Exercise 1

Which of the following expressions are propositions? In the case of a proposition , say whether it is true or false :

- $\sqrt{3}$ is an irrational number. This is a proposition which is true.
- 2 The integer n divides 12. this expression is not a proposition, because we can not decide if it is true or false, its truth value depend on the value of n
- **③** $\forall n \in \mathbb{N}$, n + 1 = 5. This is a proposition which is false, for n = 1, we have $n + 1 \neq 5$
- **4** $\exists n \in \mathbb{N}, n+1 = 5$. This is a proposition which is true, there exist n = 4, for which n+1 = 5
- 25 is a multiple of 5 and 2 divides 7. This is a proposition, which is false , because here we have a conjunction between two propositions, one of them is false (2 doesn't divide 7)
- 25 is a multiple of 5 or 2 divides 7. This is a proposition, which is true, because here we have a disjunction between two propositions, one of them is true (25 is a multiple of 5)

Exercise 2

Let P, Q be propositions. Give the truth table of these propositions.

$$(P \Longrightarrow Q) \land (\overline{P} \Longrightarrow Q).$$

Р	Q	\overline{P}	$P \Longrightarrow Q$	$(\overline{P} \Longrightarrow Q)$	$(P \Longrightarrow Q) \land (\overline{P} \Longrightarrow Q)$
Т	Т	F	Т	Т	Т
Т	F	F	F	Т	F
F	Т	Т	Т	Т	Т
F	F	Т	Т	F	F

$$(\overline{P \Longrightarrow Q}) \iff (P \land \overline{Q}).$$

Р	Q	\overline{Q}	$P \Longrightarrow Q$	$(\overline{P \Longrightarrow Q}$	$(P \wedge \overline{Q})$	$(\overline{P \Longrightarrow Q}) \iff (P \land \overline{Q})$
Т	Т	F	Т	F	F	Т
Т	F	Т	F	Т	Т	Т
F	Т	F	Т	F	F	Т
F	F	Т	Т	F	F	Т

$$(P \Longrightarrow Q) \iff (\overline{Q} \Longrightarrow \overline{P}).$$

Р	Q	\overline{P}	\overline{P}	$P \Longrightarrow Q$	$(\overline{Q} \Longrightarrow \overline{P})$	$(P \Longrightarrow Q) \iff (\overline{Q} \Longrightarrow \overline{Q})$
Т	Т	F	F	Т	Т	Т
Т	F	F	Т	F	F	Т
F	Т	Т	F	Т	Т	Т
F	F	Т	Т	Т	Т	Т

Exercise 3

Let *f* and *g* be two functions of \mathbb{R} in \mathbb{R} , write in terms of quantifiers the following expressions :

- *f* never equals zero. $\forall x \in \mathbb{R}, f(x) \neq 0$
- 2 f is even. $\forall x \in \mathbb{R}, f(-x) = f(x)$
- **3** f is bounded. $\exists M \in \mathbb{R} : |f(x)| \leq M$

- **9** *f* is strictly increasing function. $\forall x, y \in \mathbb{R} : x < y \Longrightarrow f(x) < f(y)$
- **5** f less than g. $\forall x \in \mathbb{R}, f(x) \leq g(x)$.

Exercise 4

Show which of the following propositions are true and which are false, then give their negation :

- **1** $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y > 0$. This proposition is false, for a given x, we can take y = -x, then we get x + y = 0
- ② $(\exists x \in \mathbb{R}, x + 1 = 0) \land (\exists x \in \mathbb{R}, x + 2 = 0)$. This proposition is True because for the first proposition we take x=-1, and for the second we take x = −2
- **③** $\exists x \in \mathbb{R}, (x + 1 = 0 \land x + 2 = 0)$. This proposition is false, we can not find a value of x, for which both equation are satisfied
- ④ $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y > 0$. This proposition is true, for each *x* we can take *y* = −*x* + 1, then we have x + y > 0

Exercise 5

• Using the proof by contradiction prove that $\sqrt{2}$ is not a rational number. We assume that $\sqrt{2}$ is rational which means that there exist two integers *p* and $q \neq 0$, which are coprimes or no commun factor. such that $\sqrt{2} = \frac{p}{q}$.

$$\sqrt{2} = \frac{p}{q} \Longrightarrow 2 = \frac{p^2}{q^2}$$
$$\Longrightarrow 2q^2 = p^2.$$

We deduce that 2 divides p^2 , so it divides p. Then p is even, so it is written by p = 2k. We replace the value of p in the equation $2q^2 = p^2$ we obtain

$$2q^{2} = p^{2} \Longrightarrow 2q^{2} = (2k)^{2}$$
$$\Longrightarrow 2q^{2} = 4k^{2}$$
$$\Longrightarrow q^{2} = 2k^{2}$$

we deduce then 2 divides q^2 so it divides q, which means that q is also even. Contradiction because we assumed already that p and q are coprimes

- Prove by induction: ∀n ∈ N*, 1 + 2³ + 3³ + ··· + n³ = n²(n+1)²/4.
 Let P(n) be 1 + 2³ + 3³ + ··· + n³ = n²(n+1)²/4.
 - For n = 1, we check if P(1) is true. In the left side of equality we have 1 and the right side we get $\frac{1^2(1+1)^2}{4} = \frac{4}{4} = 1$, so P(1) is true.
 - We assume that P(n) is true and prove that P(n+1) is also true which means we show that $1+2^3+3^3+\cdots+n^3+(n+1)^3=\frac{(n+1)^2(n+2)^2}{4}$.

$$1 + 2^{3} + 3^{3} + \dots + n^{3} + (n+1)^{3} = \frac{n^{2}(n+1)^{2}}{4} + (n+1)^{3}$$
$$= (n+1)^{2} [\frac{n^{2}}{4} + (n+1)] \text{ (by hypothesis induction)}$$
$$= \frac{(n+1)^{2}(n^{2} + 4n + 4)}{4}$$
$$= \frac{(n+1)^{2}(n+2)^{2}}{4}.$$

Thus P(n+1) is true. By induction we conclude that $\forall n \in \mathbb{N}^*, 1+2^3+3^3+\cdots+n^3 = \frac{n^2(n+1)^2}{4}$.

3 By contrapositive, prove that $[(n^2 - 1)$ is not divisible by 8] \implies (*n* is even). By contrapositive, il is the same to show that (*n* is not even) $\implies [(n^2 - 1)$ is divisible by 8] If *n* is odd then it is written by n = 2k + 1, for some integer *k*. so we have

$$n^{2} - 1 = (2k + 1)^{2} - 1 = 4k^{2} + 4k + 1 - 1 = 4k^{2} + 4k$$
$$= 4k(k + 1) = 4.2k' = 8k' \text{ (because } k.(K + 1) \text{ is always even)}$$

So $(n^2 - 1)$ is divisible by 8.

4 Let *a* be an integer. Prove by cases : 2 divides a(a + 1). By cases

- **<u>case 1</u>** If *a* is even then *a* is written by a = 2k for some integer *k*. We have a(a + 1) = 2k(2k + 1) it is obvious even integer.
- **<u>case 2</u>** If *a* is odd then *a* is written by a = 2k + 1 for some integer *k*. So, we have a(a + 1) = (2k + 1)((2k + 1) + 1) = (2k + 1)(2k + 2) = 2(2k + 1)(2k + 1) which also an even integer.

By case , we deduce that a(a + 1) is an even integer, for integer number a.

