A. Mira-Bejaia university	Faculty of Exact Sciences	Department of Mathematics
First year of mathematics	Algebra 2	2024-2025
Tutorial Series N°1	Vector spaces	

Exercise 1

• On $E = \mathbb{R}^{*+} \times \mathbb{R}$, we define two binary operations by :

Show that (E, \oplus, \times) is a vector space over \mathbb{R} .

2 We define, on *E*, another binary operation by :

$$\otimes$$
 : $\lambda \otimes (x, y) = (x, 0), \forall \lambda \in \mathbb{R},$

Is (E, \oplus, \otimes) a vector space over \mathbb{R} ?.

Exercise 2

- We consider the \mathbb{R} vector space (\mathbb{R}^2 , +, ·) such that (x, y) + (x', y') = (x + x', y + y'), $\lambda \cdot (x, y) = (\lambda x, \lambda y)$. Which of the following sets are vector subspaces ? Support your answer.
 - (a) $E_1 = \{(x, y) \in \mathbb{R}^2 : 2x + y = 0\}$
 - (b) $E_2 = \{(x, y) \in \mathbb{R}^2 : x + y = 1\}$
 - (c) $E_3 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$

2 Is $H = \{f \in \mathscr{F}(\mathbb{R}, \mathbb{R}) : f \text{ is increasing}\}$ a vector subspace of $\mathscr{F}(\mathbb{R}, \mathbb{R})$ $(\mathscr{F}(\mathbb{R}, \mathbb{R}), +, \cdot)$ is the vector space of functions from \mathbb{R} in \mathbb{R} with binary operations defined by $(f+g)(x) = f(x) + g(x), (\alpha \cdot f)(x) = \alpha f(x)\}.$

Exercise 3

Show that \mathbb{R}^3 is spanned by $\{u_1 = (1,0,1), u_2 = (1,1,0), u_3 = (0,1,1)\}$. Let $w_1 = (1,-2,3), w_2 = (1,1,1)$ be vectors in \mathbb{R}^3 .

- **1** Is w_1 in $\langle u_1, u_2 \rangle$?
- **2** Is w_2 in $\langle u_1, u_2 \rangle$?
- **③** Is $\{u_1, u_2, u_3\}$ linearly independent?

Exercise 4

Let $F_1 = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$ and $F_2 = \langle v_1, v_2, v_3 \rangle$ be two subsets of \mathbb{R}^3 , such that $v_1 = (1, 1, 2), v_2 = (1, 2, 3), v_3 = (0, 2, 1).$

- Prove that F_1 , F_2 are vector subspaces of \mathbb{R}^3 .
- **2** Find a basis for the subspaces F_1 , F_2 , $F_1 \cap F_2$, $F_1 + F_2$
- **③** Are F_1 and F_2 a direct sum in \mathbb{R}^3 ? if not, determine a complement (or a supplement) to F_1 in \mathbb{R}^3 .

Homework

Let $E = \mathscr{F}(\mathbb{R}, \mathbb{R})$ be set of functions from \mathbb{R} in \mathbb{R} .

• Show that $(E, +, \cdot)$ is a vector space over \mathbb{R} together with two ordinary operations

$$(f+g)(x) = f(x) + g(x), \forall f, g \in E.$$
$$(\alpha \cdot f)(x) = \alpha f(x), \forall \alpha \in \mathbb{R} \text{ and } \forall f \in E.$$

• We denote by *F* the vector subspace of even functions and *G* the vector subspace of odd functions. Show that *F* and *G* are complementary in *E*.

