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Chapter 3

Binary relations

In mathematics, we often seek to compare two elements of a set or the property that
two elements of a set are likely to have.

Definition 3.0.1 Let E and F be two sets, a relation from E in F is an assertion
associating each element of E to an element of F, which are true or false. We
denote the relation by ‘R a relation denotes some kind of relationship between
two objects in a set, which may or may not hold

Formally, a relation R over a set X can be seen as a set of ordered pairs (x,y) of]
members of X .The relation ‘R holds between x, and y if (x,y) isa member of|
A.

or else

Definition 3.0.2 Given two sets E and F, a relation from E to F is a correspon-
dence R which links elements of E with elements of F.

or

Definition 3.0.3 Let E and F be two sets , a relation ‘R from E to F isa
subset of E x F, we denote xRy if (x,y) € R.

Remark 3.0.1
e The set E is called the domain or the set of departure of*R.

e The set F is called the codomain or the set of destination of*R.

9
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* For any element x of E and any element y of F satisfying R, we say that x € E
is related by R with y, and we write xRy otherwise xR y.

* If E=F , therelation ‘R is called binary relation on E.

In the following chapter, we study only the binary relations on a set.

Example 3.0.1

1. In Z, we define the relation Ry as follows:

‘Vx,ye Z, xRy < y multiple ofx.‘

For example , 1R, x, Vx€ Z,
xR0, VxeZ,
6R112, 4%{10, ..., etc.

2. In Z, we define the relation Ry as follows:

‘ Vx,ye Z, xRy y < x=y[2].

For example : 1R;1, 1R, (-1), 293 3 ... etc.

3. In R, wedefine the relation R3 as follows:

Vx,yER, xRy <= x>=y>%.

For example : 1R31, 1R3(-1), 198353, 2R3 (-2) ... efc.

4. In R, we define the relation R4 as follows:

“v’x,yel]%,xi)%y = x=y.

For example : 1R41, 131 (-1), ... etc.
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5. In R, we define the relation Rs as follows

’Vx,yeR,xiKL;y < x=<y,.

For example : 1Rs1, 1933 (1), ... efc.

6. In R, we define the relation Re as follows:

’Vx,yel]%,xi)%gy@ x<y.‘

For example : 5935, 4Re5, ... etc

7. Let E={a, b, c}, in P(E), we define the relation R, as follows:

\VA,BeP(E), AR B < AnB#9.]
Forexample : AR;B, @ %7 A, A%4 H, ... etc, withA={a,b}, B={a}, H={c}.

8. LetE beany set, in P(E), we define the relation ‘Rg as follows:

VA, Be P(E), ARy B < AcB.|

Forexample : ARgE, ¢Rg A, VA€ P(E) .

9. In a plane (P), we define the relation Rq on all the lines of the plane (P) as
follows:

V(A),(A)ER ,(A)Re(A) < (A) | (A).

For example : Let three lines:  (Ay) equation: y =x, (Ap) of equation: y =
x+1, (A3) ofequation: y =2x, we then have:
(A1) Ro (A2), (A1) K3 (Az).

H

10. Inaplane (P), we define the relation ‘Rio on all the lines of the plane (P) as
follows:

V(A),(A) € R (A) R (A) = (A) L (A).

For example : Consider three lines:  (A1)’s equationis: y=x, (A2)’s equation
is: y=-x, (A3)sequation is: y=3x, wethenhave: (A})R19(A2), (A)B10(A3).
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Definition 3.0.4 (Graph of arelation) Ler ‘R define a binary relation on a set
E, wecall the graph of the relation ‘R, denoted Gy, the subset of E x E defined

by

Gy ={(x,y) € E x E, such that xR y}.

Example 3.0.2 Let E ={-2,-1,0, 1, 2, 3} and we define the relation R , on E by:
Vx,y€E, xRy < x* =)~
therefore the graph of the relation R is defined as follows:

Gm = {(1) 1)) (_1) 1)) (_1)_1)) (1)_1)) (2)2)) (_2)2)) (2)_2)) (_2)_2)) (0)0)) (3)3)}-

3.1 Properties of binary relations on a set

Let E be a set, YR arelation defined on E.

Definition 3.1.1 (Reflexivity) The relation R is said to be reflexive if

‘Vx €E, xRhx.

Example 3.1.1 The relations defined previously R1,R2,Rs, Ry, Rs,Rg,Rg are all re-
flexive, but the relations R, R7,R1¢ are not.

Remark 3.1.1 To show that a relation ‘R is not reflective, it is enough to find an element
xo0 € E such that xo 9 x.
In the previous example the relation *R7 is not reflexive because (ZS%Q), (NG =0).

Definition 3.1.2 (Symmetry) The relation ‘R. is called symmetric if

Vx,y€E, xRy = yARx.
| |

Example 3.1.2 the relations defined previously ‘R, R3, R4, R7,R9, Ry are all symmet-
ric, on the other hand the relationsR1,Rs, R, Ry are not.

Remark 3.1.2 To show that a relation R is not symmetric, it is enough to find two ele-
ments xg, Yo € E such that xoRyy and , y()%xo
In the previous example, the relation Rg is not symmetric because @RgE, but ESRg @.
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Definition 3.1.3 (Antisymmetry) The relation R. is said to be antisymmetric if

Vx,yeE, xRy, andyRx= x = y.

Example 3.1.3 The relations defined previously ‘R, R4, N5, R, Rg are all antisymmet-
ric, on the other hand the relations Ry, R3, R7, Rg, R are not.

Remark 3.1.3 To show that a relation R is not antisymmetric, it is enough to find two
elements xy, yo € E such that xoRyy and yoRxo, but xy # yo. In the previous ex-
amples, the relation R3 is not antisymmetric because

1R3(-1), and (-1)NR31, butl # (-1).

Definition 3.1.4 (Transitivity) The relation ‘R. is called transitive if

Vx,y,z€E, xRy and y Rz = xSRz.‘

Example 3.1.4 The relations defined previously ‘R1,R2,R3, R4, AR5, N6, NRg, Re are all
transitive, on the other hand the relations R, Ry are not.

Remark 3.1.4 To show that a relation R is not transitive, it is enough to find three ele-
ments Xxo, Yo, 20 € E such that xoRyy and yoRzy, but x0R 2.

In the previous example, the relation, Ry is not transitive because if the line (A;)
is perpendicular to the line (A) and theline (A,) is perpendicular to the line (As)
then the line (A1) is not perpendicular to the line (A3), (but (A1) || (A3).

3.2 Equivalence relations

3.2.1 Definitions and examples

Definition 3.2.1 Let R be a binary relation on a set E. We say that ‘R is
an equivalence relation if ‘R is reflexive, symmetric and transitive.

Example 3.2.1 Wedefinein R* the binary relation R by:
Vx,ye R* , xRy < xy>0.

Let us show that R is an equivalence relation.
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e Let us show that ‘R is reflexive. We have

’R is reflexive <— [VxeR*, xR x.]

It is easy to see that Yx € R*, x*> > 0, which is equivalent to saying that x R x.
hence R is reflexive.

e Let’s show that*R is symmetric. We have by definition

’ R issymmetric < [Vx, yeR*, xRy = yR x|

we have

Vx, yeR* xRy = xy>0
= yx>0

a4 Rx.
So ‘R is symmetric.

* Let us show that R is transitive. We have by definition

R is transitive < [Vx, y,z,€R*, xR yand yRz= xR z]

we have

Vx, 5,z €R*, xRyand yRz = xy>0, and yz>0
= xz>0
(x has the same sign as y and y , has the same sign as z then necessarily z
has the same sign that x)
= xRz.

hence R is transitive.

We deduce that R is an equivalence relation on

Example 3.2.2 The relations Ry, R3, R4, R5 and Ry are all equivalence relations, on
the other hand the relations

Ry (is not symmetric) ,, Rg (is not reflexive) ,YR; (is not is not reflexive) ,

Rg (is not reflexive) , Ry1o (is neither reflexive nor transitive), are not.
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Exercise 3.2.1 A\ # s the following relation, an equivalence relation on R?:

VX, yER, xRy < xy<O.

We can therefore group these elements into "bundles” of elements that are similar, thus
defining the notion of equivalence class, to finally construct new sets by " assimilat-
ing "similar elements to one and the same element. We then arrive at the notion of
set quotient .

3.2.2 Quotient set

Definition 3.2.2 Let ‘R be an equivalence relation in a set E . For each x of E,
the set of all elements of E which arerelated, by R, with x is called equivalence
class of x denoted by % or X or cl(x) or Cy.

So, the equivalence class x is the subset of E defined by

X=Xx={y€E, suchthatyR x}

If ye x, y issaid to be a representative of the class x.
The set of equivalence classes is called quotient set of E by the relation ‘R de-
noted by E/*R.

EIR={x |x€ E}

Example 3.2.3 InZ, we define the relationR by:
Vx,yeZ xRy < ,x—y=5k, ke Z
R is an equivalence relation. the class of 0.

0= {x€Z, such that xR, 0}
={x€Z, suchthatx—0=5k, ke Z}
=1{5k, ke Z}.
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In the same way we determine the other equivalence classes, there are exactly five equiv-
alence classes.

0=1{5k, kez},i={5k+1, keZ},2={5k+2, keZ},
3={5k+3, ke Z},4=1{5k+4, ke Z}.

For this relation, we note x = y[5], weread it x congruoto y modulo 5. The quotient
setisdenoted 7/57 instead of ZI*R and we then have:

z/52=10,1,2,,3,4}.

Proposition 1 Let ‘R be a relation defined on a set E, we have the following
properties:

©® Let a, b€E, if ,ach then a=Dh.

® Va, beE, a=b < aRb.

® Llet u,v,x€E, if uyvex then uRv.

® Vx,y€E, wehave x=y orxny= @.

© The equivalence classes form a partition of the set E.

E= | x

X inE

Proof3.2.2.1 V If x €a, then
xR a and we have a‘R b,

we deduce, by transitivity, that
xR Db,

which implies that .
x € b.

same reasoning to show that b c a.
Conclusion
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v Let us show the direct implication, we assume that a = b and show that afib. it
is easy to see that a € a (because ‘R is reflexive).

aca=—ach
= aRb.

Reciprocally if aib then a=Db. infact letz€ a

z € a= z%Aaq,
=—> z R b (because a‘RR b and ‘R is transitive.)

— z€ b.

Hence ac b Similarly, we show thatbc a
Let zeb

ze€b= zRb,
= z R b (because b ‘R a (R is symmetric and transitive.)

—z€aq.

Hence b c a.

vV Wehave u,vex then uRx and xRv hence uRv (by the transitivity of *R.)

V' Let x,y€E suchthat xny# @, weshowthat x=7y.
Wehave xnNy#@ then 3z€E, telthatze xNy

zEXNy=z€Xxetz€ doty
= zRxetzRy,
= z=Xandz =Yy, (see thefirst property)

= x=y.

v Let us show that the quotient set forms a partition of E

O Wehave Vie E/I'R, X neq®, because x € x. (the relation ‘R is reflexive,
, XRx).

O We showed previously that all distinct equivalence classes are disjoint.
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® Rest a show that

E=Jx,

x€E

we have an obvious inclusion

U y cE,
YEE

let’s show the other inclusion.

EcJy.
YeE

Let xe E then x€ X and therefore x € bigcupycgy hence

EcUy
YEE

in conclusion, theset E/R isa partition of E.

3.2.3 Canonical composition of a function

Definition 3.2.3 Let E and F be two sets, f : E— F be a function, and let‘R be
arelation definedon E by:

xRy = fx)=f).

This relation *R is an equivalence relation, it is called an equivalence relation associated
to f. Let f(E)={f(x)|x€E} istheimagesetofEbyf, i thecanonicalinjection
of F(E) into ,F and n thecanonical surjectionof E in , E/°R.

i:f(E)—F n:E— EIR
X— X x»—»x

Remark 3.2.1 We easily verify, by construction, that the function i isinjective and the
function 7 is surjective.

Theorem 3.2.1 Let E, F be two sets, and f :E— F bea map
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O The binary relation‘R defined on E by:
XRy = f(x)=f).
is an equivalence relation on E called associated to f.

® . Let w be the canonical surjection of E on E/*R and i the canonical injection of
fE) in F. Then there exists a bijective map unique

f:EIR— f(E)
i— f0) = f(x).
such that f=io fou.
Proof3.2.3.1 O Itiseasy to verify that ‘R is an equivalence relation on E.

O Indeed,
=y = fO)=fy
= f&®=f.
We have also just shown that f is injective. N
f is surjective by construction. Thus, f is a bijection of E/*R into f(E), f is called

the bijection canonical associated to f.
If there existed another application g : E/R — F such that f = gon, we

would hgveforallx ek, f()'c) = f(x) = g(%). hencef: g, which proves the unique-
nessof f.

it is clear that for all x € E, we then have:

Vx€eE, f(x)=i(f(x))=i(f(#) = (io fom)(x).

Hence, f = iofom: Thisisthe canonical decomposition of f into the composition
of an injection, a bijection and a surjection. We have just established the theorem
of the canonical decomposition of an application, we have the following diagram:

E/R f(E)




20 ALGEBRA 1

Exercise 3.2.2 Let ‘R be the relation defined on R by:
V;x,yeER, xRy — x2:y2
O Show that R is an equivalence relation on R:
® Determine the equivalent class of a € R;
©® Determine the quotient set R/R.
O The function f defined by:

[ RIR— [0, +00[

i— f(x) = x%

is it well defined? is it bijective?

3.3 Order relations

3.3.1 Definitions and examples

Definition 3.3.1 Let ‘R be a binary relation on a set E. We say that ‘R is
an order relation if ‘R is reflexive, antisymmetric and transitive.

Example 3.3.1 We definein N the binary relation R by:
Vx,ye N, xRy < xdividey.
Let us show that ‘R is an order relation.
v’ Let us show that ‘R is reflexive. We have
R is reflexive < [VxeN, xR x]

ItiseasytoseethatVx €N, x = 1.x, which isequivalent to saying that x R x hence
R is reflexive.
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V' Let us show that ‘R is antisymmetric. We have by definition

’R is antisymmetric < [Vx, yeN, xR yand yRx = y = x|

and therefore

Vx, yeN, xR y and yR x = xdivides y and y divides x
= Ik, K eN, y :k.x,andx:k’.y
= Ik, K eN,y =k.x and x=k.kx.

— 3k, k €N,y =k.xandk .k=1.

— 3k, k €N,y =k.xandk =k=1.

> y =X.
hence, R is anti-symmetric.

v/ Let us show that R is transitive. We have by definition

R istransitive < [Vx, y,z eN, xR yand ,y Rz—= xRz]

and so

Vx,y,z €N, xRyet y Rz, = 3k, k €N, y :k.xandz:k,.y
— 3k, k €N, z=k .k.x
— 3k €N, z=k x

= xNRz.

hence, R is transitive.

We deduce that R is an order relation on N.

Exercise 3.3.1 A\ #3 [s the following relation an order relationon 7 ? :

Vx,ye Z, xRy < x dividey.
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Example 3.3.2 The relations Ry,0R4,R5,'Rg  areall order relations, on the other hand
the relations

Ry (is not antisymmetric) , R (is not antisymmetric) ,Rg (is not reflexive) ,

R7 (is not reflexive) , Ry, (is not antisymmetric) Ry (is neither reflexive nor transi-
tive), are not.

Remark 3.3.1 A set with an ordering relation is called an ordered set, and we denote ite
(E, R).

Remark 3.3.2 A set with an ordering relation is called an ordered set, and we denote it
(E, R).

3.3.2 Total or partial order

A order relation compares elements in a set. This means that we can form the notion of
upper and lower bounds of sets. We malke the following definition:

Definition 3.3.2 Let (A,R) be a ordered set. An element a € A is called largest
element of A if and only if xRa for every x € A. Conversely, an element ac
Aiscalledsmallest element of AifandonlyifaR xforeveryx.

Definition 3.3.3 Let E be a set ordered by the order relation ‘A.

O Letx, y be two elements of E, we say that x and y are comparable if
xRy or yRx.

@ We say that the relation R is a total order, or else (E, ,R) is totally or-
dered, if any two elements x, y of E are comparable. In other words:

‘ Therelation R isatotalorder <= Y x,ye E, xRy textor yR x.

Otherwise, we say that the relation ‘R is a partial order, or else , (E, R) is par-
tially ordered. In other words:

The relation ‘R is a partial order < 3 x, y€E, x%/y , and y% X.

Example 3.3.3 O < and = defineatotal orderon N,Z,Q, R.

@ The division defines a partial order on N.
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® cand, ,o define a partial order on 2 (E) such that card(E) = 2.

3.3.3 Remarkable elements of an ordered set

lower and upper bound of a set

Definition 3.3.4 Let ‘R be an order relation on a set E and A, a non-empty
partof E.

O We say that A is bounded from above or majorized for the relation ‘R

if:

‘ElMEE, Vxe A, suchas x%M\.

We say that M is a upper bound of A orelse A isbounded from above
by M.

@ We say that A is bounded from below or minorized for the relation ‘R if:
dmeE,Vxe A, suchthat m*R x.

We say that m is a lower bound of A or A is bounded from below by m:

Example3.3.4 © A=1{1,3,7} isreduced by 1 and increased by 21 for the relation
defined on N by:

Vx,yeN, xRy < y multiple ofx.‘

Indeed :
vV LetMeN

M is an upper bound of A= Vx € A, xR M.
= M multiple of 1, M multiple of 3 and M multiple of 7
= M, is the common multiplier of 1,3 and 7.
= M is multiple of 21.

Then the set of upper bounds of A is {21k, such that k € N}.
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v LetmeN

m is a lower bound of A= VYx e A,m*R x.

= 1 multiple of m, 3 multiple of m and7 multiple of m
= m is the common divisor of 1,3 and 7.
= m=1.

Then the set of lower bounds of A is {1}.

@ In the ordered set (#(E),c), ZP(E) is minorized by ¢ and majorized by E.

Upper bound and lower bound of a set

Definition 3.3.5 Let R be an order relation on a set E and A be a non-empty
part of E.

O If A is majorized for the relation ‘R then the least upper bound of A, if it
exists, is called least upper bound or supremum, denoted sup A.

® If A is minorized for the relation ‘R then the greatest lower bound of A, if|
it exists, is called greatest lower bound or infimum, denoted inf A .

Example3.3.5 © A=({1,3,7} isbounded from below by 1 and bounded from above
by 21 for the relation defined on N by:

’Vx,ye N, xRy < y multiple ofx.‘

v We have seen that the set of upper bounds of A is {21k, such that k e N},
and so sup(A) =21 isthe smallest multiple of elements of A.

v’ For the lower bound, we have already shown that the set of lower bounds of
Ais{l}, soInf(A)=1.

O A subset A of an ordered set E does not necessarily admit an upper (resp. lower)

bound. However, if A admits an upper bound (resp. lower), it is unique but it
may not belong to A.

For example, if E = Q, ordered by the usual inequality, and if

A={xeQ:0<x et x* <2},
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then the set A is minimized by any negative or zero rational number. We have
inf(A) =0 but A does not admit an upper bound in Q since V2 ¢ Q.

Theorem 3.3.1 Let (E,°R) be a totally ordered set, and A be a part of E. For an element
M of E to be the upper bound of A, it is necessary and sufficient that M satisfies both
conditions.

1. Forall x e A, we have: xR M.

2. Foranyelement ce€ E such that ¢c’RM, Ax € A, such that cRix.

maximum element, minimum element in a set

Definition 3.3.6 Let R be an order relation on a set E and A be a non-empty
part of E.

O We call largest element of A ( or maximum of A), any elementof A
which is the upper bound of A, we denote it max(A). In other words:

’M:max(A) <= M isthe largest element ofA < [(M € A) et (Vx€ A, xR M)] ‘

If one exists, this element is unique.

@O We call smallest element of A (or minimum of A), anyelementof A
which is lower bound of A, we denote it min(A). In other words

’ m=min(A) < m is the smallest element ofA < [(me A) and (Vx € A, mR x)] ‘

If one exists, this element is unique

Example 3.3.6  © . With the usual relation < definedon R i.e. A, B two parts of
R.

A=1{2,5, -7}, B=]0,1[.

V' Theset A has a minimal element which is —7, and a maximal element
whichis 5, min(A) =-7, max(A) =5.

v’ The set B has neither a minimal nor a maximal element.
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@ For the relation R on N:

’Vx,ye N, xRy < y multiple ofx.‘

Let the subset A =12, 3,10} of N.
v A does not have a maximal element, the upper bounds are the multiples of
30 and the smallest of upper bounds of A is 30, which does not belong to A.

v A does not have a minimal element, the lower bounds of A are the common
divisors of 2,3 and 10 so the only lower bound of A is 1, which does not belong
to A.

Maximal element and minimal element of a set

Definition 3.3.7 Let E be a set with an order relation R and A a non-empty
partof E.

O Wesaythatae A isamaximal element of A if
VXeEA aRx—>x=a

That is, there is no element x in A, other than a, such that a is related
to x. (or, there is no element in the set A greater than a, with respect to
has the relation ‘R).

® Wesaythat be A isaminimal element of Aif Vxe€ A, : xR b= x=D.

That is, there exists no element x in A, otherthan b, such that x is related
to b. (orelse, there is no element in the set A lower than , b, with respect
to the relation ‘R).

® We say that an element of E is extremal ifit is or maximal or minimal.

Exercise 3.3.2 (Exercise N°5 from the series N°3)

Solution 3.3.1 to enter



