A. Mira-Bejaia university	Faculty of Exact Sciences	Department of Mathematics
First year of mathematics	Algebra 1	2024-2025
Tutorial Series N°3	Functions	

Exercise 1 Let $f : \mathbb{R} \longrightarrow \mathbb{R}$, $g : \mathbb{R} \longrightarrow \mathbb{R}$ be the functions defined by f(x) = 4x - 3, $g(x) = 4x^2 - 7x + 3$. Find (f + g)(x), (f + g)(2), (fg)(x), (fg)(0) and $(f \circ g)(x)$, $(g \circ f)(x)$.

$$\begin{split} (f+g)(x) &= f(x) + g(x) = (4x-3) + (4x^2 - 7x + 3) = 4x^2 - 3x, \\ (f+g)(2) &= 10 \\ (fg)(x) &= f(x)g(x) = (4x-3)(4x^2 - 7x + 3) = 16x^3 - 28x^2 + 12x - 12x^2 + 21x - 9 = 16x^3 - 40x^2 + 33x - 9, \\ (fg)(0) &= -9. \\ (f \circ g)(x) &= f(g(x)) = 4g(x) - 3 = 4(4x^2 - 7x + 3) - 3 = 16x^2 - 28x + 12 - 3 = 16x^2 - 28x + 9. \\ (g \circ f)(x) &= g(f(x)) = 4(4x - 3)^2 - 7(4x - 3) + 3 = 4(16x^2 - 24x + 9) - 28x + 21 + 3 \\ &= 64x^2 - 96x + 36 - 28x + 24 = 64x^2 - 124x + 60. \end{split}$$

Exercise 2

• Let $f: E \longrightarrow F$ be a constant function $f(x) = y_0$, for all $x \in E$. Determine $f^{-1}(B)$ for $B \subset F$?

$$f^{-1}(B) = \{x \in E : f(x) \in B\}$$
$$= \{x \in E : y_0 \in B\}$$
$$= \begin{cases} E & \text{if } y_0 \in B. \\ \phi & \text{if } y_0 \notin B. \end{cases}$$

2 Let *f* : ℝ → ℝ, and *g* : ℝ → ℝ be the functions given by *f*(*x*) = *x*² and *g*(*x*) = (*x* − 1)².
 (a) Determine *f*({−1, 1}), *f*([−1, 1]), *g*([0,2]).

$$\begin{aligned} f(\{-1, 1\}) &= \{f(-1), f(1)\} = \{1\}.\\ f([-1, 1]) &= \{f(x) \ x \in [-1, 1]\}\\ &= f([-1, 1]) = f([-1, 0] \cup [0, 1]) = f([-1, 0]) \cup f([0, 1])\\ &= [f(0), f(-1)] \cup [f(0), f(1)] \text{ (because } f \text{ is increasing in } [0, 1] \text{ and decreasing in } [-1, 0])\\ &= [0, 1] \cup [0, 1] = [0, 1].\\ g([0, 2]) &= g([0, 1] \cup [1, 2]) = g([0, 1]) \cup g([1, 2])\\ &= [g(1), g(0)] \cup [g(1), g(2)] \text{ (because } g \text{ is increasing in } [1, 2] \text{ and decreasing in } [0, 1])\\ &= [0, 1] \cup [0, 1] = [0, 1]. \end{aligned}$$

(b) Determine $f^{-1}(\{1\}), f^{-1}([0,1]), f^{-1}([-1,1]), g^{-1}(\{-1\}), g^{-1}([-1,1]).$ $f^{-1}(\{1\}) = \{x \in \mathbb{R} : f(x) \in \{1\}\} = \{x \in \mathbb{R} : x^2 = 1\} = \{-1, 1\}.$ $f^{-1}([0,1]) = \{x \in \mathbb{R} : x^2 \in [0,1]\} = [-1,1].$ $f^{-1}([-1,1]) = \{x \in \mathbb{R} : x^2 \in [-1,1]\} = \{x \in \mathbb{R} : x^2 \in [0,1]\} = [-1,1].$ $g^{-1}(\{-1\}) = \{x \in \mathbb{R} : g(x) = -1\} = \{x \in \mathbb{R} : (x-1)^2 = -1\} = \emptyset.$ $g^{-1}([-1,1]) = \{x \in \mathbb{R} : (x-1)^2 \in [-1,1]\} = \{x \in \mathbb{R} : (x-1)^2 \in [0,1]\} = [0,2]$ Solution Let $f: [0, +\infty[\longrightarrow]0, +\infty[$ be the function given by $f(x) = \frac{1}{x}$. Determine $f^{-1}([0,1[), \text{ and } f^{-1}([1,+\infty[)?$

$$f^{-1}(]0,1[) = \{x \in]0, +\infty[: f(x) \in]0,1[\} = \{x \in]0, +\infty[: \frac{1}{x} \in]0,1[\} =]1, +\infty[$$
$$f^{-1}([1,+\infty[) = \{x \in]0, +\infty[: f(x) \in [1,\infty[\} = \{x \in]0, +\infty[: \frac{1}{x} \in [1,\infty[\} =]0,1]$$

Exercise 3 Let $f : E \longrightarrow F$ be a function. Let *A* and *B* be two subsets of *E*, and let *C* and *D* be two subsets of *F*. Prove that

- $\bullet f(A \cup B) = f(A) \cup f(B).$
 - (a) First, show the inclusion (\subset) Show that $f(A \cup B) \subset f(A) \cup f(B)$. Let $x \in f(A \cup B)$, check if $x \in f(A) \cup f(B)$

 $\begin{aligned} x \in f(A \cup B) &\Longrightarrow \exists t \in A \cup B : x = f(t) \\ &\Longrightarrow (\exists t \in A : x = f(t)) \text{ or, } (\exists t \in B : x = f(t)) \\ &\Longrightarrow x \in f(A) \text{ or } x \in f(B) \\ &\Longrightarrow x \in f(A) \cup f(B). \end{aligned}$

(b) Second show the inclusion (\supset) . Show that $f(A) \cup f(B) \subset f(A \cup B)$. Let $x \in f(A) \cup f(B)$, check if $x \in f(A \cup B)$

$$\begin{aligned} x \in f(A) \cup f(B) &\Longrightarrow x \in f(A) \text{ or } x \in f(B) \\ &\Longrightarrow (\exists t_1 \in A : x = f(t_1)) \text{ or}(\exists t_2 \in B : x = f(t_2)) \\ &\Longrightarrow \exists t \in A \cup B : x = f(t) \\ &\Longrightarrow x \in f(A \cup B). \end{aligned}$$

We conclude that $f(A \cup B) \subset f(A) \cup f(B)$.

2 $f^{-1}(C_F(C)) = C_E(f^{-1}(C))$

(a) First, show the first inclusion (\subset) Show that $f^{-1}(C_F(C)) \subset C_E(f^{-1}(C))$. Let $x \in f^{-1}(C_F(C))$, check if $x \in C_E(f^{-1}(C))$

$$x \in f^{-1}(C_F(C)) \Longrightarrow f(x) \in C_F(C)$$
$$\Longrightarrow f(x) \in F \text{ and } f(x) \notin C$$
$$\Longrightarrow x \in E \text{ and } x \notin f^{-1}(C)$$
$$\Longrightarrow x \in C_E(f^{-1}(C)).$$

(b) Second show the inclusion (\supset) . Show that $C_E(f^{-1}(C)) \subset f^{-1}(C_F(C))$. Let $x \in C_E(f^{-1}(C))$, check if $x \in f^{-1}(C_F(C))$ $x \in C_E(f^{-1}(C)) \Longrightarrow x \in E$ and $x \notin f^{-1}(C)$

$$C_E(f (C)) \Longrightarrow x \in E \text{ and } x \notin f (C)$$
$$\implies f(x) \in F \text{and } f(x) \notin C$$
$$\implies f(x) \in C_F(C)$$
$$\implies x \in f^{-1}(C_F(C)).$$

We conclude that $f^{-1}(C_F(C)) = C_E(f^{-1}(C))$.

③ If *C* ⊂ *D*, then $f^{-1}(C) ⊂ f^{-1}(D)$. We suppose that *C* ⊂ *D* and show that $f^{-1}(C) ⊂ f^{-1}(D)$ Let $x ∈ f^{-1}(C)$, check if $x ∈ f^{-1}(D)$

$$x \in f^{-1}(C) \Longrightarrow f(x) \in C$$
$$\Longrightarrow f(x) \in D \text{ (because } C \subset D\text{)}$$
$$\Longrightarrow x \in f^{-1}(D).$$

So, if $C \subset D$, then $f^{-1}(C) \subset f^{-1}(D)$.

Exercise 4 Let $f: E \longrightarrow F$ be a function. Show that

- $\forall A \in \mathscr{P}(E), A \subset f^{-1}(f(A))$. Give an example of a function f and a subset $A \subset E$, such that $f^{-1}(f(A)) \nsubseteq A$ Show that $A \subset f^{-1}(f(A))$
 - Let $x \in A$ and show that $x \in f^{-1}(f(A))$

$$\begin{aligned} x \in A \Longrightarrow f(x) \in f(A) \\ \Longrightarrow x \in f^{-1}(f(A)). \end{aligned}$$

An example to show that $f^{-1}(f(A)) \nsubseteq A$ Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a function defined by $f(x) = x^2$, and A be a subset of \mathbb{R} , $A = \{-1\}$. Then we have $f(A) = \{1\}, f^{-1}(f(A)) = \{-1, 1\}$, so, $f^{-1}(f(A)) \oiint A$

2 ∀*B* ∈ 𝒫(*F*), *f*(*f*⁻¹)(*B*) ⊂ *B*. Give an example of a function *f* and a subset *B* ⊂ *F*, such that $B \nsubseteq f(f^{-1}(B))$.

Show that $f(f^{-1}(B)) \subset B$ Let $x \in f(f^{-1}(B))$ and show that $x \in B$

$$x \in f(f^{-1}(B)) \Longrightarrow \exists t \in f^{-1}(B) : x = f(t) \in B$$
 (By definition of inverse image of *B*)
 $\Longrightarrow x \in B$.

An example to show that $B \nsubseteq f(f^{-1}(B))$ Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a function defined by $f(x) = x^2$, and B be a subset of \mathbb{R} , $B = \{-1, 1\}$. Then we have $f^{-1}(B) = \{-1, 1\}, f(f^{-1}(B)) = \{1\}$, so, $B \nsubseteq f(f^{-1}(B))$

Exercise 5 Let f be a function E defined by

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \mapsto f(x) = \frac{2x}{1+x^2}.$$

• Determine $f^{-1}\left(\left\{\frac{1}{2}\right\}\right)$, $f^{-1}\left(\left\{2\right\}\right)$. Is *f* injective? Surjective?

$$f^{-1}\left(\left\{\frac{1}{2}\right\}\right) = \left\{x \in \mathbb{R} : f(x) = \frac{1}{2}\right\}$$
$$f(x) = \frac{1}{2} \iff \frac{2x}{1+x^2} = \frac{1}{2} \iff 4x = 1 + x^2 \iff x^2 - 4x + 1 = 0$$

Compute Δ

 $\Delta = (-4)^2 - 4(1) = 12 > 0, \text{ so the equation } x^2 - 4x + 1 = 0 \text{ has two solutions.} \quad x_1 = \frac{4 - \sqrt{12}}{2} = 2 - \sqrt{3}.$ and $x_2 = \frac{4 + \sqrt{12}}{2} = 2 + \sqrt{3}.$ Thus $f^{-1}\left(\left\{\frac{1}{2}\right\}\right) = \{2 - \sqrt{3}, 2 + \sqrt{3}\}.$

$$f^{-1}\left(\left\{2\right\}\right) = \left\{x \in \mathbb{R} : f(x) = 2\right\}$$
$$f(x) = 2 \iff \frac{2x}{1+x^2} = 2 \iff 2x = 2 + 2x^2 \iff 2x^2 - 2x + 2 = 0$$

Compute Δ

 $\Delta = (-2)^2 - 4(2)(2) = -12 < 0$, so the equation $x^2 - 4x + 1 = 0$ does not have a solutions. Thus $f^{-1}(\{2\}) = \emptyset$, therefore, we deduce that *f* is not injective and *f* is not surjective.

2 For which $y \in \mathbb{R}$ the equation f(x) = y has solutions in \mathbb{R} ? Show that $f(\mathbb{R}) = [-1, 1]$.

$$f(x) = y \iff \frac{2x}{1+x^2} = y \iff 2x = y(1+x^2) \iff yx^2 - 2x + y = 0.$$

if y = 0, then x = 0 If $y \neq 0$ then the equation is the second degree equation, we have to calculate Δ . Compute Δ

 $\Delta = (-2)^2 - 4(y)(y) = 4 - 4y^2 = 4(1 - y^2)$

(a) If $y \in [-1, 0[\cup]0, 1]$ then $\delta \ge 0$, so the equation f(x) = y has solutions.

(b) If $y \in (-\infty, -1[\cup])$, $+\infty[$ then $\delta < 0$, so the equation f(x) = y does not have solutions.

In conclusion, the equation f(x) = y has solution when $y \in [-1, 1]$. thus $f(\mathbb{R}) = [-1, 1]$.

• Show that the function *g* defined by

$$g: [-1, 1] \longrightarrow [-1, 1]$$
$$x \mapsto g(x) = f(x).$$

is bijective and find its inverse g^{-1} .

(a) First show that *g* is injective or one to one.

$$\forall x, y \in [-1, 1], \ g(x) = g(y) \Longrightarrow x = y$$

$$g(x) = g(y) \Longrightarrow \frac{2x}{1+y^2} = \frac{2y}{1+x^2}$$

$$\Longrightarrow 2x(1+y^2) = 2y(1+x^2)$$

$$\Longrightarrow 2x+2xy^2-2y-2yx^2 = 0$$

$$\Longrightarrow 2x-2y+2xy^2-2yx^2 = 0$$

$$\Longrightarrow 2(x-y)+2xy(y-x) = 0$$

$$\Longrightarrow 2(x-y)(1-xy) = 0$$

$$\Longrightarrow x-y = 0.\text{ or } 1-xy = 0.$$

$$\Longrightarrow x = y \text{ or } (x = y = 1 \text{ or } x = y = -1)$$

(because the only solution which belong to [-1, 1], is $x = y = 1$ or $x = y = -1$).

$$\Longrightarrow x = y$$

So g is injective.

(b) Second , show that *g* is surjective (onto)

$$\forall y \in [-1, 1], \exists x \in [-1, 1] : y = g(x)$$

$$g(x) = y \iff \frac{2x}{1+x^2} = y \iff 2x = y(1+x^2) \iff yx^2 - 2x + y = 0.$$

if y = 0, then x = 0

If $y \neq 0$ then the equation is the second degree equation, we have to calculate Δ . $\Delta = (-2)^2 - 4(y)(y) = 4 - 4y^2 = 4(1 - y^2)$ since $y \in [-1, 0[\cup]01]$ then $\Delta \ge 0$, so the equation f(x) = y has solutions

$$x_{1} = \frac{2 - \sqrt{4(1 - y^{2})}}{2y} = \frac{1 - \sqrt{1 - y^{2}}}{y} \in [-1, 0[\cup]0, 1],$$
$$x_{2} = \frac{2 + \sqrt{4(1 - y^{2})}}{2y} = \frac{1 + \sqrt{1 - y^{2}}}{y} \notin [-1, 0[\cup]0, 1].$$

Therefore *g* is surjective.

we deduce that *g* is bijective, so the inverse function of *g* exist $g(x) = y \iff x = g^{-1}(y) = \frac{1 - \sqrt{1 - y^2}}{y}$ if $y \neq 0$.

$$g^{-1}: [-1, 1] \longrightarrow [-1, 1]$$
$$x \mapsto g^{-1}(x) = \begin{cases} \frac{1 - \sqrt{1 - x^2}}{x} & x \neq 0\\ 0 & x = 0. \end{cases}$$

Exercise 1 (Homework) Let $f(x) = \frac{1}{x^2}, x \neq 0, x \in \mathbb{R}$

- Determine the direct image, f(E) where $E = \{x \in \mathbb{R} : 1 \le x \le 2\}$.
 - $f(E) = f([1, 2]) = [f(2), f(1)] = [\frac{1}{4}, 1]$ (because *f* is decreasing function in]0, +∞[and increasing in] -∞, 0[.)

2 Determine the inverse image $f^{-1}(G)$, where $G = \{x \in \mathbb{R} : 1 \le x \le 4\}$.

$$f^{-1}(G) = \{x \in \mathbb{R} : f(x) \in G\}$$

= $\{x \in \mathbb{R} : f(x) \in [1, 4]\}$
= $\{x \in \mathbb{R} : 1 \le \frac{1}{x^2} \le 4\}$
= $\{x \in \mathbb{R} : \frac{1}{4} \le x^2 \le 1\}$
= $\{x \in \mathbb{R} : \frac{1}{2} \le x \le 1 \text{ or } -1 \le x \le \frac{-1}{2}\}$
= $[-1, \frac{-1}{2}] \cup [\frac{1}{2}, 1].$

Exercise 2(Homework) Let $f: E \longrightarrow F$ and $g: F \longrightarrow G$ be a functions. Let $H \subset G$. Show that $(g \circ f)^{-1}(H) = f^{-1}(g^{-1}(H)).$

1. First, show the inclusion (⊂) Show that $(g \circ f)^{-1}(H) \subset f^{-1}(g^{-1}(H))$. Let $x \in (g \circ f)^{-1}(H)$, check if $x \in f^{-1}(g^{-1}(H))$

$$x \in (g \circ f)^{-1}(H) \Longrightarrow (g \circ f)(x) \in H$$
$$\Longrightarrow g(f(x)) \in H$$
$$\Longrightarrow f(x) \in g^{-1}(H)$$
$$\Longrightarrow x \in f^{-1}(g^{-1}(H)).$$

2. Second show the inclusion (\supset) . Show that $f^{-1}(g^{-1}(H)) \subset (g \circ f)^{-1}(H)$. Let $x \in f^{-1}(g^{-1}(H))$, check if $x \in (g \circ f)^{-1}(H)$

$$x \in f^{-1}(g^{-1}(H)) \Longrightarrow f(x) \in g^{-1}(H)$$
$$\Longrightarrow g(f(x)) \in H$$
$$\Longrightarrow (g \circ f)^{-1}(x) \in H$$
$$\Longrightarrow x \in (g \circ f)^{-1}(H).$$

We conclude that $(g \circ f)^{-1}(H) = f^{-1}(g^{-1}(H))$.