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Chapter 2

Sets and functions

2.1 Sets

2.1.1 Definitions

a set is a collection of objects. The objects in a set are called elements or members

If an element x is a member of A, we write

x2A.

and that x is a member of A, or that x belongs to A. If x is not in A, we write

x›A.

The elements in the sets are described in either the Statement form, Roster Form or
Set Builder Form.

• Statement Form In statement form, the well-defined descriptions of a member
of a set are written and enclosed in the curly brackets.

Example 2.1.1 the set of even numbers less than 5. In statement form, it can be

written as

n
even numbers less than5

o
.

• Roster Form, all the elements of a set are listed, separated by commas, within
braces;

7



8 ALGEBRA 1

Example 2.1.2 The set of natural numbers less than 5. Therefore, the set is

A =
n

0,1,2,3,4
o

.

• Set Builder Form The general form is, A =
n

x : property
o

.

Example 2.1.3 Write the following sets in set builder form: A =
n

2,4,6,8
o

. So, the

set builder form is A =
n

x : x = 2n,n 2N and 1 … n … 4
o

.

Also, Venn Diagrams are the simple and best way for visualized representation of sets.

A

Remark 2.1.1

1. Repeated elements are listed once

n
a,b, a,c,b, a

o
=

n
a,b,c

o
.

2. There is no order in the set

n
3,2,1

o
=

n
1,2,3

o
=

n
2,1,3

o
.

Example 2.1.4

1. Natural Numbers : N=
n

0, 1, 2, . . .
o

2. Integers : Z=
n

. . . , °2, °1, 01, 2, . . .
o

.

3. Rational numbers : Q=
n

a

b
: a, b 2Z and b 6= 0.

o
.

2.1.2 Types of Sets

4 An empty set , denoted ; or
no

, is a set that does not contain any elements.

4 Let E =
n

a

o
, consisting of a single element, is called singleton.
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4 A set which consists of a finite number of elements is called a finite set.
Example: A set of natural numbers up to 10, A =

n
0,1,2,3,4,5,6,7,8,9,10

o

4 A set which is not finite is called an infinite set.
Example: A set of all natural numbers. N=

n
0,1,2,3,4,5,6,7,8,9, . . .

o

4 The two sets A and B are said to be disjoint if the set does not contain any com-
mon element.
Example: Set A =

n
a,b,c,d

o
and set B =

n
e, f , g

o
are disjoint sets, because there

is no common element between them.

4 A is a subset of B , written A Ω B , if and only if every element of A is also an
element of B

4 If A is not a subset of B , we write A 6Ω B .

4 A is equal to B , written A = B , if and only if for any a we have a 2 A if and only if
a 2 B .

4 A is a proper subset of B , written A (B , if and only if A Ω B but A 6= B .
Thus A being a proper subset of B means that A is a subset of B and B contains
something that A does not contain.
There is an important way to rephrase the definition of two sets being equal:
A = B if and only if A Ω Band B Ω A. . This is sometimes useful as a proof
technique, as you can split a proof of A = B into first checking A Ω B and then
checking B Ω A

Definition 2.1.1 The cardinality of a set is a measure of how many elements are

in the set. If A a finite set. the we denote the cardinality of A by |A|.

Example 2.1.5

• If A =
n

a,2, x,5
o

, then |A| = 4

•
ØØØ;

ØØØ= 0

• If X =
n

a,
n

2, x

o
,
n

1,;
oo

, then |X | = 3

•
ØØØ
n
;

oØØØ= 1
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For any set A, we have ;Ω A.
How many subsets can a finite set have?
If A a finite set, then A has 2|A| subsets, we prove it by induction.

Definition 2.1.2 If A a set, the set of all subsets of A is called the power set of A,

denoted P (A).

Example 2.1.6

  if A =
n

a,b,c

o
, then P (A) =

n
{}, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}

o
.

À P (;) =
n
;

o
.

Ã P ({;}) =
n
;, {;}

o
.

2.1.3 Operations on Sets

Union

Let A and B be two set, the union of A and B , denoted as A[B ( read as A union B) is a
set of element that belong to either A or B . The union of the sets A and B is the set

A[B =
n

x : x 2 A or x 2 B

o

A B

A[B

Remark 2.1.2 We use often these equivalences

x 2 A[B () x 2 A or x 2 B , x › A[B () x › A and x › B.
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Intersection

Let A and B be two sets, the intersection of A and B , denoted as A \B ( read as A
intersect B) is a set of element that belong to both A and B .

A\B =
n

x : x 2 A and x 2 B

o

A

B

A\B

We say that A and B are disjoint sets if A\B =;.

Remark 2.1.3 In practice, we use these equivalences

x 2 A\B () x 2 A and x 2 B , x › A\B () x › A or x › B.

Proposition 1 Let A,B ,C be subsets of a set E

  A[ A = A, A\ A = A.

À A[;= A, A\;=;.

Ã A[B = B [ A, A\B = B \ A. (Commutativity)

Õ A[ (B [C ) = (A[B)[C , A\ (B \C ) = (A\B)\C . (Associativity)

Œ A[ (B \C ) = (A[B)\ (A[C ), A\ (B [C ) = (A\B)[ (A\C ). (Distribu-
tivity)

Proof 2.1.3.1 We prove that A\ (B [C ) = (A\B)[ (A\C ). Let x 2 A\ (B [C )

x 2 A\ (B [C ) () [x 2 A and x 2 B [C ]

() [x 2 A and (x 2 B or x 2C )]

() [(x 2 A and x 2 B) or (x 2 A and x 2C )]

() [(x 2 A\B) or (x 2 A\C )]

() x 2 (A\B)[ (A\C ).
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A complement of a set

Let E be a set, if a set A is contained in E , we say that A is a subset or a subset of E . The
elements of E that do not belong to set A form a new set called the complement of A

in E , denoted as A
C or CE (A),

CE (A) =
n

x : x › A

o
.

E A
A\BA

E

CE (A)

Remark 2.1.4 In practice, we use these equivalences

x 2CE (A) () x 2 E and x › A , x ›CE (A) () x 2 A

Set difference

Let A , B be two sets of E . The difference of A and B , denoted A\B , consists of elements
that are in A but not in B . in other words A \ B = A\CE (B).

A\B =
n

x : x 2 A and x › B

o

A B

A°B

The symetric difference of A and B , denoted A¢B , is the set (A \ B)[ (B \ A) which is
the same

A¢B = A \ B [B \ A = (A[B) \ (A\B) .
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Remark 2.1.5 In exercises , we usually use these equivalences:

x2 A \ B () x 2 A and x › B , x› A \ B () x › A or x 2 B .

Proposition 2 Let A,B be two subsets of E, then

  A \ A =;

À A \;= A

Ã A[CE (A) = E

Õ A\CE (A) =;.

Œ CE (CE (A)) = A

œ CE (A[B) =CE (A)\CE (B).

– CE (A\B) =CE (A)[CE (B).

Proof 2.1.3.2 We prove that CE (A[B) =CE (A)\CE (B). Let x 2CE (A[B),

x 2CE (A[B) () [x 2 E and x › A[B ]

() [x 2 E and x 2 A[B ]

() [x 2 E and x 2 A or x 2 B ]

() [(x 2 E and x 2 A) and (x 2 E and x 2 B)]

() [(x 2 E and x › A) and (x 2 E and x › B)]

() [x 2CE (A) and x 2CE (B)]

() x 2CE (A)\CE (B).

2.1.4 Cartesian product of sets

Definition 2.1.3 Consider two arbitrary sets A and B. The set of all ordered pairs

(a,b) where a 2 A and b 2 B is called the product, or cartesian product, of A and

B.

A £B =
n

(a,b) : a 2 A and b 2 B

o
.
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Remark 2.1.6 In practice, we use these equivalences.

(a, b)2 A£B () a 2 A and b 2 B , (a, b)› A£B () a › A or b › B .

Example 2.1.7

1. Let A =
n

1,2
o

and B =
n

a,b,c

o
then A£B =

n
(1, a), (1,b), (1,c), (2, a), (2,b), (2,c)

o

Also, A£ A =
n

(1,1), (1,2), (2,1), (2,2)
o

.

2. R2 =R£R=
n

(x, y) : x 2R, y 2R
o

.

3. Z£R=
n

(x, y) : x 2Z, y 2R
o

.

Proposition 3 Let A,B ,C ,D be a subsets of E, then

  (A£C )[ (B £C ) = (A[B)£C .

À (A£B)[ (A£C ) = A£ (B [C )

Ã (A£B)\ (C £D) = (A\C )£ (B \D)

Proof 2.1.4.1 We prove that A£B)[ (A£C ) = A£ (B [C ). Let (x, y) 2 A£B)[ (A£C ),

then

(x, y) 2 (A£B)[ (A£C ) () [(x, y) 2 A£B or (x, y) 2 A£C ]

() [(x 2 A and y 2 B) or (x 2 A and y 2C )]

() [x 2 A and (y 2 B or y 2C )]

() [x 2 A and y 2 B [C ]

() (x, y) 2 A£ (B [C ).

Exercise 2.1.1 Let A =
n

a,b,c

o
and B =

n
a,d

o
be two subsets of a set E =

n
a,b,c,d ,e

o
.

  Determine A\B , A[B , CE (B), CE (A), A \ B , B \ A, A¢B

À Determine A£B , A£ A, P (B), B £;, B £
n
;

o
, P (P (B)).

Solution 2.1.1   • A\B =
n

x 2 E : x 2 A and x 2 B

o
=

n
a

o
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• A[B =
n

x 2 E : x 2 A or x 2 B

o
=

n
a, b, c, d

o

• CE (B) =
n

x 2 E : x › B

o
=

n
b, c, e

o

• CE (A) =
n

x 2 E : x › A

o
=

n
d , e

o

• A \ B =
n

x 2 E : x 2 A and x › B

o
=

n
b, c

o

• B \ A =
n

x 2 E : x 2 B and x › A

o
=

n
d

o

• A¢B = B \ A[ A \ B =
n

b, c, d

o

À • A£B =
n

(x, y) : x 2 A and y 2 B

o
=

n
(a, a), (a, d), (b, a), (b, d), (c, a), (c,d)

o

• A£ A =
n

(x, y) : x 2 A and y 2 A

o
=n

(a, a), (a, b), (a, c), (b, a), (b, b), (b,c), (c, a), (c, b), (c,c)
o

• P (B) =
n

{}, {a}, {d}, {a, d}
o

• B £;=;
• B £

n
;

o
=

n
(a,;), (d , ;)

o

•

P (P (B) =
n©™

,
©
{}

™
,
©
{a}

™
,
©
{d}

™
,
©
{a,d}

™
,
©
{}, {a}

™
,

©
{}, {b}

™
,
©
{}, {a, d}

™
,
©
{a}, {d}

™
,©

{a}, {a, d}
™
,
©
{d}, {a, d}

™
,
©
{}, {a}, {d}

™
,©

{a}, {d}, {a, d}
™
,
©
{}, {d}, {a, d}

™
,

©
{}, {a}, {a, d}

™
,
©
{}, {a}, {d}, {a, d}

™o

2.1.5 Partitions of set

Definition 2.1.4 Let A be any nonempty set. A partition of A is a collection≥
Ai

¥
i=1, 2 , ..., n

of non-empty subsets of A such that:

  Ai 6=;, where i = 1,2,3, . . . ,n.

À The sets of (Ai ) are mutually disjoint which means Ai \A j =; where i 6= j .

Ã
S

n

i=1 Ai = A, where A1 [ A2 [ · · ·[ An = A
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Example 2.1.8 Let A =
n

1,2,3,n

o
, A1 = {1}, A2 = {3,n}, A3 = {2}

S =
n

A1, A2, A3

o
is a partition on A, because it satisfy the three above conditions.

Exercise 2.1.2 Consider the following collections of subsets of A =
n

1,2,3,4,5,6,7,8,9
o

,

which one is a partition of A?

(I)

≥
{1,3,5}, {2,6}, {4,8,9}

¥

(II)

≥
{1,3,5}, {2,4,6,8}, {5,7,9}

¥

(III)

≥
{1,3,5}, {2,4,6,8}, {7,9}

¥

Solution 2.1.2

(I) is not a partition of A since 7 in A does not belong to any of the subsets.

(II) is not a partition of A since {1,3,5} and {5,7,9} are not disjoint.

(III) is a partition of A.

Exercise 2.1.3 If A,B ,C are sets, then :

(a) A \ (B [C ) = (A \ B)\ (A \C )

(b) A \ (B \C ) = (A \ B)[ (A \C )

Solution 2.1.3 To prove (a), we will show that every element in A \ (B [C ) is contained

in both set (A \ B) and (A \C ), and conversely.

If x 2 A \(B [C ), then x 2 A, but is not in B [C . Hence x 2 A, but x is either in both B nor

in C , therefore, x 2 (A \ B)\ (A \C )
Conversely, if x 2 (A \B)\ (A \C ), then x 2 (A \B) and x 2 (A \C ), hence , x 2 A and x › B

and x ›C . Therefore, x 2 A and x › B [C , so that x 2 A \ (B [C ).

Since the sets (A \ B)\ (A \C ) and A \ (B [C ) contain the same elements, they are equal.
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2.1.6 Generalized unions and Intersections

If we have two sets A and B , we can form the union A [B and the intersection A \B ,
we want to form the union and intersection of many more than just two sets. We need
to generalize the operation of union and intersection so that will apply to more than
just two sets. before we will give some definitions

Definition 2.1.5 A set F , whose elements are sets, is called a family of sets.

Definition 2.1.6 Let I be any set and for each i 2 I , let Ai be a set. Then we can

form the set F =
n

Ai : i 2 I

o
. The set I is called the index set and F is called the

indexed family of sets.

Example 2.1.9 Assume that for every natural number n we define the set An =
n

1, 2, 3, . . . ,n

o
.

Then

F =
n

An : n 2N
o
=

n
A1, A2, A3, . . .

o

is an indexed family of sets, where the set ofN is an index set.

let now extend the definition of union and intersection to more than two sets.
We know that x 2 A [B means that x is in at least one of two sets A and B , this notion
of union can be easily extended to more than two sets. for finitely many sets , say
A1, A2, . . . , An , we shall say that x is in the union A1 [ A2 [ A3 [ · · ·[ An . when x is in
at least one of the sets A1, A2, . . . , An , that is x 2 Ai for some 1 … i … n. Using I =
{1,2, . . . , n} the index set, we denote the finite union by

[

i2I

Ai = A1 [ A2 [ A3 [ · · ·[ An .

So x 2S
i2I Ai means that x 2 Ai for some i 2 I

We also know that x 2 A\B means that x is in both of the two sets A and B , this notion
of intersection can be easily extended to more than two sets. for finitely many sets ,
say A1, A2, . . . , An , we shall say that x is in the intersection A1\A2\A3\ · · ·\An . when
x is in every one of the sets A1, A2, . . . , An , that is x 2 Ai for every 1 … i … n. Using
I = {1,2, . . . , n} the index set, we denote the finite intersection by

\

i2I

Ai = A1 \ A2 \ A3 \ · · ·\ An .

So x 2T
i2I Ai means that x 2 Ai for every i 2 I
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2.2 Functions

2.2.1 Definitions and examples

Definition 2.2.1

1. Let E ,F be sets, we say that f is a function from E to F if for every element

x 2 E, there exists a unique element y 2 F such that f (x) = y, we write

f : E °! F or E
f°! F .

2. The set E is called the domain and F is called the codomain. The element

x is called the pre-image and y is the image of x under f .

E

a

b

c

F

p

q

r

f is not a function

E

a

b

c

F

p

q

r

s

f is not a function

E

a

b

c

F

p

f is a function

E

a

b

c

F

p

q

f is a function
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Example 2.2.1 4 The identity function i dE : E °! E on a set E is the function i dE :
x 7! x that maps every element to itself.

4 Constant function: The function f : R °! R defined by 8x 2 R, f (x) = c, where c

is a real constant , is a constant function. Domain of f =R, Range of f =
©
c
™
.

4 Polynomial function: A real valued function f : R °! R defined by y = f (x) =
a0+a1x+ ...+an x

n
, where n 2N, and a0, a1, a2, ...an 2R , for each x 2R , is called

Polynomial functions.

4 Consider the function f : R °! R given by f (x) = |x| =. The range of f is R+
.

Hence f is also a function from R to R+
. such function is called absolute value.

Definition 2.2.2 The range, or image, of a function f : E °! F is the set of values

r an( f ) =
n

y 2 F : y = f (x) for some x 2 E .
o

=
n

f (x), x 2 E .
o

A function is onto if its range is all of F ; that is , if for every y 2 F there exists x 2 E such
that y = f (x).

Definition 2.2.3 Let X ,Y , A,B be sets, and let f : X °! Y and g : A °! B be

functions. We say that f is identically equal to g , denoted by f ¥ g , if the follow-

ing conditions are met:

(i) X = A

(ii) Y = B

(iii) 8x 2 X , f (x) = g (x).

Definition 2.2.4 The graph of a function f : E °! F is a subset G f of E £F de-

fined by

G f =
n

(x, y) 2 E £F : x 2 E and y = f (x).
o

Definition 2.2.5 If f : E °! F and A Ω E, then we denote the restriction of f to

A by f|A : A °! F , where f|A (x) = f (x), for x 2 A.
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Informally, the restriction of f to A is the same function as f but is only defined on A.

Definition 2.2.6 A function g is said to be an extension of another function f

if whenever x is in the domain of f then x is also in the domain of g and

f (x) = g (x). That is, if domain f Ω domain g and g

ØØ
domain f

= f .

2.2.2 Direct image and inverse image of a set

Let f : E °! F be a function.

Definition 2.2.7

  If A is a subset of E, then the direct image of A under f is the subset f (A)
of F given by

f(A)=

n
f(x) : x2 A

o
or f(A)=

n
y : 9x 2 A with f (x) = y

o

If A = E, the image of E in F is also called the range of f .

À If B is a subset of F , then the inverse image of B under f is the subset

f
°1(B) of E given by

f
°1(B) =

n
x 2 E : f (x) 2 B

o
.

Remark 2.2.1 The notation f
°1

should not be confused with that of an inverse function.

Theorem implies that the inverse function exists if and only if the original function is

injective ( or one - to- one) and surjective (or onto).

y 2 f (A) () 9x 2 A : f (x) = y , similarly x 2 f
°1(B) () f (x) 2 B .

Example 2.2.2

Define a function f : Z °! N by f (x) = |x| + 1. To illustrate the concept of image and

inverse image, let’s consider some subsets of Z and some subsets ofN here.

  If A1 =
n

0,1,2
o

, then the image of A1 is whatever function values are assigned to

these 3 numbers. As f (0) = 1, f (1) = 2, f (2) = 3, we have that f (A1) =
n

f (0), f (1), f (2)
o
=n

1,2,3
o

.
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À If A2 =
n
°2,°1,0,1,2

o
, then the image of A2 is whatever function values are as-

signed to these five numbers. Since f (°2) = 3, f (°1) = 2, f (0) = 1, f (1) = 2, f (2) =
3, we have that f (A2) =

n
f (°2), f (°1), f (0), f (1), f (2)

o
=

n
1,2,3

o
.

Ã If B1 =
n

2
o

, then the pre-image of B1 is all those elements in Z that map to 2; that

is, it is all choices of x for which f (x) = |x| +1 = 2. There are two such elements,

namely ±1. Hence f
°1(B1) =

n
°1,1

o
.

Õ If B2 =
n

0
o

, then the pre-image of B2 is all those elements in Z that map to 0; that

is, it is all choices of x for which f (x) = |x| + 1 = 0. There are no such elements.

Hence, f
°1(B2) =;

Œ If B3 =
n

1
o

, then the pre-image of B3 is all those elements inZ that map to 1; which

is clearly, just x = 0. Hence, f
°1(B3) =

n
0
o

.

Theorem 2.2.1 Let f : E °! F be a function . Let E1,E2 be subsets of E, and let F1,F2 be

subsets of F . Then

1. f (E1 \E2) Ω f (E1)\ f (E2)

2. f (E1 [E2) = f (E1)[ f (E2)

3. f
°1(F1 \F2) = f

°1(F1)\ f
°1(F2)

4. f
°1(F1 [F2) = f

°1(F1)[ f
°1(F2)

Proof 2.2.2.1

1. We prove that f (E1 \E2) Ω f (E1)\ f (E2). Let y 2 f (E1 \E2), we will prove that

y 2 f (E1)\ f (E2). Since y 2 f (E1 \E2), that means there is an x 2 E1 \E2 such

that y = f (x) ( this follows from the definition of the direct image of f ). Because

x 2 E1 \E2, we see that x 2 E1 and x 2 E2. Therefore, y = f (x) 2 f (E1) and y =
f (x) 2 f (E2). Thus y 2 f (E1)\ f (E2).

2. (Ω) Firstly, We prove that f (E1 [E2) Ω f (E1)[ f (E2). Let y 2 f (E1 [E2), we will

prove that y 2 f (E1)[ f (E2). Since y 2 f (E1 [E2), that means there is an

x 2 E1 [E2 such that y = f (x) ( this follows from the definition of the direct

image of f ). Because x 2 x 2 E1 [E2, we see that x 2 E1 or x 2 E2. Therefore,

y = f (x) 2 f (E1) or y = f (x) 2 f (E2). Thus y 2 f (E1)[ f (E2).
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(æ) Secondly, we will prove f (E1)[ f (E2) Ω f (E1 [E2) Let y 2 f (E1)[ f (E2), we

will prove that y 2 f (E1 [E2). Since y 2 f (E1)[ f (E2), that means y 2 f (E1)
or y 2 f (E2) , so there is an x 2 E1suchthaty=f(x)or ther ei sx2 E2 such that

y = f (x). ( this follows from the definition of the direct image of f ). Therefore

, there is x 2 A[B such that y = f (x), thus y 2 f (E1 [E2).

We conclude that f (E1 \E2) = f (E1)\ f (E2).

3. we prove f
°1(F1 \F2) = f

°1(F1)\ f
°1(F2)

(Ω) First we prove f
°1(F1\F2) Ω f

°1(F1)\ f
°1(F2). Let x 2 f

°1(F1\F2). We prove

that x 2 f
°1(F1)\ f

°1(F2)

x 2 f
°1(F1 \F2) =) f (x) 2 F1 \F2

=) f (x) 2 F1 and f (x) 2 E2

=) x 2 f
°1(F1) and x 2 f

°1(F2).

=) x 2 f
°1(F1)\ f

°1(F2)

Therefore, f
°1(F1 \F2) Ω f

°1(F1)\ f
°1(F2).

(æ) Second, we now prove that f
°1(F1)\ f

°1(F2) Ω f
°1(F1\F2). Let x 2 f

°1(F1)\
f
°1(F2), wepr ovethatx2 f

°1(F1 \F2) as follow

x 2 f
°1(F1)\ f

°1(F2) =) x 2 f
°1(F1) and x 2 f

°1(F2)

=) f (x) 2 F1 and f (x) 2 F2

=) f (x) 2 (F1 \F2)

=) x 2 f
°1(F1 \F2).

Therefore, f
°1(F1)\ f

°1(F2) Ω f
°1(F1 \F2), this complete the proof .

4. (Ω) First we prove f
°1(F1[F2) Ω f

°1(F1)[ f
°1(F2). Let x 2 f

°1(F1[F2). We prove

that x 2 f
°1(F1)[ f

°1(F2)

x 2 f
°1(F1 [F2) =) f (x) 2 F1 [F2

=) f (x) 2 F1 or f (x) 2 F2

=) x 2 f
°1(F1) or x 2 f

°1(F2).

=) x 2 f
°1(F1)[ f

°1(F2)

Therefore, f
°1(F1 [F2) Ω f

°1(F1)[ f
°1(F2).
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(æ) Second, we now prove that f
°1(F1)[ f

°1(F2) Ω f
°1(F1[F2). Let x 2 f

°1(F1)[
f
°1(F2), wepr ovethatx2 f

°1(F1 [F2) as follow

x 2 f
°1(F1)[ f

°1(F2) =) x 2 f
°1(F1) or x 2 f

°1(F2)

=) f (x) 2 F1 or f (x) 2 F2

=) f (x) 2 (F1 [F2)

=) x 2 f
°1(F1 [F2).

Therefore, f
°1(F1)[ f

°1(F2) Ω f
°1(F1 [F2), this complete the proof (4).

Theorem 2.2.2 Let f : E °! F be a function. Let E1,E2 be two subsets of E. If f is

injective then f (E1 \E2) = f (E1)\ f (E2).

Proof 2.2.2.2 Assume that f is injective. We prove that f (E1 \E2) = f (E1)\ f (E2). By

previous theorem 2.2.1, f (E1\E2) Ω f (E1)\ f (E2), we will now show that f (E1)\ f (E2) Ω
f (E1\E2). Let y 2 f (E1)\ f (E2), we will prove that y 2 f (E1\E2). Since y 2 f (E1)\ f (E2),

then y 2 f (E1) and y 2 f (E2). because y 2 f (E1), then there exist an x1 2 E1 such that

y = f (x1). Also , since y 2 f (E2), there is an x2 2 E2, such that y = f (x2). Hence , y =
f (x1) = f (x2). Since f is injective, we have x1 = x2; Thus , x1 2 E2 so, x1 2 E1 \E2, and

therefore y = f (x) 2 f (E1 \E2).W econcl udethatf( E1 \E2) = f (E1)\ f (E2).

2.2.3 One -To - One functions and Onto functions

Definition 2.2.8

  The function f : E °! F is said to be one- to- one ( or injective) if whether

x1 6= x2, then f (x1) 6= f (x2), or

( f: E °! F is one - to- one) () (8x1, x2 2 E , f (x1) = f (x2) =) x1 = x2)

If f is an one-to-one function, we also say that f is an injection .

À The function f : E °! F is said to be onto ( or surjective) if for all y 2 F ,

there exist x 2 E such that f (x) = y, or

(f: E °! F is onto) () (8y 2 F, 9x 2 E : f (x) = y) .

Remark 2.2.2 Note that a function f : E °! F is
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• injective if and only if the subset f
°1

≥n
y

o¥
contain at most one element for every

y 2 F .

• surjective if and only if the subset f
°1

≥n
y

o¥
contain at least one element for every

y 2 F .

• bijective if and only if the subset f
°1

≥n
y

o¥
contain precisely one element for every

y 2 F .

E

a

b

c

F

p

q

r

f isn’t injective

E

a

b

c

F

p

q

r

s

f is injective

E

a

b

c

F

p

q

r

s

f isn’ t surjective

E

a

b

c

F

p

q

f is surjective

Exercise 2.2.1 Show that the function f :R°!R defined by f (x) = 2x +1 is injective.

Solution 2.2.1 Suppose that x1, x2 2 R, and that f (x1) = f (x2). Then by definition of f ,

we have

2x1 + 1 = 2x2 + 1, and thus 2x1 = 2x2, and thus x1 = x2. Therefore f is injective by

definition.
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Exercise 2.2.2 Show that the function g :R°!R defined by g (x) = x
2

is not injective.

Solution 2.2.2 Notice that when x = 1, we obtain g (x) = (1)2 = 1, and when x =°1, we

have g (x) = (°1)2 = 1. Therefore, as g (1) = g (°1), and 1 6= °1, we have that g is not

injective.

2.2.4 Composition of functions

Definition 2.2.9 Given two functions f : X °! Y and g : Y °! Z , one formes

the composition function g ± f : X °! Z by defining

(g ± f )(x) = g ( f (x)), for all x 2 X .

Theorem 2.2.3 If f : X °! Y and g : Y °! Z are injectives, then g ± f : X °! Z is

injective.

Proof 2.2.4.1 Let x1, x2 be two elements of X , assume that (g ± f )(x1) = (g ± f (x2) then

show that x1 = x2.

(g ± f )(x1) = (g ± f )(x2) =) g ( f (x1)) = g ( f (x2)) by definition of composition of functions

=) f (x1) = f (x2) (because g is injective )

=) x1 = x2 (because f is injective

so, g ± f is injective.

Theorem 2.2.4 If f : X °! Y and g : Y °! Z are surjectives, then g ± f : X °! Z is

surjective.

Proof 2.2.4.2 Let z an element ofZ , we must find a element x in X such that (g ± f )(x) =
z.
since z an element of Z and g is surjective, then there exist an element y in Y such that

g (y) = z. apply the same reasoning for y in Y .

since y an element of Y and f is surjective, then there exist an element x in X such that

f (x) = y, therefore there exist x in X such that (g ± f )(x) = g ( f (x)) = g (y) = z. so g ± f is

surjective.
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2.2.5 Inverse functions

Theorem 2.2.5 Let f : X °! Y , be a bijective function, then there is a function f
°1 :

Y °! X defined as follow For each y 2 Y , f
°1(y) is defined to be the unique element in

X such that f (x) = y; That is :

8y 2 Y , [ f
°1(y) = x] () [ f (x) = y] . (2.2.1)

Definition 2.2.10 (Inverse function) Given a bijective function f : X °! Y ,

the function f
°1 : Y °! X satisfying equation 2.2.1 is called the inverse function

of f

Example 2.2.3

f : R°!R

x 7°! f (x) = 2x +1.

Show that f is bijective then determine its inverse fucntion f
°1

. We

f i sinjective () [8x1, x2 2R, f (x1) = f (x2) =) x1 = x2].

f (x1) = f (x2) =) 2x1 +1 = 2x2 +1

=) x1 = x2.

therefore f is injective.

f surjective () 8y 2R, 9x 2R such that y = f (x).

Let y 2R, find x 2Rwhich satisfy y = f (x), we have to solve this equation on x, f (x) = y.

f (x) = y () 2x +1 = y

() x = y °1
2

2R.

so

8y 2R,9x = y °1
2

2R, such that y = f (x).
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then f is surjective ,thus f is bijective. when f is bijective then there exist f
°1

, the

inverse function of f , defined by

f (x) = y () f
°1(y) = x.

f (x) = y () 2x +1 = y

() x = y °1
2

= f
°1(y).

In conclusion

f
°1 : R°!R

x 7°! f
°1(x) = x °1

2
.

Example 2.2.4

f : [0, 1] °! [0, 1]

x 7°! f (x) = x
2.

Show that f is bijective and determine its inverse function f
°1

.

f injective () [8x1, x2 2 [0, 1], f (x1) = f (x2) =) x1 = x2].

f (x1) = f (x2) =) x
2
1 = x

2
2

=) |x1| = |x2|
=) x1 = x2(because x1, x2 2 [0, 1]).

thus f is injective.

f surjective () 8y 2 [0, 1]9x 2 [0, 1] such that y = f (x).

Let y 2 [0, 1], find x 2 [0, 1] which satisfy y = f (x), we have to solve this equation on x,

f (x) = y.

f (x) = y () x
2 = y

() x =p
y 2 [0, 1].



28 ALGEBRA 1

thus

8y 2 [0, 1],9x =p
y 2 [0,1], such that y = f (x).

so f is surjective , therefore f is bijective, if f is bijective then there exist the inverse

function f
°1

satisfying

f (x) = y () f
°1(y) = x.

f (x) = y () x
2 = y

() x =p
y = f

°1(y).

In Conclusion

f
°1 : [0, 1] °! [0, 1]

x 7°! f
°1(x) =

p
x.

Remark 2.2.3 We can prove the bijectivity of f directly by using this definition

f bijective () 8y 2 [0, 1], 9!x 2 [0, 1], tel que y = f (x).

Proposition 4 Soient E ,F,G be a sets If f : E °! F and g : F °!G be two bijec-

tive functions then g ± f is also bijective and its inverse function is defined by

(g± f )°1 = f
°1 ± g

°1 .


