Course of Algebra 1

Said AISSAOUI

October 12, 2024

Contents

1	1 Introduction to Mathematical logic			5
2	2 Sets and functions			7
	2.1	Sets	· · · · · · · · · · · · · · · · · · ·	7
		2.1.1	Definitions and examples	7
		2.1.2	Types of Sets	8
		2.1.3	Operations on Sets	0
		2.1.4	Cartesian product of sets 13	3
		2.1.5	Partitions of set	5
	2.2	Funct	tions	7
		2.2.1	Definitions	7

Chapter 2

Sets and functions

2.1 Sets

2.1.1 Definitions and examples

a set is a collection of objects. The objects in a set are called **elements** or **members** If an element *x* is a **member** of *A*, we write

x∈A.

and that x is a member of A, or that x belongs to A. If x is not in A, we write

x∉*A*.

The elements in the sets are described in either the **Statement form**, **Roster Form** or **Set Builder Form**.

• <u>Statement Form</u> In statement form, the well-defined descriptions of a member of a set are written and enclosed in the curly brackets.

Example 2.1.1 the set of even numbers less than 5. In statement form, it can be written as

 $\{even numbers less than 5\}.$

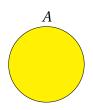
• <u>**Roster Form**</u>, all the elements of a set are listed, separated by commas, within braces;

Example 2.1.2 The set of natural numbers less than 5. Therefore, the set is $A = \{0, 1, 2, 3, 4\}$.

• <u>Set Builder Form</u> The general form is, $A = \{x : property\}$.

Example 2.1.3 Write the following sets in set builder form: $A = \{2, 4, 6, 8\}$. So, the set builder form is $A = \{x : x = 2n, n \in \mathbb{N} \text{ and } 1 \le n \le 4\}$.

Also, Venn Diagrams are the simple and best way for visualized representation of sets.



Remark 2.1.1

- 1. Repeated elements are listed once $\{a, b, a, c, b, a\} = \{a, b, c\}$.
- 2. There is no order in the set $\{3,2,1\} = \{1,2,3\} = \{2,1,3\}.$

Example 2.1.4

- 1. <u>Natural Numbers</u> : $\mathbb{N} = \{0, 1, 2, \dots\}$
- 2. <u>Integers</u>: $\mathbb{Z} = \{..., -2, -1, 01, 2, ...\}.$
- 3. <u>Rational numbers</u>: $\mathbb{Q} = \left\{ \frac{a}{b} : a, b \in \mathbb{Z} \text{ and } b \neq 0. \right\}.$

2.1.2 Types of Sets

✓ An <u>empty set</u>, denoted \emptyset or $\{\}$, is a set that does not contain any elements.

✓ Let $E = \{a\}$, consisting of a single element, is called **singleton**.

- ✓ A set which consists of a finite number of elements is called a **finite set**. **Example**: A set of natural numbers up to 10, $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- ✓ A set which is not finite is called an **infinite set**. **Example**: A set of all natural numbers. $\mathbb{N} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...\}$
- ✓ The two sets *A* and *B* are said to be <u>disjoint</u> if the set does not contain any common element. Example: Set $A = \{a, b, c, d\}$ and set $B = \{e, f, g\}$ are disjoint sets, because there is no common element between them.
- ✓ *A* is a <u>subset</u> of *B*, written A ⊂ B, if and only if every element of *A* is also an element of *B*
- ✓ If *A* is not a subset of *B*, we write $A \not\subset B$.
- ✓ *A* is equal to *B*, written A = B, if and only if for any *a* we have $a \in A$ if and only if $a \in B$.
- ✓ *A* is a **proper subset** of *B*, written $A \subsetneq B$, if and only if A ⊂ B but $A \neq B$. Thus *A* being a proper subset of *B* means that *A* is a subset of *B* and *B* contains something that *A* does not contain.

There is an important way to rephrase the definition of two sets being equal: A = B if and only if $A \subset B$ and $B \subset A$. This is sometimes useful as a proof technique, as you can split a proof of A = B into first checking $A \subset B$ and then checking $B \subset A$

Definition 2.1.1 The *cardinality* of a set is a measure of how many elements are in the set. If A a finite set. the we denote the cardinality of A by |A|.

Example 2.1.5

- If $A = \{a, 2, x, 5\}$, then |A| = 4
- $|\phi| = 0$
- If $X = \{a, \{2, x\}, \{1, \phi\}\}$, then |X| = 3
- $\left| \left\{ \phi \right\} \right| = 1$

For any set *A*, we have $\emptyset \subset A$. How many subsets can a finite set have? If *A* a finite set, then *A* has $2^{|A|}$ subsets, we prove it by induction.

Definition 2.1.2 If A a set, the set of all subsets of A is called the <u>power set</u> of A, denoted $\mathcal{P}(A)$.

Example 2.1.6

$$\mathbf{0} \quad if A = \{a, b, c\}, \ then \ \mathscr{P}(A) = \{\{\}, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\} \}.$$

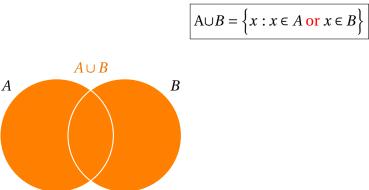
$$\mathscr{P}(\emptyset) = \{\emptyset\}.$$

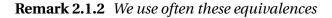
$$\mathscr{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\} \}.$$

2.1.3 Operations on Sets

Union

Let *A* and *B* be two set, the union of *A* and *B*, denoted as $A \cup B$ (read as A union B) is a set of element that belong to either *A* or *B*. The **union** of the sets *A* and *B* is the set

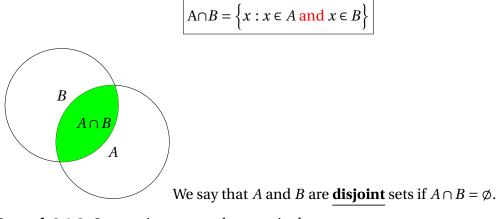




$$x \in A \cup B \iff x \in A \text{ or } x \in B$$
, $x \notin A \cup B \iff x \notin A \text{ and } x \notin B$.

Intersection

Let *A* and *B* be two sets, the **intersection** of *A* and *B*, denoted as $A \cap B$ (read as A intersect B) is a set of element that belong to both *A* and *B*.



Remark 2.1.3 In practice, we use these equivalences

 $x \in A \cap B \iff x \in A \text{ and } x \in B$,

 $x \notin A \cap B \iff x \notin A \text{ or } x \notin B.$

Proposition 1 Let A, B, C be subsets of a set E

$$\bullet A \cup A = A, A \cap A = A.$$

3 $A \cup B = B \cup A$, $A \cap B = B \cap A$. (*Commutativity*)

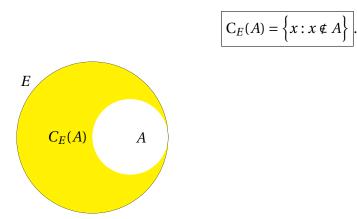
• $A \cup (B \cap C) = (A \cup B) \cap (A \cup C), A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$ (Distributivity)

Proof 2.1.3.1 We prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. Let $x \in A \cap (B \cup C)$

 $\begin{aligned} x \in A \cap (B \cup C) &\iff [x \in A \text{ and } x \in B \cup C] \\ &\iff [x \in A \text{ and } (x \in B \text{ or } x \in C)] \\ &\iff [(x \in A \text{ and } x \in B) \text{ or } (x \in A \text{ and } x \in C)] \\ &\iff [(x \in A \cap B) \text{ or } (x \in A \cap C)] \\ &\iff x \in (A \cap B) \cup (A \cap C). \end{aligned}$

A complement of a set

Let *E* be a set, if a set *A* is contained in *E*, we say that *A* is a subset or a subset of *E*. The elements of *E* that do not belong to set *A* form a new set called the **complement** of *A* in *E*, denoted as A^C or $C_E(A)$,



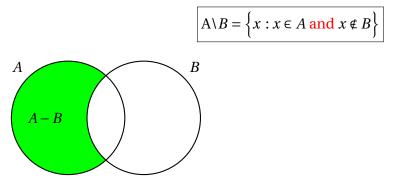
Remark 2.1.4 In practice, we use these equivalences

 $x \in C_E(A) \iff x \in E \text{ and } x \notin A$,

```
x \notin C_E(A) \iff x \in A
```

Set difference

Let *A* , *B* be two sets of *E*. The difference of *A* and *B*, denoted *A**B*, consists of elements that are in *A* but not in *B*. in other words $A \setminus B = A \cap C_E(B)$.



The **symetric difference** of *A* and *B*, denoted $A \Delta B$, is the set $(A \setminus B) \cup (B \setminus A)$ which is the same

 $A\Delta B = A \setminus B \cup B \setminus A = (A \cup B) \setminus (A \cap B).$

Remark 2.1.5 In exercises, we usually use these equivalences:

 $x \in A \setminus B \iff x \in A \text{ and } x \notin B$, $x \notin A \setminus B \iff x \notin A \text{ or } x \in B$.**Proposition 2** Let A, B be two subsets of E, then**0** $A \setminus A = \emptyset$ **2** $A \setminus \emptyset = A$

- $A \cap C_E(A) = \emptyset.$
- $C_E(C_E(A)) = A$
- $C_E(A \cup B) = C_E(A) \cap C_E(B).$
- $C_E(A \cap B) = C_E(A) \cup C_E(B).$

Proof 2.1.3.2 *We prove that* $C_E(A \cup B) = C_E(A) \cap C_E(B)$ *. Let* $x \in C_E(A \cup B)$ *,*

$$\begin{aligned} x \in C_E(A \cup B) &\iff [x \in E \text{ and } x \notin A \cup B] \\ &\iff [x \in E \text{ and } \overline{x \in A \cup B}] \\ &\iff [x \in E \text{ and } \overline{x \in A \cup B}] \\ &\iff [(x \in E \text{ and } \overline{x \in A}) \text{ and } (x \in E \text{ and } \overline{x \in B})] \\ &\iff [(x \in E \text{ and } x \notin A) \text{ and } (x \in E \text{ and } x \notin B)] \\ &\iff [x \in C_E(A) \text{ and } x \in C_E(B)] \\ &\iff x \in C_E(A) \cap C_E(B). \end{aligned}$$

2.1.4 Cartesian product of sets

Definition 2.1.3 Consider two arbitrary sets A and B. The set of all ordered pairs (a, b) where $a \in A$ and $b \in B$ is called the **product**, or **cartesian product**, of A and B.

 $A \times B = \left\{ (a, b) : a \in A \text{ and } b \in B \right\}.$

Remark 2.1.6 In pratice, we use these equivalences.

 $(a, b) \in A \times B \iff a \in A \text{ and } b \in B,$

 $(a, b) \notin A \times B \iff a \notin A \text{ or } b \notin B.$

Example 2.1.7

1. Let $A = \{1, 2\}$ and $B = \{a, b, c\}$ then $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$ Also, $A \times A = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$. 2. $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x, y) : x \in \mathbb{R}, y \in \mathbb{R}\}.$ 3. $\mathbb{Z} \times \mathbb{R} = \{(x, y) : x \in \mathbb{Z}, y \in \mathbb{R}\}.$

Proposition 3 Let A, B, C, D be a subsets of E, then

- $(A \times C) \cup (B \times C) = (A \cup B) \times C.$ $(A \times B) \cup (A \times C) = A \times (B \cup C)$
- $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$

Proof 2.1.4.1 We prove that $A \times B$ \cup $(A \times C) = A \times (B \cup C)$. Let $(x, y) \in A \times B$ \cup $(A \times C)$, *then*

$$(x, y) \in A \times B) \cup (A \times C) \iff [(x, y) \in A \times B \text{ or } (x, y) \in A \times C]$$
$$\iff [(x \in A \text{ and } y \in B) \text{ or } (x \in A \text{ and } y \in C)]$$
$$\iff [x \in A \text{ and } (y \in B \text{ or } y \in C)]$$
$$\iff [x \in A \text{ and } y \in B \cup C]$$
$$\iff (x, y) \in A \times (B \cup C).$$

Exercise 2.1.1 Let $A = \{a, b, c\}$ and $B = \{a, d\}$ be two subsets of a set $E = \{a, b, c, d, e\}$.

• Determine $A \cap B$, $A \cup B$, $C_E(B)$, $C_E(A)$, $A \setminus B$, $B \setminus A$, $A \Delta B$

2 Determine $A \times B$, $A \times A$, $\mathscr{P}(B)$, $B \times \emptyset$, $B \times \{\emptyset\}$, $\mathscr{P}(\mathscr{P}(B))$.

Solution 2.1.1 • $A \cap B = \{x \in E : x \in A \text{ and } x \in B\} = \{a\}$

•
$$A \cup B = \{x \in E : x \notin A \text{ or } x \in B\} = \{a, b, c, d\}$$

• $C_E(B) = \{x \in E : x \notin B\} = \{b, c, e\}$
• $C_E(A) = \{x \in E : x \notin A\} = \{d, e\}$
• $A \setminus B = \{x \in E : x \notin A \text{ and } x \notin B\} = \{b, c\}$
• $B \setminus A = \{x \in E : x \in B \text{ and } x \notin A\} = \{d\}$
• $A \Delta B = B \setminus A \cup A \setminus B = \{b, c, d\}$
• $A \times B = \{(x, y) : x \in A \text{ and } y \in B\} = \{(a, a), (a, d), (b, a), (b, d), (c, a), (c, d)\}$
• $A \times A = \{(x, y) : x \in A \text{ and } y \in A\} = \{(a, a), (a, d), (b, a), (b, d), (c, a), (c, d)\}$
• $A \times A = \{(x, y) : x \in A \text{ and } y \in A\} = \{(a, a), (a, d), (b, a), (b, d), (c, a), (c, d)\}$
• $B \times A = \{(x, y) : x \in A \text{ and } y \in A\} = \{(a, a), (a, b), (b, c), (c, a), (c, b), (c, c)\}$
• $\mathcal{P}(B) = \{\{\}, \{a\}, \{d\}, \{a, d\}\}\}$
• $\mathcal{P}(B) = \{\{\}, \{a\}, \{d\}, \{a, d\}\}\}$
• $\mathcal{P}(\mathcal{P}(B) = \{\{\}, \{\{\}\}, \{\{\}\}, \{\{a\}\}, \{\{d\}\}, \{\{a, d\}\}, \{\{\}\}, \{a\}\}, \{\{a, d\}\}, \{a, d\}\}, \{\{a, d\}\}, \{a, d\}, \{a, d\}\}, \{a, d\}\}, \{a, d\}\}, \{a, d\}\}, \{a, d\}, \{a, d\}\}, \{a, d\}, \{$

$$\{\{\}, \{a\}, \{a, d\}\}, \{\{\}, \{a\}, \{d\}, \{a, d\}\}\}$$

2.1.5 Partitions of set

Definition 2.1.4 Let A be any nonempty set. A <u>partition</u> of A is a collection $(A_i)_{i=1,2,...,n}$ of non-empty subsets of A such that: **1** $A_i \neq \emptyset$, where i = 1, 2, 3, ..., n. **2** The sets of (A_i) are mutually disjoint which means $A_i \cap A_j = \emptyset$ where $i \neq j$. **3** $\bigcup_{i=1}^n A_i = A$, where $A_1 \cup A_2 \cup \cdots \cup A_n = A$ **Example 2.1.8** Let $A = \{1, 2, 3, n\}$, $A_1 = \{1\}$, $A_2 = \{3, n\}$, $A_3 = \{2\}$ $S = \{A_1, A_2, A_3\}$ is a partition on A, because it satisfy the three above conditions.

Exercise 2.1.2 Consider the following collections of subsets of $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, which one is a partition of A?

- (*I*) $(\{1,3,5\},\{2,6\},\{4,8,9\})$
- $(II) \ (\{1,3,5\},\{2,4,6,8\},\{5,7,9\})$
- (III) $(\{1,3,5\},\{2,4,6,8\},\{7,9\})$

Solution 2.1.2

- (I) is not a partition of A since 7 in A does not belong to any of the subsets.
- (II) is not a partition of A since $\{1,3,5\}$ and $\{5,7,9\}$ are not disjoint.
- (III) is a partition of A.

Exercise 2.1.3 If A, B, C are sets, then :

- (a) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- $(b) A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

Solution 2.1.3 To prove (*a*), we will show that every element in $A \setminus (B \cup C)$ is contained in both set $(A \setminus B)$ and $(A \setminus C)$, and conversely.

If $x \in A \setminus (B \cup C)$, then $x \in A$, but is not in $B \cup C$. Hence $x \in A$, but x is either in both B nor in C, therefore, $x \in (A \setminus B) \cap (A \setminus C)$

Conversely, if $x \in (A \setminus B) \cap (A \setminus C)$ *, then* $x \in (A \setminus B)$ *and* $x \in (A \setminus C)$ *, hence ,* $x \in A$ *and* $x \notin B$ *and* $x \notin C$ *. Therefore,* $x \in A$ *and* $x \notin B \cup C$ *, so that* $x \in A \setminus (B \cup C)$ *.*

Since the sets $(A \setminus B) \cap (A \setminus C)$ and $A \setminus (B \cup C)$ contain the same elements, they are equal.