Durée: 1h30min

Examen de remplacement chimie II

Exercice 1: 3ft

L'état initial d'une mole de gaz parfait est caractérisé par: P_1 = 2.10⁵ Pa; V_1 =14 L et T_1 = 337K. On fait subir à ce gaz successivement:

- 1→2: Une transformation isobare qui double son volume,

 $-2\rightarrow3$: Une compression isotherme qui le ramène à son volume initial ($V_3=V_1$).

- 3→1: Un refroidissement isochore qui le ramène à sa température initiale.

a- Calculer T2, P3.

b-Représenter le cycle de transformation dans le diagramme (P, V).

c- Calculer le travail (w), la quantité de chaleur (Q), variation d'énergie interne (ΔU) et la variation d'enthalpie (ΔH) échangés par le système au cours de chaque transformation et au cours du cycle.

Données: R = 8,31 J.mol⁻¹K⁻¹; R=0,082 L.atm.mol⁻¹K⁻¹; γ =1,4.

Exercice 2: 5,5 1ts

- 1- Un calorimètre de capacité thermique C_{cal} contient m₁=1Kg d'eau à T₁=15°C, On ajoute une masse m₂=1Kg d'eau à la température T₂=60°C. La température d'équilibre est T_{eq}= 35°C. Calculer la capacité thermique C_{cal} du calorimètre.
- 2- On reprend le calorimètre contenant $m_1=1$ Kg d'eau à $T_1=15$ °C. On y plonge une masse $m_3=50$ g de glace à $T_2=0$ °C. La température d'équilibre étant $T_{eq}=11,34$ °C.

On suppose que la glace fond totalement

- Calculer la chaleur latente de fusion de la glace L_{fus}.

Donnée: C_p(eau)=4,18 J.g⁻¹K⁻¹.

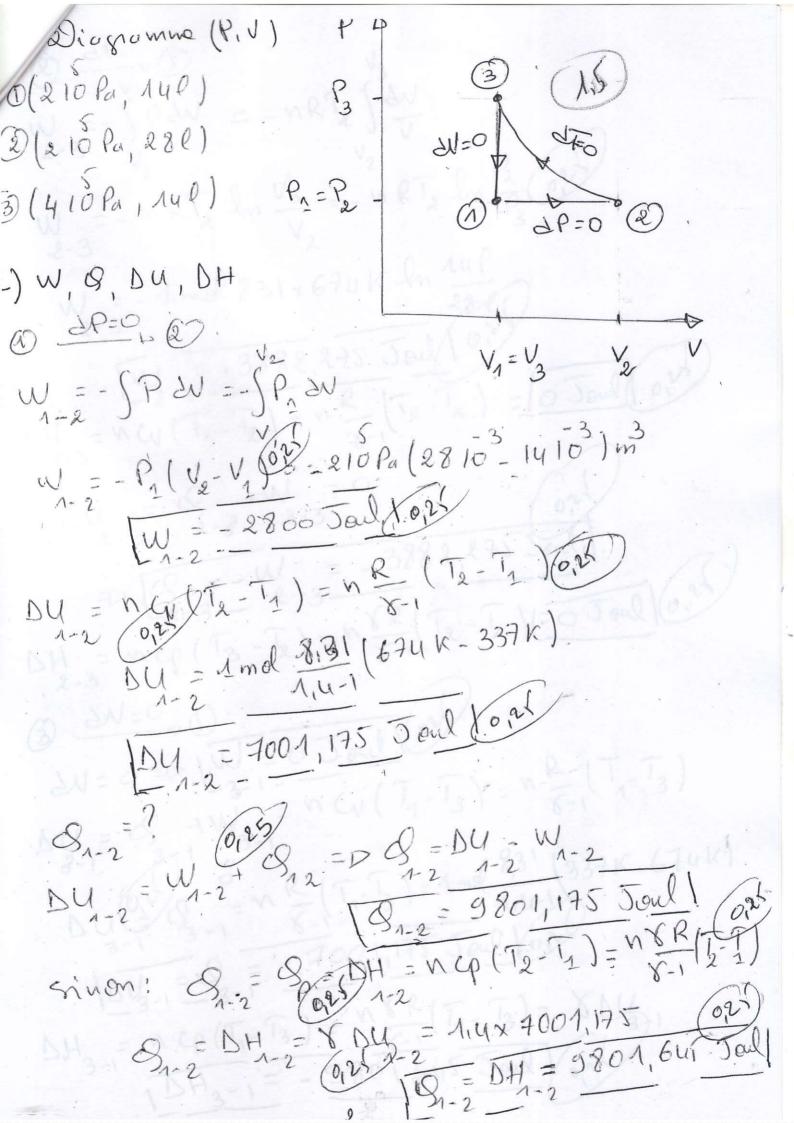
Exercice 3: 5, 5. Pts .

1- Le monoxyde d'azote s'oxyde rapidement dans l'air en dioxyde d'azote selon la réaction suivante:

NO (g) +
$$1/2O_2(g) \rightarrow NO_2(g)$$

-Calculer l'enthalpie standard ΔH_R° de la réaction d'oxydation du monoxyde d'azote en dioxyde d'azote. Déduire la nature de la réaction.

Données: ΔH_{f}^{0} (NO)_g = 90KJ.mol⁻¹; ΔH_{f}^{0} (NO₂)_g =34 KJ.mol⁻¹.


2- L'enthalpie de combustion du méthane à 25°C est ΔH°_{Comb}(298)= - 890,34 KJ.

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$$

-Déterminer l'enthalpie de la réaction à 100°C dans le cas ou l'eau formée est toujours liquide.

Données: $C_P(CH_4)_g = 35,31 \text{ J.mol}^{-1}.K^{-1}$; $C_P(CO_2)_g = 37,20 \text{ J.mol}^{-1}.K^{-1}$; $C_P(O_2)_g = 29,4 \text{ J.mol}^{-1}.K^{-1}$; $C_P(H_2O)_L = 75,28 \text{ J.mol}^{-1}.K^{-1}$

conigé & l'examen de remplement chimie 2 n=1mol n=1 mol 5 P1=P2=210 Pa 4 n=1md P_ = 210 Pa V2=2V1 Vy=148 Te -11=337K dv = 0 a - T2=? $\frac{1}{1} = \frac{1}{12} = \frac{1}{12} = \frac{2\sqrt{1}}{12} = \frac{$ JP=0 =D = cond sinon a létrate 2): P2 2= notre T2 = P2 025 210 22 x 14 10 m T2=673,88 K. (10,25. $= \frac{1}{2} \sqrt{\frac{1}{2}} = \frac{1}{2} \sqrt{\frac{1}{3}} = \frac{1}{$ Sinon = latal 3): P3 V3 = nR 13 P3= NRT3 = 1 md 8,31 x 674 K 1 P3=410 Parl (0,2)

N = - SPAN = - NRT2 JAN 2-3 V $W = -NRT_2 ln \frac{V_3}{V_2} = -NRT_2 ln \frac{P_2}{P_2} \left(\frac{V_3}{V_2} \right)$ W=-1mol 8,31x6741. In rul TW = +3882,275 Joul 025 Dy = NCV (T3-T2) = N P (T2-T2) = [0 Joul | 02) $= \frac{3889,2755}{2-3-2-3-2-3}$ DU = 8 +W = 0 DH = NCP(T3-T2)=NYR(T2-T2)(=0 Joul)(0.15) W=0=D/W=0 Joul 102 DU = 8 +W = n CV (T1-T3) = n F-1(T1-T3) BU = 03-1 - 1001,175 5 oul (02) DH3-1= -9801645 Jaul 000

J = W = W = W = -2800 + 3882,275 Wyd = 1082, 275 Joul 1 (00) Sugel = 8-2 2-3 + 8 = 9801,176-3882,275-7001,18 1 Sugal = - 1082, 275 Joul (0,0) Duyel = Dy - Dy - 3 3-1 (1) I AU =0 Joul (out DHuyel = DH1-2+ DH + DH3-+19801,645+0-9801,645 DA cycl = 000 out / 82 Exercile 2: 5,5.) T1 = 18 c L T2 = 60 c = P 8 = m2 ecul Teq - T2) 600 Sherine (Cd + m Cean) (1eq - 195) Sodie + Premie (0,1) a letal d'équilibre: mc Caul Teg-Ta) + (Cal + mceau) (Teg-Ta) =0 Cup [m2(Teq-T2), m, (Teq-T2)] Ceary (Fal = 1045 JK-1695) 2) T₁=15 c > T₂=0c = D Sadei = (cal + m, Cecu)(Teq-T₁) Stews!

m₃=50y. Oi m₃=50g. glule - 91 m3=50g T₂=0î T₂=0î T₂=11,34 C. Breyon = 82 + 82 avec 82 = m3 you 6.25)
8 = m C (Te-Te. Sz=m3 Cou (Teg-Trus)025) Snew = m2 L + m (eau (Tig-1/2) (5) le Bolom a let ut d'équilibre = P Budée + Preçoy (Cal + m Ceau) (Teg-T1) + m L + m Ceau (Teg-Tys)=0. Las - (Cal + m, Ceaul (Teg-Tx) + m3 Ceaul (Teg-Tsu) (05) Les = 429,871 5/91(05) Exercile 3 1) NO(g)+102(g) - NO2(8) DH = EV; DH, (produit) - EV; DH, (Really's (10)) = 1 mol DH, (NO2) g-[1 mol DH, (NO) + 2 mol DH, (0,) g] THE = -56 K. J. K. o. Bearlion exoller mi puter)

5 -

CHuly) + 202191 - + (0219) + 2 H20(P) DHR (298K) = DH = -890, 34KJ DHR (373K) = ? la loi à Kirchoff: DHR(T2) = DHR(T1)2 SOP 21 (018) T2 = 100 C = 373 K DCP = Ex; CP (Produits) - Ex; CP (Révilys 101) DCp = 1 mol cp(cox) y + 2 mol cp(H20) - [1 molep(Hu) + 2 molep(0)] DCp = 37,20+150,56-(35,31+58,8) 154p = 93,65 3 N-11 378 ON DHR (373K) = DHR (298K) + 59365 JK ST = -890,34 10 Joul + 93,655K (373-298 (2018) = -890340+7023,75, = -883316,25 Joul [DHR (3734) = -883,316 K3 <0/0,5)