A. Mira-Bejaia university	Faculty of Exact Sciences	Department of Mathematics
First year of mathematics	Algebra 1	2024-2025
Tutorial Series N°3	Functions	

Exercise 1 Let $f : \mathbb{R} \longrightarrow \mathbb{R}$, $g : \mathbb{R} \longrightarrow \mathbb{R}$ be the functions defined by f(x) = 4x - 3, $g(x) = 4x^2 - 7x + 3$. Find (f + g)(x), (f + g)(2), (fg)(x), (fg)(0) and $(f \circ g)(x)$, $(g \circ f)(x)$. **Exercise 2**

- Let $f: E \longrightarrow F$ be a constant function $f(x) = y_0$, for all $x \in E$. Determine $f^{-1}(B)$ for $B \subset F$?
- **2** Let $f : \mathbb{R} \longrightarrow \mathbb{R}$, and $g : \mathbb{R} \longrightarrow \mathbb{R}$ be the functions given by $f(x) = x^2$ and $g(x) = (x-1)^2$.
 - (a) Determine $f(\{-1, 1\}), f([-1, 1]), g([0, 2]).$
 - (b) Determine $f^{-1}(\{1\}), f^{-1}([0,1]), f^{-1}([-1,1]), g^{-1}(\left\{-1\right\}), g^{-1}([-1,1]).$
- Let $f:]0, +\infty[\longrightarrow]0, +\infty[$ be the function given by $f(x) = \frac{1}{x}$. Determine $f^{-1}(]0, 1[)$, and $f^{-1}([1, +\infty[)?$

Exercise 3 Let $f : E \longrightarrow F$ be a function. Let *A* and *B* be two subsets of *E*, and let *C* and *D* be two subsets of *F*. Prove that

- $f(A \cup B) = f(A) \cup f(B).$
- **2** $f^{-1}(C_F(C)) = C_E(f^{-1}(C))$
- If $C \subset D$, then $f^{-1}(C) \subset f^{-1}(D)$.

Exercise 4 Let $f : E \longrightarrow F$ be a function. Show that

- $\forall A \in \mathscr{P}(E), A \subset f^{-1}(f(A))$. Give an example of a function f and a subset $A \subset E$, such that $f^{-1}(f(A)) \nsubseteq A$
- **2** ∀*B* ∈ 𝒫(*F*), *f*(*f*⁻¹)(*B*) ⊂ *B*. Give an example of a function *f* and a subset *B* ⊂ *F*, such that $B \nsubseteq f(f^{-1}(B))$.

Exercise 5 Let f be a function E defined by

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \mapsto f(x) = \frac{2x}{1+x^2}$$

- Determine $f^{-1}\left(\left\{\frac{1}{2}\right\}\right)$, $f^{-1}\left(\left\{2\right\}\right)$. Is f injective? Surjective?
- **2** For which $y \in \mathbb{R}$ the equation f(x) = y has solutions in \mathbb{R} ? Show that $f(\mathbb{R}) = [-1, 1]$.

• Show that the function *g* defined by

$$g: [-1, 1] \longrightarrow [-1, 1]$$
$$x \mapsto g(x) = f(x)$$

is bijective and find its inverse g^{-1} .

Exercise 1 (Homework) Let $f(x) = \frac{1}{x^2}, x \neq 0, x \in \mathbb{R}$

① Determine the direct image f(E) where $E = \{x \in \mathbb{R} : 1 \le x \le 2\}$.

2 Determine the inverse image $f^{-1}(G)$, where $G = \{x \in \mathbb{R} : 1 \le x \le 4\}$.

Exercise 2(Homework) Let $f: E \longrightarrow F$ and $g: F \longrightarrow G$ be a functions. Let $H \subset G$. Show that

$$(g \circ f)^{-1}(H) = f^{-1}(g^{-1}(H)).$$