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Chapter 4

Algebraic structures

4.1 Binary operation

Definition 4.1.1 Let S be a non-empty set. A function

*:Sx8§— S,
(a,b) — axb.

is called a binary operation on S. So * takes 2 inputs a, b from S and produces a
single output a* b € S. In this situation we may say that S is closed under *.

In other word , we can say also that a binary operation on a set S is a corre-
spondence that assigns to each ordered pair of elements of the set S a uniquely
determined element of the set S .

Example 4.1.1 /' Addition, " +", is a binary operation on each of the following:
N, Z,Q,R,C. But + is NOT a binary operation on the set S = {0, 1}: we have 1€ S
butl+1=2¢S8.

v Multiplication,".", is a binary operation on each of the following sets: N, Z,Q,R, C,
{ -, 1}, and{o, 1}.

v/ Let the function x defined by :

[1, +oo[x [1, +o0[ — [1, +o0]
(X, Y)—x*xy=(x-1y+1

11
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is it a binary operation on [1, +oo[ ?
Let x€[1, +ool,

X€[l, +oo[<e= x=21 <— x—-1=0.
VE[l, 4oo[<= y=1 < y—-1=0.

we have (x—-1)y20 <= (x-1y+121 < x*yell, +ool.
Exercise 4.1.1 which of the following are binary operations?

1. axb=a+bVa,beR*.
2. atb=a+b-3,Va,beN.
3. aocb=a+2b-5,Va,beR*

4. 8.£-ac ya ceq o,

Definition 4.1.2 (Closed Under an Operation) A setS is said to be closed under
a binary operation x if foreverysand t in S, sx t isin S.

Remark 4.1.1 Notice that the term "closed", as defined here, only makes sense in the
context of a set with an operation. Notice also that it is the set that is closed, not the
operation. The operation is important as well; as we have seen, a given set can be closed
under one operation but not another.

Example 4.1.2 ¢/ Theset S=1{1, —1} closed under usual multiplication on R*

v Theset S=1{1, —1} is not closed under usual addition on R (we havel + (-1) =
0¢S).

v/ The subset 2Z is closed under the usual addition "+".
v Thesubset R_ isclosed under + but not closed under the multiplication.
v We define a binary operation x on the setR by
X*xy=xy—-3x-3y+12.
Let S =]3, +oo[. Show that S is a closed subset under the binary operation x.

X*xyeES < xxy>3
<~ xxy-3>0
— xy-3x-3y+9=x(y-3)-3(y-3)=(y—-3)(x-3) > 0.
( becausex—3>0 and y—3>0).
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4.1.1 Properties of binary operation

A binary operation is an operation that combines two elements to produce another
element. It is a fundamental concept in mathematics and computer science. Here are
some properties of binary operations: Let S be a set with a binary operation * defined
on it.

1. We say that x is commutative if and only if : Va,be S :axb=Db* a.
2. We say that « is associative ifand onlyif Va,b,c€ S : (a*xb) xc=a* (bx c).

3. Let e€ S, be an element in the set S, we say that e is an identity element for * if
VaeS :axe=exa=a.

4. Let x € S, we say that x admits an inverse element under the binary operation *,
. . 4 ! !
if there exists x € S, suchthatxxx =x *xx=e.

x is called inverse element of x under the binary operation *.

Example 4.1.3 LetR be a set of real numbers and * be a binary operation onR. defined
asaxb=a+b—ab, then x is commutative and associative.

Solution 4.1.1 1. axb=a+b—-ab=>b+a—ba=bxa. Which implies that x is
commutative.

2. Leta,b,ceR, then

(axb)yxc=(a+b—ab)*xc=a+b—-ab+caa+b-abc
=a+b+c—ab—ac—bc+abc---(1)
ax(bxc)=ax(b+c—-bc)=a+b+c—bc—a(b+c—bc)
=a+b+c—bc—ab—-ac+abc---.(2)

we have then (1) = (2) therefore % is associative.
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4.2 Groups

The first Mathematician who used the word "group”
is Evarist Galois (1811 —1832), We find the struc-
ture of groups in different domains, in physics with
the symmetry groups of an object,

in mathematics in the resolution of equations alge-
braic, arithmetic...etc.
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Definition 4.2.1 (The Group) A group (G, %) isanon-empty set G and a binary
operation x, such that the following axioms are satisfied:

O The binary operation x is associative if:

“v’a,b,ceG: (a*b)*c:a*(b*c)‘.

@ Existence of the Identity element e
There is an element e in G such that

’EIeeG,VxeG:a*e:e*a:a.

This element e is an identity element for x on G .

© Existence of Inverse elements
For each a in G, there is an element b in G such that

‘VaeG,EibeG: axb=bxa=e|

The element b is an inverse of a and denoted by a™* or a or—a.

We will denote such a group (G, ) ( since it is given by both the set G and the
operation x).

Definition 4.2.2 (Commutative group) A group (G, x) is called a commutative

group(or abelian group) ifand only ifaxb=b* a,Va,b e G.

Example 4.2.1 vV (Z,+), (@Q,4+), (R,4+), (C,+), are all abelian' group.

v (@Q%), ([R*,), (C*,.), are commutative group.

v (Z*,) is notagroup, the inverse of element 3 does not exist. The only inverse

element under the multiplication in Z* are 1 and —1

v (R,.) isnotagroup : 0 doesn’t have an inverse under the multiplication on R.

honors Niels Abel (1802-1829)
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v (N,+) isnotagroup: for all element a€ N —{0}, a+ b > 0, there is not an inverse
for a natural number not nul under addition.

V' Let X be an arbitrary set. The set of functions from X to X

S(X) = {f :X—»X:fisafunction}

together with a composition is a group. In particular, for X = {1, 2, -, n}, the set
of permutations of n elements S, = S(X) is called symmeitric group .

Definition 4.2.3 (Order of a group) The order of a group (G, %) is the number of|
elements in G. It is a natural number or co. We denote it by |G| or o(G).

Definition 4.2.4 (Finite group) If |G| or o(G) is finite, the group G is said to
be finite group. Otherwise it is said to be infinite group.

Example 4.2.2 1. ({ -1, 1}, .) is a finite abelian group.

2. (Z, +) is an infinite abelian group.

Groups of small order may be given or described in the table ( called cayley? table)

x| elal|b

*x|lela

N G e
allale T

where an element in G occurs in every row and column exactly once, since the equation
ax = b (resp. xa = b) has in G a unique solution, namely x = alb( resp. x = ba™b.

Definition 4.2.5 (Quasi group) A order pair (S, %) of non empty set S together
with binary operation x is said to be a Quasi group if % satisfies only the closed
property, which means

Va,beS,axbeS.

2Arthur Cayley (A821-1895) was an early group theorist.
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Definition 4.2.6 (semi group) A order pair (S, x) of non empty set S together
with binary operation * is said to be a semi group if x satisfies the closed prop-
erty and the associativity property which means

VYa,be S,axbeS,
VYa,b,ceS,(axb)*xc=a* (bxc).

Definition 4.2.7 (Monoid) A order pair (S, x) of non empty set S together with
binary operation * is said to be a monoid if % satisfies the closed property, the
associativity property and existance of Identity. In other words

Ya,beS,axbeS,
Va,b,ceS,(axb)xc=a* (bxc),
Jdee S, VaeS:axe=exa=a.

Example 4.2.3
v (N, +) is a monoid but not a group.

v (Z,.) is a monoid but not a group.

Exercise 4.2.1 we define the operation x on] -1, 1[ by

Vx,yel—-1, 1, x * y = ——7
a4 Y VeI xy
Show that (] — 1, 1[, %) is a commutative group.
Solution 4.2.1 @ Closure property First, we must verify if the operation * is

closed on the set] — 1, 1, that means we show if : Vx,y€] -1, 1[, xxye€]-1, 1.

v Show that —1 < x x y, we have

x+y
1+xy

“l<xxy &< -1< — -l-xy<x+y <<= 0<l+x+xy+y
= 0<(1l+x0)+yQ+x) = 0<(x+1)(y+1).

commex,y€l—1,1[s00< (x+1)(y+1) thus—-1<x*y.



18 ALGEBRA 1

v Show that x x y < 1,we have

Ty
1+xy

xxy<l < <l = x+y<l+xy = x—xy+y-1<0

—= x(1-y-01-y)<0 = 1-»x-1)<0.

ifx,yel=1,1[then(1-y)(x—1)<0soxxy<1.

therefore weVx,y€l—1, 1[,xxy€] -1, 1[, which means that x is a binary oper-
ation (closed) on]—1, 1].

® Associativity property Show that * is associative : Vx,y,z€]—1,1[,(x % y) x
z2=xx(y*x2z)

X+y
X+ Trxy 7% x+y+z+xyz
(x*y)*z:(“_—y)*z— B = y y .
X

- x+y
1+1+xyz l+xy+yz

and the same calcul, we obtain the same result for x * (y x z).

©® Existence of identity element Jee]l-1,1[Vxe]-1,1[, xxe=e*xx=x.

e+x
ek X=X < =x
l1+ex

<~ e+x=x(l+ex) < e=ex

2

— e—-ex’=0 e(l—xz):O

— e=0 (asx€]l-1,1]D

and we have x x 0 = x so the identity element of * ise=0.

@ Existence of inverse elements, Vx €l —1,1[, 3x €] -1, 1|, such thatx * x =
X *x=0.
/ X+ xl
Xxx =0 < -=0
1+xx

!
<~ x+x =0
!

— X =—X
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satisfies that (—x) xx =0, we notice thatif x€]-1, 1] then —x€]-1, 1], so
every element of 1—-1, 1[ admits an inverse under x.
conclusion

(-1, 1[, %) isa group.
Exercise 4.2.2 Show that the set G = {1, -1,i,—i } is a group under multiplication.

Remark 4.2.1 if the binary operation is commutative, to find an identity element and
an inverse element, it is enough to solve one equation, for example for the identity el-
ement, we solve this equation e x x = x ( left equation) or the other equation ( right
equation) x x e = x.

Exercise 4.2.3 . We define on the set G = R— {2} a binary relation x by:
Vx,y€eG, xxy =xy—-2x—-2y+6.
Show that (G, %) isagroup

Solution 4.2.2 . /\ 3 be careful, the firs thing to check is to show that the set is closed
under the binary operation. (Vx, y € G,xx y € G).

The following properties are very important :

Proposition1 . Let (G, x) be a group, so we have
O agroup (G, *) is always a non empty set.
® The identity element is unique.

© The inverse of any element a € G is unique (i.e a has only one inverse, if a
has 2 inverses then they are equal).

O ForeveryacG,(a ) '=a.
® Foreverya, beG, (ab) ' =b1a L.
® Foreverya,ay, - a, € G, (alagag---an)_l = a;la;L ---az_lal_l.
@ ForeveryelementacG: axx=axy=x=Yy
( left cancellation).
O ForeveryelementacG: x*xa=yxa=>x=Yy

(right cancellation).
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Proof 4.2.0.1 X To prove the uniqueness identity element e, We suppose there exist
!
an another identity element e
exe=e (e identity element)

—e (e identity element).
!
soe=e.

X To prove the uniqueness inverse element X, for the element x.
We suppose that there exist an another inverse element x

! " ! "
axa =e<— a x(axa)=a *e
" !
<~ (a xa)*xa (% associative)

> exa=a (e identity element).
" !
soa =a.
X Find the inverse element of a x b.

(axb)x(axb) l=e = alx@axb)x(axb) '=alxe

— (a'xa)xbx@axb)'=a!

— exbx(@ ' xa)xbx(axb) ' =a!

< bx(axb)'=a

— b 'xbx@axb) H=bxa!

= b 'xb)xaxb) ' =bxa!

= ex(axb) '=b"1xa!
— (axb)'=btxal.

50

(axb) '=blxa!

X Prove the left cancellation

VYaeG, ax=ay=x=y. (4.2.1)
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By multiplying a™! on both side of equation 4.2.1, we write

al.(a.x) = a_l(a.y) — (a ta).x= (a_l.a).y
—ex=ey

—=x=y

X Theright cancellation law are defined as
VaeG, x.a=ya=—=x=Y. (4.2.2)
By multiplying a™' on both side of equation 4.2.2, we write

(x.a).a'1 = (y.a).a'1 = x.(a.a'l) = y.(a.a'l)
= x.e=y.e

ﬂx:y

4.2.1 Subgroups

Definition 4.2.8 Let (G,*) be a group and a subset H < G is called a sub-
group of (G, %), ifitremains a group with respect to the same binary operation.
We write H < G .That means

1. The identity element belongs to H.

2. Theset H is closed under the binary operation of G (%), ieYa,be H,a*xb €
H.

3. Every element of H has its inverse element in H.

Remark 4.2.2
A subgroup H is a proper subgroup if H # G, this is written H < G.

The trivial subgroup is the singleton {e}, all other subgroups are non trivial.

. {e} and G are subgroups of G, for any group G.
* (Z,+) is asubgroup of (Q, +).

e (Q*,.) is a subgroup of (R*,.).
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* (2Z,+) is asubgroup of (Z, +).

Proposition 2 Let H bea subsetof the group (G,.) H isasubgroup of (G, .) if
and only if

O H is notempty.

® VabeH,ab'leH, (a~! is the inverse element of a).

Proof 4.2.1.1 1. if H is a subgroup of G, then there exist the identity element e € H
that means that H is not empty. if b€ H, thenb™! the inverse element of b is in
H. soa.b™! € H (because H is closed ).

2. We have to prove that H is closed and contains the identity element and inverse
elements. because of (1), H is notempty, 3Ja€ H

e Ifac Hthena.a ' =e€ H (from(2)), therefore the identity element belongs
toH.
e Ifa,ec Hthene.a '€ H, thena™' € H.

e Ifble Handae H thena.(b-")"'=abe H, soa.be H (closure of H).

Example 4.2.4 v if (G, %) is a group with its identity element e, then G and
{e} are a subgroups of G.

v (Z,+) isasubgroup of (Q,+) which is itselfis a subgroup of (R,+). we have

0eZ
(4.2.3)
Vx,yeZ, x+(-y)e”Z
v (2Z,+) is a subgroup of (Z,+). We have
0e”Z
(4.2.4)

Vx,ye2Z, x+(—-y)e2”Z

Indeed,

x,yeZZ:Bk,k/EZ, such that x =2k and y:Zk,
= x+(-y) =2k + (-2k) =2(k— k) € 2Z.
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v (2Z+1,+) is not a subgroup of (Z,+). The set 2Z + 1 is not closed under +. For
example 3,5€27+1,but 3+5=8¢27+1

Exercise 4.2.4 Let Hy, H, be two subgroups of (G, *).
O Show that Hyn H, issubgroup of (G,x).
® Show that, in general, H, U H, is not a subgroup of (G, %).

Solution 4.2.3 X We have Hi N Hy, # @ because e € Hi N Hy. Indeed, e € Hy and
e€ H,. (Hy, Hy betwo subgroup of G). Let x,y € Hy N H,

x, yeHlinH, = x, ye Hy et x, ye H>.
— xxy 'eH etxxy 'eH,, (H, Hy besubgroup of G).

= x*xy e HinH,.

X For the union, we have 2Z and 3Z two subgroupsof (Z, +), but(2Zu3Z) is

not a subgroup of (Z, +), because it is not closed under +. If we take x=2¢€2Z
and y=3€3Z then 2+3=5¢(2ZU327)

4.2.2 Group Homomorphisms

Definition 4.2.9 Let (G,*), (G,A) be two groups. We said group homomor-
phism from G to G every function f : (G, *) — (G, A) such that :

|Vx, y€G: flxxy) =f)Af()]

In other words, every function from G to G that preserves the group’s structure.
O Injective group homorphisms are called monomorphisms
@ Surjective group homorphisms are called epimorphisms.

® An isomorphism group ¢G; — G is bijective homomorphism. The in-

verse function ¢~ ' : G, — G, is then also a isomorphism group. we write
G1 = Gg

Example 4.2.5 v The function f : (R,+) — (R**,.) such that f(x) = €%, is a group
homomorphism. Indeed

f(x+y) = ex+y = ex.ey = f(x)f(y)
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V' The function f : (R,+) — (R, +) such that f (x) = 3x, is a group homomorphism.

V' The function f : (R},.) — (R,+) such that f(x) = In(x), is a group homomor-
phism. Indeed ,

Vx, yeR:, f(xy) =In(xy) =In(x) +In(y) = f(x) + f(p).

f is bijective <= VyeR, 3lx=eYeR}, such that y=In(x).

V' The function f : (C*,.) — (R*,.) such that f(z) = |zl|, is a group homomorphism.
Indeed, we have :

Vz, z €C*, f(z.z') —z.Z|=lzl.lz | = f(z).f(z’)

Proposition 3 Let f be a group homomorphism from (G1,*)to (G2, A) (with
identity elements ey, ex of Gy, G respectively), then we have:

O f(e) =e.
® VxeGy, f(x H=[f(x)]

©® Let H be a subgroup of Gy, then the the direct image of H, f(H), is a sub-
group of G».

O LetH bea subgroup of G, then the Inverse image of H, fl(H/), isa
subgroup of G;.

Proof 4.2.2.1 B We have:

flerxe) = f(e)Af(e1) = f(e1) = f(e1)Af(er)
= [f(e)]'Af(er) = [f(eN] 'A(f(en)Af(e1)
= e, = ([f(e))] ' Af(e)) Af(er)
= ez = f(ey).
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Vxe Gy, flxxx D= fAf(x™) = fle) = FOAF(x)

= ey = f(OAf(x)

= [f(0)] 'Aex = [fOI A (fOAfx™)

= [f] ' = ([f@I'Af@)Af ™
= [f)] ' =eAf(x7)
= |

Ffe1 ™ = fixh.

B Let H be a subgroup of Gy, Show that f (H) is a subgroup of Go. First, f(H) # @,
because e, = f(ey) € f(H).
Secondly, Let x, y€ f(H),showthat xAy~' € f(H)2.
If x, ye f(H), then3t, s€ H suchthat x= f(t) and y = f(s). We have:

XAy~ = fFOAIFS17 = FOAf(™
= f(txs Ve f(H).(because t x s™' € H. and H subgroup G,)

W LetH be a subgroup of G, Showf‘l(H’) is a subgroup of G. First, f‘l(H,) # @,
because e, = f(e)) € H, so ei€ f~Y(H)
secondly , let x, y € fY(H), show that xAy~'e f~Y(H)2 in other words
f(xAy e H?

wehave:f(xAy'l) = f(x)Af(y'l) = f(x)A[f(y)]_1 € H,.( because H subgroup G)

Exercise 4.2.5 Which of the following are homomorphism /isomorphism of a binary
structures? explain

Q ¢:(Z,+)— (Z,+),d(n) =—-n.
® ¢:(Z,+)— (Z,+),pm)=n+1
® ¢:(Q,+) — (Q+), p(x)=3x.
0 ¢:(Q,)— (@), px) = x*

@ ¢: (R +) — (R,.), p(x) =2~

0 ¢:R,.)— R, p(x)=x°.
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4.2.3 Kernel and Image

Definition 4.2.10 Let (Gy, %) and (G, T) be two groups and f : Gy — G3 be
a group homomorphism from (G, %) to (G2, T).

O We say kernel of f, denoted ker f, is the set

kerf==f"1({ex) ={x€ G /f(x) = ex} |.

@O We called image of f, noté Imf, is the set

Imf::f(Gl):{f(x)eGg /xEGl} b

Theorem 4.2.1 Let f be a group homomorphism from (Gy, %) to (Gz,A).
O ker f is a subgroup of G;.
O Imf isasubgroup of G,.
® f injective (or one toone) < ker f ={e;}.

O f surjective. (or onto) < Imf = Go.

Proof4.2.3.1 v Wehave ker f = f~!(ey) , inverse image of subgroup is a subgroup
of G1. see theorem 3.

v We have Imf = f(Gy) , the direct image of a subgroup is a subgroup of G,. see
theorem 3.

v Show by double implication
+ We suppose f is injective and show thatker f = {e;}.
xekerf < f(x)=e <= f(x)=f(e)=e < x=¢;

soker f = e,
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+ Inversely, we suppose thatker f = {e;} and show that f is injective,

VX, ye€G, fO=f)=fX)-f()=e

= f(x—y)=ey (f isa homomorphism group).

= x—-yekerf
= x—y = ey (because ker f = {e1}

—> X = y
so f is injective.

v’ It follows by the definition of surjectivity.

4.3 Rings

Definition 4.3.1 Let A be a arbitrary non empty set. We define on A two binary
operations & et ®. we said that (A, ®,®) is a ring if

O (A, o) is an abelian group.
O ® isassociative

® ® isdistributive

Vx,y,z2,€ A, x® (y®z) = x® yox ® z. (left distributivity law).
(yoz) ® x = y® x®2z® x. (right distributivity).

Remark 4.3.1 1. Ifwe have ® is commutative, we say that (A, &, ®) is a commuta-

tive ring.

. If under the second binary operation ® we have an identity element ( called unity
element), we say that (A, ®, ®) is a ring with unity

3. A ring, then, is a triple comprising a set A and two binary operations ® and ®

satisfying at least the axioms indicated above. Frequently one 'forgets’ the ® and
® and talks of the ring A. This is bad since A is only the underlying set. Further,
A could well be the underlying set for two different rings, if we are in this case we
must precise the ring with its two operations in order to avoid confusion.
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4. We do not demand that the second operation® in a ring be commutative. As con-
sequence we must postulate distributivity as 2 laws, since neither follows from the
other in general. For example : in the ring of real functions (F(R,R), +,0) we have
(f+8)oh=foh+goh butnotingeneral ho(f+g)=hof+hog.

Example 4.3.1 v R+, ), +,.),@Q,+,.) et (C,+,.) are all a commutative rings
with unity.

v (27, +,.) isacommutative ring ( be careful without unit element).

v The set of real sequences equipped by the addition and produit between two se-
quences is a commutative ring.

V' The set of functions from I (subset of R) toR, equipped by addition and multipli-
cation is a commutative ring with unity.

4.3.1 Some properties of rings

Proposition 4 Let (A,+,x) be aring. We denote the identity element by 0 4.
O VxeAx x04=04=04 x x.
B Vx,yeA:(-x) x y=—(x x ) =x x (=).

O Vx,ye A:(—x)x(—y)=xx}.

O Ifthering (A, +,®) has the unity element 1 thenVxe A: —x=(—1,4) x x.

Proof4.3.1.1 (4

xX04=x.04+04
=x.0a4+[x x 04+ (—(x x 04))]
=[xx 04+xx%x 04]+(—(x x 04))
=xx%x (044+04) + (—(xx 04))
=x x 04+ (=(x x 04) =04.

In the same manner, we show that0, x x=04.



CHAPTER 4. ALGEBRAIC STRUCTURES 29

v Letx, y be two elements of A
X xy+(=x) x y=(x+(=x) x y
:()A Xy
=04.
So—x x y=—(x x y). In the same method , we show that (x x (—y)=—(x x y)

V' Letx, y be two elements of A

(=x) x (=y)=—[(=x) x y)]
=—[-(x x )]
=X XxJ.

Definition 4.3.2 Let A be a ring such that A# 04; a # 04 is called zero divisor
of A if there is some nonzero b in A with ab =0

b€ A, such thatb #04 anda x b=04.

Definition 4.3.3 (Integral domain) We say that a ring, with identity element
04, is an integral domain if it is a nonzero ring A # {04} and having nonzero
divisors.

(A, +, x) integral domain <= [A#1{04} and (Va,be A:a x b=04=a=040rb=04).]

Notice that 04 isan identity element of A.

Example 4.3.2 v (Z,+,.) is an integral domain, it doesn’t possess any zero divisors.

V' The ring (Z/6Z,+, %) is not an integral domain, because 3x2 = 6 = 0, since 3 #
0 and 2 # 0. Recall the construction of the ring Z/16Z. We define on Z a binary
relation by

Vx,yeZ, xRy < k€ Zsuchthat x—y =6k.

We verify that this relation is an equivalence relation (°R is reflexive, ‘R symmetric
and ‘R transitive). The set of equivalence classes of R , denoted Z/6Z, contains 6
elements (classes).

716Z=1{0,12, 3, 4, 5}
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For example

0 = {x € Z, such that x930}
={xeZ, suchthatx-0=6k, ke Z.}
={xeZ, suchthatx=6k, ke 7.}
= {6k, ke Z.}.

in the same manner we show that

1={6k+1,kez}, 2={6k+2, keZ}, 3=1{6k+3, keZ.)}
4={6k+4, keZ)}, 5={6k+5, keZ)}

We define on 7167 two binary operations + and x by

Vi, JE€ZI6Z, X+ y=X+y| and |V, yEZI6Z, % j=XXJ|

We show that (Z16Z, +, x) is a ring with unity and not an integral domain. See

the table below
+loli|l2]3]a]|5 x|o|i]2]3]4]5
0/0[1]2[3|4|5 0/0|0]0][0][0]0O
1/1(2(3|/4|5]0 1]0[1|2/3[4]5
2121314501 21024024
313[4[5[0/|1]|2 3/0/3/0[(3[0]3
41450123 al0lal2]0]4a]2
5[5/0[1[2|3|4 510(5[4(3|2]1

4.3.2 Ring homomorphisms

Definition 4.3.4 Let A, B be two rings and let f : A— B be a function. We say
that f is a ring homomorphism if

O Va, be A fla+b)=f(a)+ fb).
® f(a.b)=f(a).f (D).
v If f is injective, we say that f is a monomorphism.

v Iff is surjective, we say that f is an epimorphism

v If f is bijective, we say that f is an isomorphism.
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Exercise4.3.1 @ Ler A, B,C bethreeringsandlet f: A— B and g: B — C be two
ring homorphisms then go f is a ring homomorphism.

® If f: A— B is a ring isomorphism then its inverse f~! : B — A is also a ring
homomorphism.

4.3.3 Subring

Definition 4.3.5 Let B be a subset of A, we say that B is subring of (A, +, x) if
(B, +, x) is a ring with the induced operations of A.

Proposition 5 (Subring properties) Let (A, +, x) be a ring and H a non empty
subset of A, then H is a subring of A if and only if :

O Vx,ye H:x—y€H,

® Vx,yeH:xxyeH

Proof 4.3.3.1

Example4.3.3 v Iff: A— B isaring homomorphism then the direct image of A,
f(A), isasubring of B.

v (Zlil,+,.) is a subring of the ring (C, +,.), with
Zlil={a+1ib, suchthata,beZ}.

v (2Z,+,.) is a subring of the ring (Z,+, ).

Proposition 6 Let f : A — B be a ring homomorphism from the ring A to the
ring B

O IfA, isasubring of A then f(A,;) is a subring of B.
@® IfB, isasubring of B then f~1(B,) is a subring of A.

In particular case : the two setsker f = f~1({0}) and Im(f) = {f (x); x € A} are the
subrings of A and B respectively.

Proof4.3.3.2 f(A;) and f~'(B;) aresubgroups of additif group ( for the first opera-
tion) B and A because [ is a group homomorphism from (A, +) to (B, +). They are two
subrings because they are closed under the second operation ( multiplication):
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vV Lety yo€ f(A)) then3x, xg € Ay such that f(x) =y, f(xo) = yo S0 yYo = f(xxp) €
f(A1).

vV Letx,xp€ f‘l(Bl) then f(x)€ By and f(xp) € By thus f(xxg) = f(x) f(x¢) € By in
other words xxo € f~1(B).

Proposition 7 (Binomial theorem) Let (A, +, x) be a ring. Let a, b two element
of € A which commute (i.e. ax b= b x a). Then

n k=g n\ n—k
(a+b)"=) | b
k=0

Proof 4.3.3.3 By induction on neN.

4.3.4 Ideals

Definition 4.3.6 Let I be a non empty subset of I c A isestan idéal A if:
vV Vx,yel, x.—y. €l

vV Vxel,VyeA x.yel (and y.xel)

Example 4.3.4 B 6Z isan ideal of thering (Z,+,.).
B Iff: A— Bisaring homomorphism thenker f is an ideal of A
B Letac A (A isaring), the set
aA={xa, xe A}

is an ideal of A, is the least ( or smallest) ideal of A which contains a, it is called a
principal ideal (ideal generated by one element).

B cverynonzeroring A has at least two ideals A and a trivial ideal {0}.
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Proposition8 @ Theset f~1({0p}) is an ideal A. We denoteker f and called
kernel of f. We have in addition :

ker(f) = {04} < f injective.

@ The f(A) is a subring of B. We denote Im(f) and called image of f. We
have in addition:

Im(f)=B < f surjective.

4.3.5 Quotientring
Let A be a commutative ring, I be an un ideal of A,

Va,be A, aRb <— a—bel

We show that i is an equivalence relation. We denote A/I the quotient set which is the

set of all equivalence classes. We define on A/I the following binary operations:
(H):AIIx AlT— A/l
(a,b)—a+b=a+b
(x): A/L x AIT— Al
(@) — axb=axb
We prove that (A/I, -, x) is a ring, called quotient ring.

Example 4.3.5 Thering (Z/6Z,+,.) has unity element and it is commutative.

4.4 Fields

Definition 4.4.1 Let K be a set equipped with two binary operations x and T.
We say that (K, *, T) is afield if :

O (K, %, T) isaring with unity.

® Everyelementof K, excepttheidentity elementofx, hasan inverse under
T.
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Remark 4.4.1 1. If(K,+,.) is a field then (K*,.) is a group.
2. Every field is a Integral Domain.

3. Every field K has at least two elements a au moins deux ( identity and the unit
element ) Ox and 1.

4. Afield is an integral domain. Indeed :

ifxx y = 0g, and x # 0, then x has an inverse , its inverse is denoted x™', and we
compute then :

Ok =x 'x0g=x"" XXXYy=}.
So K is a integral domain.

Example 4.4.1 v Q+,), R,+,), (C,+,.) areallacommutative field.

V' (Z,+,.) isnota field, because the only elements which have the inverse for the
multiplicationsin Z* are. 1 and -1.

v The set
QV2]={a+bv2:a,beQ}

equipped with the addition and the multiplication is a commutative field.
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Summarize

Let S be a non empty set with two binary operations, addition " + " and multiplication
".". For any three elements a, b, c € S, distinct or not,

(A1) a+b=b+a (commurtativity of"+")
(A2) (a+b)+c=a+(b+c) (associativity of"+")
(A3) 305 € S such thatOs +a=a-+ OS =a (Exis[ence Ofldentlly element)

(A4) To each a € S,3(—a) € S such that a+ (—a) = (—a) + a=0. ( Existence of inverse
elements)

(M1) a.b=b.a (commutativity of".")

(M2) (a.b).c=a.(b.c) (associativity of".")

(M 3) J1s€ S suchthatls.a=a.ls=a (Existence of unit element)

(M4) Toeachac S suchthata#0sand3da' €S suchthata.a'=a'l.a=1s.
(D) a.(b+c)=a.b+a.c and (a+b).c=a.c+b.c. (Distributivity)

(Z) Ifa.b=0gthena=0gs or b=0g (or both) (No zero divisor elements)

Al A4 | M2 | D | M1 | M3 | M4 | Z | thetriple (S, +,.) is called a

- - |- - - - | Monoid

- - - - | Group

- - - - | Abelian group

Ring

- - | Commutative ring

Ring with unity

Ring with no zero divisors

Commutative ring with unity

Commutative ring with no zero divisors

Ring with unity and no zero divisors

Integral domain

- Non commutaive field or division ring
13 v Field

Notice that the axioms ( Al to A4 ) concern the addition operation, end those (M1 to

M4) concern the multiplication operation, axiom D for distributibity, and axiome Z for

(zero divisor element).
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Theorem 4.4.1 Let K be a commutative ring not nul.

Kbe a field < theonlyideals of Kare {0} and K.

4.4.1 Subfields

Definition 4.4.2 Subfield Let Kbe a field. We say that the subset K ’ of K isa
subfield of K if:

©® K isasubring of K.

© Ifx#0xandxcK thenx ek

Example 4.4.2
Every intersection of subfields of K is a subfield of K.

4.4.2 Field homomorphisms

Solution 4.4.1 Show that (R, *, T) is a commutative field.

v’ Show that T is commutative: Let x, y € R, we have

xTy = x+y+xy
= y+x+yx
= yTx.

SO
Vx,yeR, xTy=yTx,
so the commutativity of 7.

v Show that (R, %, T) is a ring with unity.

v (R, %) is an abelian group

X s is a binary operation obvious
X Commutativity of = : Let x, y € R, we have

x+y+1
y+x+1
Y * X.

X
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therefore
VX, VER, x*xy=yx*x,

so the commutativituy of *.
X Associativity of = : Let x, y, z € R, we have

(x*xy)xz = (x+y+1)*xz
= x+y+l+z+1
= Xx+y+z+2.

xx(yxz) = x*x(y+z+1)

x+y+z+1+1
= X+y+z+2.

thus
VX, 9,2€R, (x*xy)*xz=x%*(y*2),
so the associativity of *.

X Existence of the identity element for *: 3%¢; e R,VxeR,x*xe; =€) * x =
x. Let x € R, compte tenu de la commutativity *, we solve only one equa-

tion
X*ep =X.
We have
xXxep=x => Xx+e+l=x
= e =-1
So e; = —1is an identity element for *.
X Every element of R admits an inverse under the operation *: Vx € R, Rx €
R:x*x =x"+x=e =—1.Let x €R, as we have the commutativity of *,

we solve only one equation

xxx =-1.
We have
xxx'=—-1 = x+x'+1=-1
= x'=-2-x.

SoVxeR,Ix' = (-2 - x) e R: x’ is an inverse of x.
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From the previous , we deduce that, (R, %) is an abelian group.
v Associativityof T: Let x,y,z€ R, ona

xTyTz = (x+y+xyTz
= x+ty+xy+z+x+y+xy)Tz
= X+y+z+xy+xz+yz+xyz.
xT(yTz) = xT(y+z+yz)

xX+y+z+yz+x(y+z+yz)
= X+y+z+xy+xz+yz+xyz.
So
Vx,y,z€R, (xTy)Tz=xT(yTz),
thus we the associativity of T holds.
v’ Distributivity law: Let x, y, z € R, we have

xT(y) = xT(y+z+1)
= X+y+z+l+x(y+z+1)
= 2x+y+z+xy+xz+1.
(xTy)* (xTz) = (x+y+xy)*(x+z+x2)

= X+y+xy+x+z+xz+1
= 2x+y+z+xy+xz+1.

So
VX, ,2z€R, xT(y*xz)=(xTy)* (xTz).

Compte tenu de la commutativité de T, on a aussi
VX, ,z€R, (yx2)Tx=(yTx)* (zTx).

v Existence of the unit element: 32¢; € R,Vx € R, xTe; = e;Tx = x. Let x € R,

compte tenu de la commutativity of T, we solve the equation
xTey = x.

. We have
xTeo=x = x+e+xer=x
= el+x)=0
= e =0Vx#-1.
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We have also
-1T0=-1+0+(-1)0=-1.

So e, = 0is a unit element.

Therefore we conclude that (R, *, T) is a ring with unity.

v Show that Vx € R — {e;}, x admit an inverse under the second operation T : let
xeR—-{-1}.
xTx'=0 = x+x'+xx'=0
;o
= X = Tix:
SoVxeR-{-1}, x' = % is an inverse of x.
Thus (R, %, T) is a commutative field.

Prove that the functions

¢: R*T) — [R+,) v R+,) — RxT)
and
X — @px)=x+1 X — Yx)=x-1.

are the field isomorphisms.

@ is a field homomorphism: Indeed, Let x, y € R, we have

(x*y)+1
x+y+1+1
x+D+(y+1)

px)+@(y).

px*y)

So
Vx,yER, px*y) =@x)+¢@(y).

Let x, y € R, we have also

xTy)+1
x+y+xy+1
x(y+D+(y+1)
(x+D(y+1)

= @x).e().

p(xTy)

thus
Vx,yeER, oxTy)=@(x).p(y).



40 ALGEBRA 1

i) ¢ isinjective function : Indeed, Let x, y € R such that ¢(x) = ¢(y). We have

pxX) =) = x+l=y+1
> X=J.

ii) ¢ isasurjective function:Indeed, let y € R, 32x € R such that y = ¢(x). We have

y=¢px) = y=x+1
> x=y-1

SoVyeR,3Ix=(y—-1)eRsuchthat y = ¢(x).

Finally, we deduce from the previous that ¢ is a field isomorphism.

+ v is a field homomorphism: Indeed , Let x, y € R, we have

yix+y = (x+y-1
= (x-D+(y-1+1
= Y@ +y()+1
= p)*y(y).

So
Vx,yeR, w(x+y) =yx)«y(y).

Let x, y € R, we have also

vxy = (xy)-1

= X+y-2+xy-x—-y+1
x-D+(@y-D+x-D(y-1
y(X)+y()+yy(y)
= y@X)Ty(y).

So
Vx,yeR, v(x.y)=vwx)Ty(y).
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Exercises

Exercise 4.4.2 We define on G = R* x R a binary operation * as follow:
Y(x,¥), (x,,y’) €G, (x,y) * (x, y,) = (xx, xy, +)
Show that (G, x) is an abelian group.
Exercise 4.4.3 Let x a binary operation defined on R by:
X*y=xy+ (x* - 1)(y2 -1).

O Verify that x is commutative, not associative et admits a identity element.

O solve these following equations: 2 x y=5,xx x = 1.
Exercise 4.4.4 we provide Z a binary operation * defined by :

Vx,yeZ: x*y:x+y+x2y.

O Show that * is closed ; then study the commutativity , associativity, existence of
identity element, the existence of inverse element.

® Same question for the binary operation A defined onR} by :

Vx,yeRE 1 xAy=1/x%+ y2.

Exercise 4.4.5 Let (G, *) be a group with identity element e, such that for all element
x€G:x3=e.. Show that

VX, yEG: (x*x ) =y* *x* andxx y* x x=yx x> * .
Noticethatx* =x*x and x>=x*xx* X

Exercise 4.4.6 Let (G, x) be a group.Find the condition for which the function f : G —
G such that f(x) = x x x be a group homomorphism.

Exercise 4.4.7 Let (G, %) be a group and Z(G) be the set of elements of G which commute
with all elements of G.

Z(G):{xeG suchthat xxy =y * X, VyeG}

Show that Z(G) is asubgroup of G.



42 ALGEBRA 1

Exercise 4.4.8 Show that f, g : (R*,x) — (R*, x) defined by f(x) = x*,g(x) = x> are a
group homomorphisms. Determine whose Image and Kernel respectively.

Exercise 4.4.9 Let (G,*) beagroupand f:G— G afunctiondefinedby f(x) = x>.
(Recall: x* = x * x)

Show that if (G, %) isan abelian group then f isagroup homomorphism. Show then
the inverse.

Exercise 4.4.10 Show that if every element of the group G is its own inverse, then G is
abelian.

Exercise 4.4.11 Let G be the group of all non-zero complex numbers a+ bi (a, b real,
but not both zero) under multiplication, and let

H={a+bieGla*+b* =1}
Verify that H is a subgroup of G.

Exercise 4.4.12 On the set S = {0, 1} define ® and ® by

0|1 ® 0|1
off1]o0 oflo
1]o]1 11

Show that (S, ®,®) is aring. Is it a field?

Exercise 4.4.13 Find aring R and elements a, b, ¢ all distinct from identity element of
R (denoted byOg), such thata.b= a.c and yetb # c.

Exercise 4.4.14 Which elements of (Z,, ®, ®) are zero divisors? Which have multiplica-
tive inverses?

Exercise 4.4.15 On the set Z define two new multiplications o and O by:
Ya, beZ, aob=0 and alOb=1.
Show that (Z, +, o) is a ring with zero divisors. Is (Z, +,0) aring?

Exercise 4.4.16 With the usual definitions of addition and multiplication, do the fol-
lowing sets form rings, integral domains, fields?
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1. Theset Z,.

2. The complex fourth roots, 1, i, -1, —i, of 1.

3. Thesetofall a+ib where a, be Q.
4. Thesetofall a+ib wherea,be Z.

5. Thesetof all {; € Q where b is odd.

Exercise 4.4.17



