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Chapter 3

Binary relations

In mathematics, we often seek to compare two elements of a set or the property that
two elements of a set are likely to have.

Definition 3.0.1 Let E and F be two sets, a relation from E in F is an assertion
associating each element of E to an element of F , which are true or false. We
denote the relation by R a relation denotes some kind of relationship between
two objects in a set, which may or may not hold
Formally, a relation R over a set X can be seen as a set of ordered pairs (x, y) of
members of X .The relation R holds between x , and y if (x, y) is a member of
R.

or else

Definition 3.0.2 Given two sets E and F , a relation from E to F is a correspon-
dence R which links elements of E with elements of F .

or

Definition 3.0.3 Let E and F be two sets , a relation R from E to F is a
subset of E £F , we denote xR y if (x, y) 2R.

Remark 3.0.1

• The set E is called the domain or the set of departure of R.

• The set F is called the codomain or the set of destination of R.

9



10 ALGEBRA 1

• For any element x of E and any element y of F satisfying R, we say that x 2 E
is related by R with y, and we write xRy otherwise x��R y.

• If E = F , the relation R is called binary relation on E.

In the following chapter, we study only the binary relations on a set.

Example 3.0.1

1. In Z, we define the relation R1 as follows:

8x, y 2 Z, x R1 y () y multiple of x.

For example , 1R1 x, 8x 2Z,
xR1 0, 8x 2Z,
6R1 12, 4⇢⇢R1 10, . . . , etc.

2. In Z, we define the relation R2 as follows:

8x, y 2 Z, x R2 y () x ¥ y[2].

For example : 1R21, 1R2 (°1), 2⇢⇢R2 3 . . . etc.

3. In R, we define the relation R3 as follows:

8x, y 2R, x R3 y () x2 = y2 .

For example : 1R31, 1R3 (°1), 1⇢⇢R3 3, 2R3 (°2) . . . etc.

4. In R, we define the relation R4 as follows:

8x, y 2R, x R4 y () x = y .

For example : 1R41, 1⇢⇢R4 (°1), . . . etc.
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5. In R, we define the relation R5 as follows

8x, y 2R, x R5 y () x ∑ y , .

For example : 1R51, 1⇢⇢R5 (°1), . . . etc.

6. In R, we define the relation R6 as follows:

8x, y 2R, x R6 y () x < y .

For example : 5⇢⇢R6 5, 4R6 5, . . . etc

7. Let E = {a, b, c}, in P (E), we define the relation ,R7 as follows:

8A,B 2 P (E), A R7 B () A\B 6=; .

For example : AR7 B , ;⇢⇢R7 A, A⇢⇢R7 H , . . . etc, with A = {a,b}, B = {a}, H = {c}.

8. Let E be any set, in P (E), we define the relation R8 as follows:

8A, B 2 P (E), A R8 B () A Ω B .

For example : AR8 E , ;R8 A, 8A 2 P (E) .

9. In a plane (P ), we define the relation R9 on all the lines of the plane (P ) as
follows:

8(¢), (¢
0
) 2 P, , (¢) R9 (¢

0
) () (¢) “ (¢

0
) .

For example : Let three lines: (¢1) equation : y = x, (¢2) of equation: y =
x +1, (¢3) of equation: y = 2x, we then have:
(¢1) R9 (¢2), (¢1)⇢⇢R9 (¢3).

��R

10. In a plane (P ), we define the relation R10 on all the lines of the plane (P ) as
follows:

8(¢), (¢
0
) 2 P, (¢) R10 (¢

0
) () (¢) ? (¢

0
) .

For example : Consider three lines: (¢1)’s equation is: y = x, (¢2)’s equation
is : y =°x, (¢3) ’s equation is : y = 3x, we then have: (¢1)R10(¢2), (¢1)���R10(¢3).
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Definition 3.0.4 (Graph of a relation) Let R define a binary relation on a set
E, we call the graph of the relation R, denoted GR, the subset of E £E defined
by

GR =
©
(x, y) 2 E £E , such that x R y

™
.

Example 3.0.2 Let E = {°2, °1, 0, 1, 2, 3} and we define the relation R , on E by:

8x, y 2 E , xR y () x2 = y2.

therefore the graph of the relation R is defined as follows:

GR = {(1,1), (°1,1), (°1,°1), (1,°1), (2,2), (°2,2), (2,°2), (°2,°2), (0,0), (3,3)} .

3.1 Properties of binary relations on a set

Let E be a set, R a relation defined on E .

Definition 3.1.1 (Reflexivity) The relation R is said to be reflexive if

8x 2 E , xRx.

Example 3.1.1 The relations defined previously R1,R2,R3,R4,R5,R8,R9 are all re-
flexive, but the relations R6,R7,R10 are not.

Remark 3.1.1 To show that a relation R is not reflective, it is enough to find an element
x0 2 E such that x0��Rx0.
In the previous example the relation R7 is not reflexive because ;⇢⇢R7;, (;\;=;).

Definition 3.1.2 (Symmetry) The relation R. is called symmetric if

8x, y 2 E , xR y =) y Rx.

Example 3.1.2 the relations defined previously R2,R3,R4,R7,R9,R10 are all symmet-
ric, on the other hand the relations R1,R5,R6,R8 are not.

Remark 3.1.2 To show that a relation R is not symmetric, it is enough to find two ele-
ments x0, y0 2 E such that x0R y0 and , y0��Rx0

In the previous example, the relation R8 is not symmetric because ;R8 E , but E⇢⇢R8;.
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Definition 3.1.3 (Antisymmetry) The relation R. is said to be antisymmetric if

8x, y 2 E , xR y , and y Rx =) x = y.

Example 3.1.3 The relations defined previously R2,R4,R5,R6,R8 are all antisymmet-
ric, on the other hand the relations R1,R3,R7,R9, R10 are not.

Remark 3.1.3 To show that a relation R is not antisymmetric, it is enough to find two
elements x0, y0 2 E such that x0R y0 and y0Rx0, but x0 6= y0. In the previous ex-
amples, the relation R3 is not antisymmetric because
1R3 (°1), and (°1)R3 1 , but 1 6= (°1) .

Definition 3.1.4 (Transitivity) The relation R. is called transitive if

8x, y, z 2 E , xR y and y Rz =) xRz.

Example 3.1.4 The relations defined previously R1,R2,R3,R4,R5,R6, R8, R9 are all
transitive, on the other hand the relations R7,R10 are not.

Remark 3.1.4 To show that a relation R is not transitive, it is enough to find three ele-
ments x0, y0, z0 2 E such that x0R y0 and y0Rz0, but x0��Rz0.
In the previous example, the relation, R10 is not transitive because if the line (¢1)
is perpendicular to the line (¢2) and the line (¢2) is perpendicular to the line (¢3)
then the line (¢1) is not perpendicular to the line (¢3), ( but (¢1) “ (¢3)).

3.2 Equivalence relations

3.2.1 Definitions and examples

Definition 3.2.1 Let R be a binary relation on a set E . We say that R is
an equivalence relation if R is reflexive, symmetric and transitive.

Example 3.2.1 We define in R§ the binary relation R by:

8x, y 2 R§, x R y () x y > 0.

Let us show that R is an equivalence relation.
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• Let us show that R is reflexive. We have

R is reflexive () [8x 2R§, x R x.]

It is easy to see that 8x 2 R§, x2 > 0, which is equivalent to saying that x R x.
hence R is reflexive.

• Let’s show that R is symmetric. We have by definition

R is symmetric () [8x, y 2R§, x R y =) y R x ]

we have

8x, y 2R§ x R y =) x y > 0

=) y x > 0

=) y R x .

So R is symmetric.

• Let us show that R is transitive. We have by definition

R is transitive () [8x, y, z , 2R§, x R y and y R z =) x R z ]

we have

8x, y, z 2R§, xR y and y R z =) x y > 0, and y z > 0

=) x z > 0

(x has the same sign as y and y ,has the same sign as z then necessarily z

has the same sign that x)

=) x R z .

hence R is transitive.

We deduce that R is an equivalence relation on

Example 3.2.2 The relations R2,R3,R4,R5 and R9 are all equivalence relations, on
the other hand the relations
R1 (is not symmetric) „ R6 (is not reflexive) ,R7 (is not is not reflexive) ,
R8 (is not reflexive) , R10 (is neither reflexive nor transitive), are not.
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Exercise 3.2.1 " � Is the following relation, an equivalence relation on R ? :

8x, y 2 R, x R y () x y … 0.

We can therefore group these elements into "bundles" of elements that are similar, thus
defining the notion of equivalence class, to finally construct new sets by " assimilat-
ing "similar elements to one and the same element. We then arrive at the notion of
set quotient .

3.2.2 Quotient set

Definition 3.2.2 Let R be an equivalence relation in a set E . For each x of E,
the set of all elements of E which are related, by R, with x is called equivalence
class of x denoted by ẋ or x̄ or cl (x) or Cx.
So, the equivalent class ẋ is the subset of E defined by

ẋ = x̄ =
©

y 2 E ,such that y R x
™

If y 2 ẋ, y is said to be a representative of the class ẋ.
The set of equivalent classes is called quotient set of E by the relation R de-
noted by E/R.

E/R= {ẋ |x 2 E }

Example 3.2.3 In Z, we define the relation R by:

8x, y 2Z, xR y () , x ° y = 5k, k 2Z.

R is an equivalence relation. the class of 0.

0̇ = {x 2Z, such that xR , 0}

= {x 2Z, such that x °0 = 5k,k 2Z}

= {5k, k 2Z}.
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In the same way we determine the other classes, there are exactly five equivalence classes.

0̇ = {5k, k 2Z}, 1̇ = {5k +1, k 2Z}, 2̇ = {5k +2, k 2Z},

3̇ = {5k +3, k 2Z}, 4̇ = {5k +4, k 2Z}.

For this relation, we note x ¥ y[5], we read it x congruo to y modulo 5. The quotient
set is denoted Z/5Z instead of Z/R and we then have:

Z/5Z= {0̇, 1̇, 2̇, , 3̇, 4̇}.

Proposition 1 Let R be a relation defined on a set E, we have the following
properties:

  Let a, x 2 E, if , a 2 ẋ then ȧ = ẋ .

À 8x, y 2 E, ẋ = ẏ () x R y.

Ã Let u, v, x 2 E, if u, v 2 ẋ then uR v .

Õ 8x , y 2 E , on a ẋ = ẏ or ẋ \ ẏ = ;.

Œ The equivalent classes form a partition of the set E.

E =
[

x i nE
ẋ.

Proof 3.2.2.1 4 If y 2 ẋ, then

y Rx and we have xR a,

we deduce, by transitivity, that
y R a,

which implies that
y 2 ȧ.

same reasoning to show that ȧ Ω ẋ.
Conclusion

ẋ = ȧ.
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4 Let us show the direct implication, we assume that ẋ = ẏ and show that xRy. it
is easy to see that x 2 ẋ (because R is reflexive).

x 2 ẋ =) x 2 ẏ

=) xR y.

Reciprocally if xR y then ẋ = ẏ . in fact, i.e. z 2 ẋ

z 2 ẋ =) z Rx,

=) z R y (because x R y and R is transitive.)

=) z 2 ẏ .

Hence ẋ Ω ẏ Similarly, we show that ẏ Ω ẋ
Let z 2 ẏ

z 2 ẏ =) z R y,

=) z R x (char y R x (R is symmetric and transitive.)

=) z 2 ẋ.

Hence ẏ Ω ẋ.

4 We have u, v 2 ẋ then uRx and xRv hence uRv (by the transitivity of R.)

4 Let x, y 2 E such that ẋ \ ẏ 6=; , we show that ẋ = ẏ .
We have ẋ \ ẏ 6=; then 9z 2 E , tel that z 2 ẋ \ ẏ

z 2 ẋ \ ẏ =) z 2 ẋ et z 2 dot y

=) z Rx et z R y,

=) ż = ẋ and ż = ẏ , ( see the first property)

=) ẋ = ẏ .

4 Let us show that the quotient set forms a partition of E

  We have 8ẋ 2 E/R, ẋ neq;, because x 2 ẋ. ( the relation R is reflexive,
, xRx).

À We showed previously that all distinct classes are disjoint.
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Ã Rest à show that

E =
[

x2E
ẋ,

we have an obvious inclusion
[

y2E
ẏ Ω E ,

let’s show the other inclusion.

E Ω
[

y2E
ẏ .

Let x 2 E then x 2 ẋ and therefore x 2 bi g cupy2E ẏ hence

E Ω
[

y2E
ẏ

in conclusion, the set E/R is a partition of E.

3.2.3 Canonical composition of an function

The canonical decomposition of a function:

Definition 3.2.3 Let E and F be two sets, f : E °! F be a function, and let R be
a relation defined on E by:

x R y () f (x) = f (y).

This relation R is an equivalence relation, it is called an equivalence relation associated
to f . Let f (E) =

©
f (x)| x 2 E

™
is the image set of E by f , i the canonical injection

of F (E) into ,F and º the canonical surjection of E in , E/R.

i : f (E) °! F º : E °! E/R

x 7°! x x 7°! ẋ

Remark 3.2.1 We easily verify, by construction, that the function i is injective and the
function º , is surjective.

Theorem 3.2.1 Let E , F be two sets, and f : E °! F be a map
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  The binary relation R defined on E by:

xRy () f (x) = f (y).

is an equivalence relation on E called associated to f .

À . Let º be the canonical surjection of E on E/R and i the canonical injection of
f E) in F . Then there exists a bijective map unique

ef : E/R°! f (E)

ẋ 7°! ef (ẋ) = f (x).

such that f = i ± ef ±º.

Proof 3.2.3.1   It is easy to verify that R is an equivalence relation on E.

À Indeed,

ẋ = ẏ () f (x) = f (y)

() ef (ẋ) = ef (ẏ)).

We have also just shown that ef is injective.
ef is surjective by construction. Thus, ef is a bijection of E/R into f (E), ef is called
the bijection canonical associated to f .
If there existed another application g : E/R°! F such that f = g ±º, we

would have for all x 2 E , ef (ẋ) = f (x) = g (ẋ). hence ef = g , which proves the unique-
ness of ef .
it is clear that for all x 2 E, we then have:

8x 2 E , f (x) = i ( f (x)) = i ( ef (ẋ)) = (i ± ef ±º)(x).

Hence, f = i± ef ±º: This is the canonical decomposition of f into the composition
of an injection, a bijection and a surjection. We have just established the theorem
of the canonical decomposition of an application, we have the following diagram:

E
f

//

º

✏✏

F

E/R
ef

// f (E)

i

OO
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Exercise 3.2.2 Let R be the relation defined on R by:

8; x, y 2R, xR y () x2 = y2

  Show that R is an equivalence relation on R:

À Determine the equivalent class of a 2R;

Ã Determine the quotient set R/R.

Õ The function f defined by:

f : R/R°! [0,+1[

ẋ 7°! f (ẋ) = x2.

is it well defined? is it bijective?

3.3 Order relations

3.3.1 Definitions and examples

Definition 3.3.1 Let R be a binary relation on a set E . We say that R is
an order relation if R is reflexive, antisymmetric and transitive.

Example 3.3.1 We define in N the binary relation R by:

8x, y 2 N, x R y () x divide y.

Let us show that R is an order relation.

4 Let us show that R is reflexive. We have

R is reflexive () [8x 2N, x R x]

It is easy to see that8x 2N, x = 1.x, which is equivalent to saying that x R x hence
R is reflexive.
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4 Let us show that R is antisymmetric. We have by definition

R is antisymmetric () [8x, y 2N, x R y and y R x =) y = x ]

and therefore

8x, y 2N, x R y and y R x =) x divides y and y divides x

=)9k, k
0 2N, y = k.x , and x = k

0
.y

=)9k, k
0 2N, y = k.x and x = k

0
.k.x .

=)9k, k
0 2N, y = k.x and k

0
.k = 1 .

=)9k, k
0 2N, y = k.x and k

0 = k = 1 .

=) y = x .

hence, R is anti-symmetric.

4 Let us show that R is transitive. We have by definition

R is transitive () [8x, y, z 2N, x R y and , y R z =) x R z ]

and so

8x, y, z 2N, x R y et y R z , =)9k, k
0 2N, y = k.x and z = k

0
.y

=)9k, k
0 2N, z = k

0
.k.x

=)9k" 2N, z = k"x

=) x R z .

hence, R is transitive.

We deduce that R is an order relation on N.

Exercise 3.3.1 " � Is the following relation an order relation on Z ? :

8x, y 2 Z, x R y () x divide y.
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Example 3.3.2 The relations R2,R4,R5,R8 are all order relations, on the other hand
the relations
R1 (is not antisymmetric) , R3 (is not antisymmetric) ,R6 (is not reflexive) ,
R7 (is not reflexive) , R9, (is not antisymmetric) R10 (is neither reflexive nor transi-
tive), are not.

Remark 3.3.1 A set with an ordering relation is called an ordered set, and we denote it
(E , R).

e

Remark 3.3.2 A set with an ordering relation is called an ordered set, and we denote it
(E , R).

3.3.2 Total or partial order

A order relation compares elements in a set. This means that we can form the notion of
upper and lower bounds of sets. We make the following definition:

Definition 3.3.2 Let (A,R) be a ordered set. An element a 2 A is called largest
element of A if and only if xRa for every x 2 A. Conversely, an element a2
Ai scal l edsmallest element of Ai f andonl yi f a R xf or ever yx.

Definition 3.3.3 Let E be a set ordered by the order relation R.

  Let x, y be two elements of E, we say that x and y are comparable if
xR y or y Rx.

À We say that the relation R is a total order, or else (E , ,R) is totally or-
dered, if any two elements x, y of E are comparable. In other words:

The relation R is a total order () 8 x, y 2 E , xR y textor yR x.

Otherwise, we say that the relation R is a partial order, or else , (E , R) is par-
tially ordered. In other words:

The relation R is a partial order () 9 x, y 2 E , x��R y , and y��R x.

Example 3.3.3   … and   define a total order on N,Z,Q, R.

À The division defines a partial order on N.
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Ã Ω and , ,æ define a partial order on P (E) such that car d(E)   2.

3.3.3 Remarkable elements of an ordered set

lower and upper bound of a set

Definition 3.3.4 Let R be an order relation on a set E and A , a non-empty
part of E.

  We say that A is bounded from above or majorized for the relation R
if:

9M 2 E , 8x 2 A, such as x R M .

We say that M is a upper bound of A or else A is bounded from above
by M.

À We say that A is bounded from below or minorized for the relation R if:

9m 2 E , 8x 2 A, such that m R x .

We say that m is a lower bound of A or A is bounded from below by m:

Example 3.3.4   A = {1, 3, 7} is reduced by 1 and increased by 21 for the relation
defined onN by:

8x, y 2 N, x R y () y multiple of x.

Indeed :

4 Let M 2N

M is an upper bound of A =)8x 2 A, xR M .

=) M multiple of 1, M multiple of 3 and M multiple of 7

=) M , is the common multiplier of 1,3 and 7.

=) M is multiple of 21.

Then the set of upper bounds of A is {21k, such that k 2N}.
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4 Let m 2N

m is a lower bound of A =)8x 2 A,mR x.

=) 1 multiple of m, 3 multiple of m and7 multiple of m

=) m is the common divisor of 1, 3 and 7.

=) m = 1.

Then the set of lower bounds of A is {1}.

À In the ordered set (P (E),Ω), P (E) is minorized by ; and majorized by E.

Upper bound and lower bound of a set

Definition 3.3.5 Let R be an order relation on a set E and A be a non-empty
part of E.

  If A is majorized for the relation R then the least upper bound of A, if it
exists, is called least upper bound or supremum, denoted sup A.

À If A is minorized for the relation R then the greatest lower bound of A, if
it exists, is called greatest lower bound or infimum, denoted inf A .

Example 3.3.5   A = {1, 3, 7} is bounded from below by 1 and bounded from above
by 21 for the relation defined onN by:

8x, y 2 N, x R y () y multiple of x.

4 We have seen that the set of upper bounds of A is {21k, such that k 2N},
and so sup(A) = 21 is the smallest multiple of elements of A.

4 For the lower bound, we have already shown that the set of lower bounds of
A is {1}, so In f (A) = 1.

À A subset A of an ordered set E does not necessarily admit an upper (resp. lower)
bound. However, if A admits an upper bound (resp. lower), it is unique but it
may not belong to A.
For example, if E =Q, ordered by the usual inequality, and if

A =
©

x 2Q : 0 < x et x2 < 2
™

,
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then the set A is minimized by any negative or zero rational number. We have
i n f (A) = 0 but A does not admit an upper bound inQ since

p
2 ›Q.

Theorem 3.3.1 Let (E ,R) be a totally ordered set, and A be a part of E. For an element
M of E to be the upper bound of A, it is necessary and sufficient that M satisfies both
conditions.

1. For all x 2 A, we have: xRM.

2. For any element c 2 E such that cRM , 9x 2 A, such that cRx.

maximum element, minimum element in a set

Definition 3.3.6 Let R be an order relation on a set E and A be a non-empty
part of E.

  We call largest element of A ( or maximum of A), any element of A
which is the upper bound of A, we denote it max(A). In other words:

M =max(A) () M is the largest element ofA () [(M 2 A) et (8x 2 A, xRM)]

If one exists, this element is unique.

À We call smallest element of A (or minimum of A), any element of A
which is lower bound of A, we denote it mi n(A). In other words

m =min(A) () m is the smallest element ofA () [(m 2 A) and (8x 2 A,mRx)]

If one exists, this element is unique

Example 3.3.6   . With the usual relation … defined on R i.e. A, B two parts of
R.

A = {2, 5, °7} , B =]0,1[.

4 The set A has a minimal element which is °7, and a maximal element
which is 5, mi n(A) =°7, max(A) = 5.

4 The set B has neither a minimal nor a maximal element.
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À For the relation R onN:

8x, y 2 N, x R y () y multiple of x.

Let the subset A = {2, 3, 10} of N.

4 A does not have a maximal element, the upper bounds are the multiples of
30 and the smallest of upper bounds of A is 30, which does not belong to A.

4 A does not have a minimal element, the lower bounds of A are the common
divisors of 2,3 and 10 so the only lower bound of A is 1, which does not belong
to A.

Maximal element and minimal element of a set

Definition 3.3.7 Let E be a set with an order relation R and A a non-empty
part of E.

  We say that a 2 A is a maximal element of A if

8x 2 A, aRx =) x = a

That is, there is no element x in A, other than a, such that a is related
to x. (or, there is no element in the set A greater than a, with respect to
h̀as the relation R).

À We say that b 2 A is a minimal element of A if 8x 2 A, : xR b =) x = b.

That is, there exists no element x in A, other than b, such that x is related
to b. (or else, there is no element in the set A lower than , b, with respect
to the relation R).

Ã We say that an element of E is extremal if it is or maximal or minimal.

Exercise 3.3.2 (Exercise N ±5 from the series N ±3)

Solution 3.3.1 to enter


