Exercise 1 We define a binary operation \star on the set \mathbb{R} by: $x \star y = x + y + 1$.

- Show that (\mathbb{R}, \star) is an abelian group.
- ② Let $H = \{2k+1, \text{ such that } k \in \mathbb{Z}\}$ be a subset of ℝ. Show that (H, \star) is a subgroup of (\mathbb{R}, \star) .
- **③** Let $\lambda \in \mathbb{R}$ and *f* be a function from the group (ℝ, +) to the group (ℝ, ★) defined by :

$$\forall x \in \mathbb{R}, f(x) = x + \lambda.$$

Determine λ for which f be a group homomorphism.

Exercise 2 Recall that (\mathbb{R} , +, .) be a field, notice that 0 is an identity element and 1 an unit element of \mathbb{R} .

(I) We define on \mathbb{R} two other binary operations by

$$\forall a, b \in \mathbb{R}, a \oplus b = a + b + 1$$
 and $a \otimes b = ab + a + b$

- Show that $(\mathbb{R}, \oplus, \otimes)$ is a ring with unity. Is it a field?
- **2** Show that the function f defined by

$$f: (\mathbb{R}, \oplus, \otimes) \longrightarrow (\mathbb{R}, +, .)$$
$$a \mapsto f(a) = a + 1$$

is a ring isomorphism.

(II) Let *E* be the subset of \mathbb{R} defined by

$$E = \left\{ x + y\sqrt{3} : x, y \in \mathbb{Q} \right\}$$

- Show that *E* is closed under " + " and "."
- 2 Show that every element of $E \setminus \{0\}$ has an inverse (under the multiplication) in $E \setminus \{0\}$
- Show that *E* is a subfield of the field $(\mathbb{R}, +, .)$.

Homework

Exercise 1

- 1. Determine which of the following sets are group under addition :
 - (a) the set of all rationals (including 0) in lowest term whose denominators are odd.
 - (b) the set of all rationals (including 0) in lowest term whose denominators are even.
 - (c) the set of rationals whose absolute value <1.
 - (d) the set of rationals whose absolute value 1 together with 0.

2. Let
$$G := \left\{ a + b\sqrt{2} \ a, b \in \mathbb{Q} \right\}$$
.

- (a) Show that *G* is a group under addition.
- (b) Show that non-zero elements of *G* forms a group under multiplication.
- 3. Let $G = \{z \in \mathbb{C} \text{ such that } z = 1 \text{ for some } n \in \mathbb{N} \}$
 - (a) Show that G forms a group with respect to multiplication.
 - (b) Show that *G* does not form a group with respect to addition.