Theorem (1.4.1) to the two bases. Theorem 1.4.1 implies that
both alternatives n > m and m > n are impossible, and hence m = n.

Definition 1.4.2 Let V be a vector space having a basis consisting of n ele-
ments. We shall say that n is the dimension of V .

Remark 1.4.1

1. If V = {
0
}

, then V does not have a basis, and we shall say that V has dimension
0.

2. The dimension of a vector space V over F will be denoted by dimFV , or simply
dimV .

3. A vector space which has a basis consisting of a finite number of elements, or the
zero vector space, is called finite dimensional. Other vector spaces are called infi-
nite dimensional.

4. Whenever we speak of the dimension of a vector space in the sequel, it is assumed
that this vector space is finite dimensional.

Example 1.4.1 Let F be a field. Then F is a vector space over itself, and it is of di-
mension 1. In fact, the element 1 of F forms a basis of F over F, because any element
x ∈ F has a unique expression as x = x.1.

Example 1.4.2 The vector space Rn has dimension n over R, the vector space Cn

has dimension n over C . More generally for any field F, the vector space Fn has
dimension n over F. Indeed, the n vectors

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1)

form a basis of Fn over F.

Definition 1.4.3 (Maximal subset of linearly independent) Let
{

v1, , . . . , vn
}

be a set of elements of a vector space V . Let r be a positive integer less than
n. We shall say that

{
v1, , . . . , vr

}
is a maximal subset of linearly independent

elements if v1, , . . . , vr are linearly independent, and if in addition, given any
vi with i > r , the elements v1, , . . . , vr , vi are linearly dependent.
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Theorem 1.4.3 Let
{

v1, , . . . , vn
}

be a set of generators of a vector space V .
Let

{
v1, . . . , vr

}
be a maximal subset of linearly independent elements. Then{

v1, . . . , vr
}

is a basis of V .

Proof 1.4.1.3 We must prove that v1, . . . , vr generate V . We shall first prove that each
vi (for i > r ) is a linear combination of v1, . . . , vr . By hypothesis, given vi there
exist scalars α1, . . . , αr , β not all 0.

α1v1 +α2v2 + ·· ·+αr vr +βvi = 0

Furthermore, β 6= 0, because otherwise, we would have a relation of linear dependence
for v1, . . . , vr Hence we can solve for vi

vi = α1

−βv1 + α2

−βv2 + . . . + αr

−βvr

thereby showing that Vi is a linear combination of v1, . . . , vr .
Next, let v be any element of V . There exist numbers c1, c2, . . . , cn such that

v = c1v1 + c2v2 + ·· ·+ cn vn

In this relation, we can replace each vi (i > r ) by a linear combination of v1, . . . , vr ,
then we collect terms, we find that we have expressed v as a linear combination of
v1, . . . , vr This proves that v1, . . . , vr generate V , and hence form a basis of V .

Theorem 1.4.4 Let V be a vector space of dimension n, and let v1, . . . , vn be
linearly independent elements of V . Then v1, . . . , vn constitute a basis of V .

Proof 1.4.1.4 According to the theorem 1.4.1, v1, . . . , vn is a maximal set of linearly in-
dependent elements of V . Hence it is a basis by Theorem 1.4.3.

Proposition 1.4.1 Let V be a F-vector space of finite dimension n. Let B ⊂ V
be a subset of V . If |B | = n ( The cardinality of B is equal to dimV ), then

B is a basis ⇐⇒ B is linearly independent ⇐⇒ B generates V.

Corollary 1.4.1 Let V be a vector space and let W be a subspace. If
dimW = dimV then V =W .

Proof 1.4.1.5 A basis for W must also be a basis for V by Theorem 1.4.4.
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Corollary 1.4.2 Let V be a vector space of dimension n. Let r be a positive in-
teger with r < n, and let v1, . . . , vr be linearly independent elements of V . Then
there exist elements vr+1, . . . , vn such that

{
v1, v2, . . . , vn

}
is a basis of V.

Theorem 1.4.5 Let V be a finite dimensional vector space dimV = n. Let W
be a subspace which does not consist of 0 alone. Then W has a basis, and
dimW É dimV .

1.4.2 Sums and direct sums

Definition 1.4.4 Let V be a vector space over the fieldK. Let U ,W be subspaces
of V . We define the sum of U and W to be the subset of V consisting of all sums
u +w with u∈U and w ∈W . We denote this sum by U +W

Proposition 1.4.2 Let V be a vector space over the field K. Let U ,W be sub-
spaces of V . then the subset U +V is a subspace of V .

Proof 1.4.2.1 Indeed, if u1, u2 ∈ U and w1, w2 ∈ W then (u1 + w1) + (u2 + w2) =
(u1 +u2)+ (w1 +w2) ∈U +W . So, U +W is closed under addition.
If c ∈K, then

c(u1 +w1) = cu1 + cw1 ∈U +W.

So U +W is closed under scalar multiplication.
We have 0V +0V = 0V ∈U +V , so U +V 6= ;. This prove that U +W is a subspace of V .

Theorem 1.4.6 (Grassmann Formula) Let V be a vector space and U and
W two vector subspaces of V then

dim(U +W ) = dimU +dimW −dim(U ∩W )

Proof 1.4.2.2 Let BU∩W = {
v1, . . . , vm

}
be a base of U ∩W . If we extend the basis to

BU = {
v1, . . . , , vm , um+1, . . . , ur

}
and BW = {

v1, . . . , vm , wm+1, . . . , ws
}

then

S = {
v1, v2, . . . , vm ,um+1, . . . ,ur , wm+1, . . . , ws

}
is a generating set of U +W . . Now I have to prove that S is linearly independent:

0 =
m∑

ð=1
αi vi +

r∑
j=m+1

β j u j +
s∑

k=m+1
λk wk =⇒ v =

m∑
i=1

αi vi +
r∑

j=m+1
β j u j =−

s∑
k=m+1

λk wk
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is a vector of U ∩W . and then

r∑
j=m+1

β j u j = v −
m∑

i=1
αi vi ∈U ∩W.

So ,
∑r

j=m+1β j u j = 0 because the vectors um+1, . . . , ur are not in V ∩W .We deduce
that β j = 0, since BU is independent.
Therefore

0 =
m∑

i=1
αi vi +

s∑
k=m+1

λk wk (1.4.1)

and, since BW is independent we have that αi =λk = 0. , and

dim(U +W ) = dimU +dimW −dim(U ∩W ) .

Definition 1.4.5 We shall say that V is a direct sum of U and W if for every
element v of V there exist unique elements u ∈ U and w ∈ W such that
v = u +w. when V is the direct sum of subspaces U ,W we write

V =U⊕W

Theorem 1.4.7 Let V be a vector space over the field K, and let U ,W be sub-
spaces. If U +W = V , and if U ∩W = {

0
}
, then V is the direct sum of U

and W .

Proof 1.4.2.3 Given v ∈ V , by the first assumption, there exist elements u ∈ U and
w ∈W such that v = u +w. Thus V is the sum of U and W . To prove it is the direct
sum, we must show that these elements u, w are uniquely determined. Suppose there
exist elements u

′ ∈U and w
′ ∈W such that v = u

′ +w
′
. Thus

u +w = u
′ +w

′
.

then u −u
′ = w

′ −w. But u −u
′ ∈U and w

′ −w ∈W . By the second assumption, we
conclude that u −u

′ = 0 and w
′ −w = 0 , whence u = u

′
and w = w

′
, so proving our

theorem.
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Complementary subspaces

Theorem 1.4.8 Let V be a finite dimensional vector space over the field F. Let
W be a subspace. Then there exists a subspace U such that V is the direct sum
of W and U .

Proof 1.4.2.4 We select a basis of W , and extend it to a basis of V , using Corollary
1.4.2. The assertion of our theorem is then clear. In the notation of that theorem, if{

v1, . . . , vr
}

is a basis of W , then we let U be the space generated by
{

vr+1, . . . , vn
}

Example 1.4.3 Let U = {
(x,0) : x ∈R}

, W = {
(0, y) : yR

}
be two subspaces of R2 then

U +W = {
(x, y) : x, y ∈R}

Example 1.4.4 Let U = {
(a,0,0) : a ∈ R}

, W = {
(0,b,0) : aR

}
be two subspaces of

R3.Then

U +W = {
(a,b,0) : a, b ∈R}

Example 1.4.5 Let U = {
(x, y,0) : x, y ∈ R}

, W = {
(0,0, z) : z ∈ R}

two subspaces of R3

then

U +W = {
(x, y, z) : x, y, z ∈R}=R3

One unique way to write

(x, y, z) = (x, y,0)+ (0,0, z).

Any vector in R3 can be written as a unique way, so U and W are in direct sum of R3. we
write U ⊕W =R3.

Example 1.4.6 Let U = {
(a,b,0) : a, b ∈ R}

, W = {
(0,c,d) : c,d ∈ R}

two subspaces of
R3 then

U +W = {
(a,b + c,d) : a, b, c,d ∈R}=R3

we can see that there is many way to write an element of R3 as sum of element of V and
element of W .

(1,2,3) = (1,2,0)+ (0,0,3) or

= (1,0,0)+ (0,2,3) or

= (1,1,0)+ (0,1,3) or

...

so U and W are not in direct sum of R3
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Definition 1.4.6 Let V be a vector space over F, U and W two subspaces of
V . U and W are called complementary subspaces in V if U +W is direct
sum and equal to V . Thus

U and W are complements inV ⇐⇒ V =U ⊕W.

⇐⇒ U ∩W = 0V and U +W =V.

Remark 1.4.2

1. We call U a complement of W in V . Note that this complement is not unique
in general.

2. We note that given the subspace W , there exist usually many subspaces U such
that V is the direct sum of W and U .

Theorem 1.4.9 If V is a finite dimensional vector space over F, and is the di-
rect sum of subspaces U ,W then

dimV = dimU +dimW.

Proof 1.4.2.5 We can apply the grassmann formula, since U ∩W = {
0V

}
, then

dim(U +V ) = dimU +dimW −dim(U ∩W )

= dimU +dimW −0

= dimU +dimW.

.

Rank of a set of vectors.

Definition 1.4.7 ( Rank) Let V be a vector space over F and S = {
v1, v2, . . . , vm

}
be a set of vectors of V . The rank of S is the dimension of the subspace spanned
by S or, equivalently the maximum number of independent vectors of S.

Example 1.4.7 Let S = {
v1 = (1,0), v2 = (−1,0), v3 = (4,0)

}
be a set of vectors of R2. we

can easily see that the rank of S is 1. ( r ank(S) = 1) there is only one vector which linearly
independent.
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Example 1.4.8 Let S = {
w1 = (1,0,0), w2 = (1,0,1), w3 = (0,0,1)

}
be a set of vectors of

R3. we can easily see that the rank of S is 3. ( r ank(S) = 3) because S is linearly indepen-
dent.

∀α,β,γ ∈R, αw1 +βw2 +γw3 = (0,0,0) =⇒α=β= γ= 0.

let to reader the check .


