Exercise 1 Determine whether the relations defined below are reflexives, symmetrics, antisymmetrics, transitives.

- 1. Let \mathscr{R} be the relation given by $a\mathscr{R}b \iff a = |b|$, for all $a, b \in \mathbb{Z}$.
- 2. Let *S* be the relation given by $aSb \iff a+b$ is even, for all $a, b \in \mathbb{Z}$.

Exercise 2 Let \mathscr{R} be the relation on the set of ordered pairs of real numbers, $\mathbb{R} \times \mathbb{R}$, such that

$$(x, y) \mathscr{R}(u, v) \iff x^2 + y^2 = u^2 + v^2.$$

- **①** Show that \mathscr{R} is an equivalence relation.
- Find the equivalence class of (0,0) and (0,1), deduce the equivalence class of (1,0). Interpret these equivalence classes geometrically.
- **③** Find the quotient set $(\mathbb{R}^2)/\mathscr{R}$.

Exercise 3 We define the following relation S on \mathbb{N}^*

$$\forall n, m, \in \mathbb{N}^*, nSm \iff m \text{ divides } n$$

- Verify that 6S2 and 5S1.
- **2** Show that the relation *S* is a partial order relation on \mathbb{N}^* .
- **3** Let $A = \{2, 3, 4\}$ be a subset of \mathbb{N}^*
 - (a) What are the minimal elements? least element? maximal elements? the greatest element?
 - (b) What are the bounds of *A* (upper bound and lower bound)?

Homework

Exercise 1 Determine whether the relation \mathscr{R} on the set of all integers is reflexive, symmetric, antisymmetric and transitive. Where $x \mathscr{R} y$ if and only if

- $0 \quad x \neq y$
- **2** x y ≥ 1
- **3** x = y + 1 or x = y 1
- $4 \ x \equiv y(mod7)$
- **5** x + y = 7

Exercise 2 Let \mathscr{R} be the relation on the set of ordered pairs of positive integers such that

 $\forall (a,b), (c,d) \in \mathbb{Z}^+ \times \mathbb{Z}^+, \quad (a,b) \mathcal{R}(c,d) \Longleftrightarrow ad = bc.$

Show that \mathscr{R} is an equivalence relation.

Exercise 3 Let \mathscr{R} be a relation on the set \mathbb{N}^*

 $\forall a, b \in \mathbb{N}^*, \ a \mathscr{R} b \iff \exists k \in \mathbb{N} \colon \frac{b}{a} = 2^k$

- 1. Show that \mathscr{R} is an order relation on \mathbb{N}^* .
- 2. Decide whether \mathscr{R} is a totally order relation on \mathbb{N}^* . Why?

Remark 1. For the first exercise of homewok, choose only two relations.