Exercise 1

Which of the following expressions are propositions? In the case of a proposition, say whether it is true or false:

 $\mathbf{0}$ $\sqrt{3}$ is a irrational number.

2 The integer n divides 12.

3 \forall *n* ∈ \mathbb{N} , *n* + 1 = 5.

4 ∃n ∈ \mathbb{N} , n + 1 = 5.

6 25 is a multiple of 5 and 2 divides 7.

3 25 is a multiple of 5 or 2 divides 7.

Exercise 2

Let P, Q and R be propositions. Give the truth table of these propositions.

Exercise 3

Let f and g be two functions of \mathbb{R} in \mathbb{R} , write in terms of quantifiers the following expressions :

 \bullet f never equals zero.

2 *f* is even.

 \bullet *f* is bounded.

 $oldsymbol{\Phi}$ f is strictly increasing function.

6 f less than g.

Exercise 4

Show which of the following propositions are true and which are false, then give their negation:

 $(\exists x \in \mathbb{R}, x+1=0) \land (\exists x \in \mathbb{R}, x+2=0).$

3 $\exists x \in \mathbb{R}, (x+1=0 \land x+2=0).$

Exercise 5

1 Using the proof by contradiction prove that $\sqrt{2}$ is not a rational number.

2 Prove by induction: $\forall n \in \mathbb{N}^*, 1 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$.

3 By contrapositive, prove that $[(n^2 - 1)]$ is not divisible by $[n] \Rightarrow (n]$ is even).

• Let a be an integer. Prove by cases: 2 divides a(a+1)