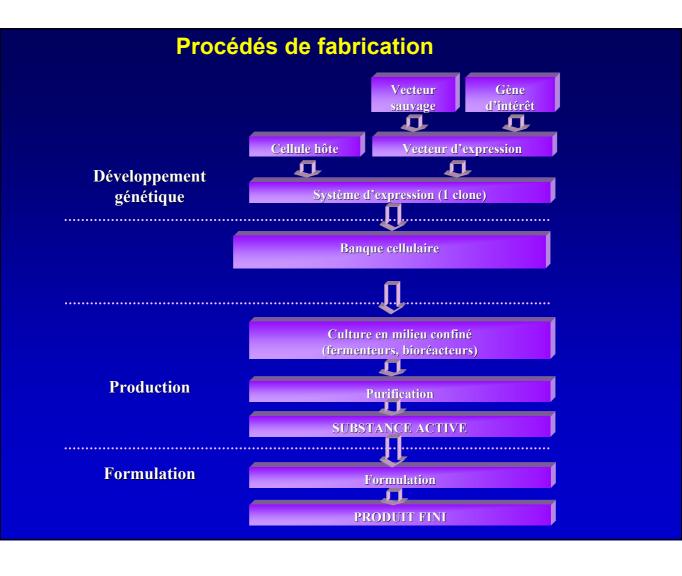

Vecteurs, cellules hôtes et méthodes de transfection utilisées pour la production de protéines recombinantes


Plan:

Introduction: qu'est ce qu'une protéine recombinante?
Rappels: construire un vecteur d'expression
Systèmes d'expression procaryotes
Systèmes d'expression eucaryotes
Méthodes de transfection
Contrôle de l'expression

Technologie des protéines recombinantes

 Protéine recombinante: produite par des cellules dont l'ADN a été modifié par recombinaison génétique

Système de production adapté:

Protéines à usage pharmaceutique Production d'enzymes à échelle industrielle Protéines modifiées: mutées, fusionnées...

Principales difficultés:

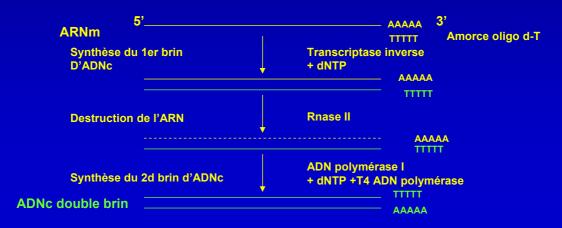
Taux d'expression de la protéine, cinétique Modifications post-traductionnelles, repliement, glycosylation Procédés de purification Stabilité, solubilité Considérations économiques: équipements disponibles,coûts de production

Utilisations des OGM en thérapeutique

OGM		ТҮРЕ	UTILISATION	MILIEU
Utilisé comme système de production de produits de santé	Milieu confiné	micro-organismes	développement et/ou production de substances à usage thérapeutique (protéines recombinantes essentiellement)	milieu confiné (réacteurs, salles blanches, établissements classés)
	Milieu disséminé	plantes transgéniques		- champs ou serres confinées - production extensive en champs ?
		animaux transgéniques		- élevage « clos »
Utilisé en tant que produit de santé		micro-organismes (y compris virus)	vecteur de thérapie génique	milieu disséminé <u>NB</u> . selon la directive 2001/18/CE, l'être humain n'est pas considéré comme OGM!!!
			vaccin	
		plantes	produit de santé ("alicament")	

Principaux systèmes d'expression et vecteurs utilisés pour la production de protéines recombinantes

Système d'expression	Principaux vecteurs disponibles	Exemples de protéines recombinantes			
Bactérien					
E.coli	- plasmide - virus	somatropine, insuline, chymosine, interféron, interleukine			
Fongique					
S. cerevisiae	- plasmide	antigène HBs, insuline			
Insecte					
Spodptera frugiperda	-baculovirus (Autographa californica) -plasmide	pas de produit commercialisé mais de nombreuses voies de recherche : interferon, interleukine, EPO, tPA, anticorps murin, antigène VRS, antigène VIH			
Mammifère					
СНО	- plasmide - virus	antigène HBs, somatropine, cytokines, EPO, facteur de coagulation			
Cellules humaines	- plasmide - virus (EBV)	EPO , protéine C, α-galactosidase, anticorps monoclonaux			


Construction d'un vecteur d'expression:

1. Isoler la séquence à exprimer = préparation d'un ADNc

Cellules ou tissu producteurs de la protéine d'intérêt

Extraction des ARN totaux Purification des ARNm (1 à 2%): possèdent une queue polyA chromatographie sur colonne oligo-dT (cellulose/sépharose/billes magnétiques)

Synthèse d'un ensemble ADNc par transcription inverse:

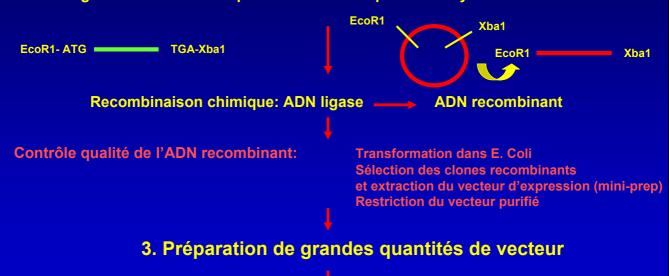
Construction d'un vecteur d'expression:

1. Isoler la séquence à exprimer = préparation d'un ADNc

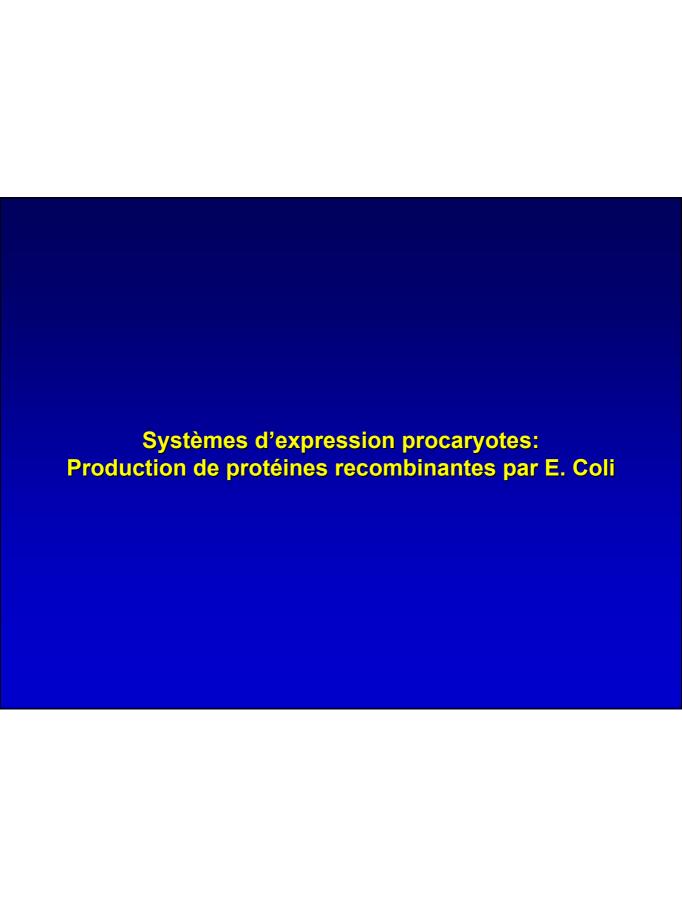
Cellules ou tissu producteurs de la protéine d'intérêt

Extraction des ARN totaux Purification des ARNm (1 à 2%): possèdent une queue polyA chromatographie sur colonne oligo-dT (cellulose/sépharose/billes magnétiques)

Synthèse d'un ensemble ADNc par transcription inverse:

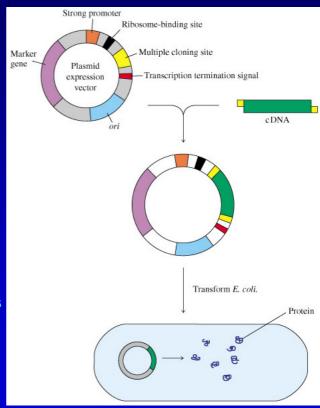

PCR d'amplification de l'ADNc ciblé: importance du choix des amorces

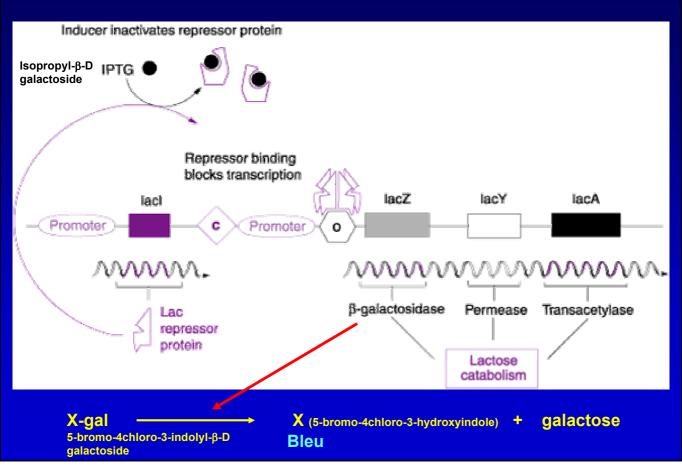
EcoR1- ATG — TGA-Xba1


Construction d'un vecteur d'expression:

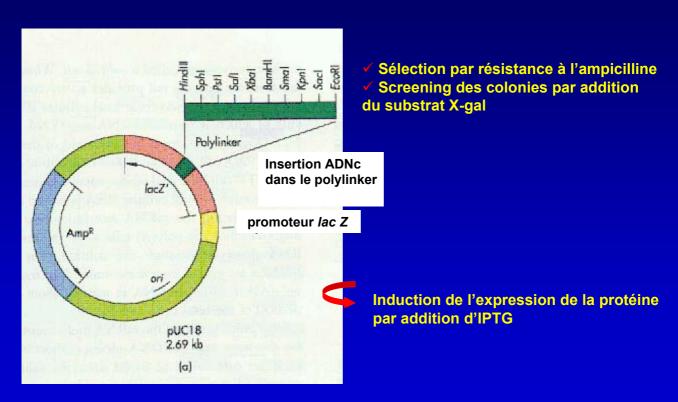
2. Insersion dans le vecteur d'expression

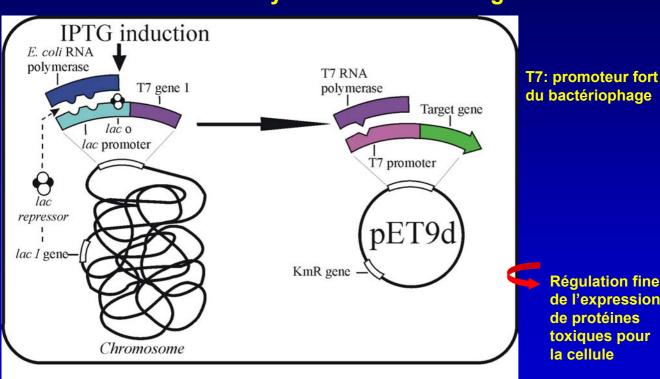
Digestion de l'ADNc amplifié et du vecteur par une enzyme de restriction


Incorporation dans la cellule hôte


Vecteurs d'expression: les plasmides (1) Caractéristiques communes

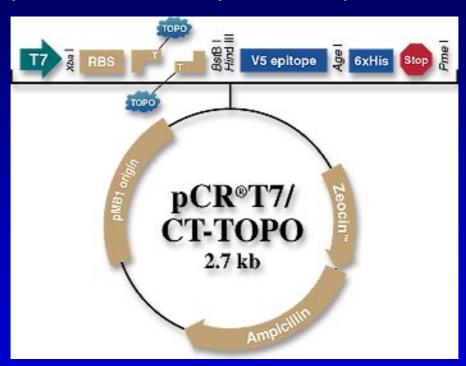
- ➤ ADN circulaire extra chromosomique (2 à 6 kb)
- ➤ Réplication indépendante/ chromosome bactérien
- ► Nombre de copies contrôlé (gène rop)
- >ADN exogène: 8 à 9 kb
- > Possibilité de co-transformer plusieurs plasmides différents


Promoteur (constitutif ou inductible)
Site de fixation des ribosomes
Polylinker / Multiple cloning site (MCS)
Signal de terminaison de transcription
Origine de réplication dans les bactéries
Gène de résistance à un antibiotique
(marqueur de sélection)


Rappel: l'opéron lactose

Les plasmides (2) promoteur de l'opéron lactose

Les plasmides (3) promoteurs: pET (Novagen), un double système de verrouillage


Régulation fine

de l'expression de protéines toxiques pour la cellule

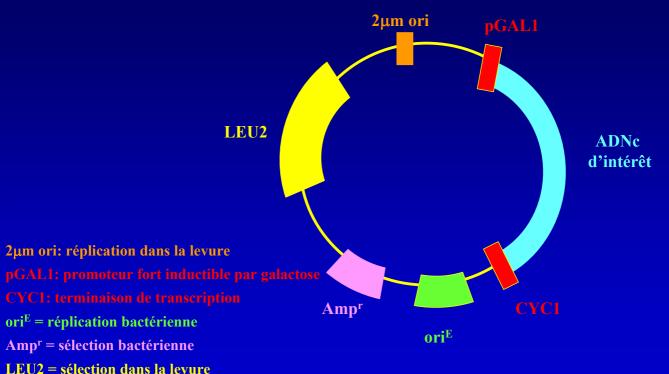
E. coli BL21(DE3) / pET9d

Les plasmides (4)

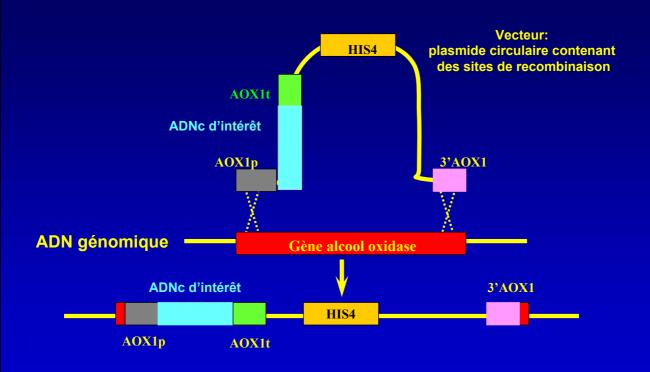
Séquences permettant la détection et la purification de la protéine recombinante: les TAG

Autres TAG: Glutathione-S-transférase (GST), Maltose-binding-protein (MBP), Green-fluorescent protein (GFP)...

Avantages des systèmes d'expression procaryotes


- Croissance rapide et peu onéreuse (1 génération toutes les 20-30 min pour E. Coli), non pathogènes pour l'homme
- >Système génétique bien connu, nombreuses souches améliorées pour optimiser l'expression de la protéine
- > Expression des gènes facilement contrôlable
- Nombreux vecteurs d'expression disponibles, facilité de transfection dans les cellules-hôtes
- >Bons rendements de production des protéines (plusieurs dizaines de grammes par litre de culture)
- ➤ Production de la protéine recombinante sous forme de corps d'inclusion cytoplasmique ou secrétée dans l'espace péri plasmique Facilité de purification

Inconvénients des systèmes d'expression prokaryotes


- > Conséquences de la présence du vecteur (taux de croissance cellulaire, consommation d'énergie)
- ➤ Surexpression de la protéine recombinante (toxicité)
 - Amélioration par les systèmes inductibles
- > Pas de modification post-traductionnelle
 - Activité biologique différente de la protéine native
- Corps d'inclusion: protéine insoluble, mal repliée
 - co-expression de protéines chaperonnes (foldases)
- ≻Protéines sécrétées dans l'espace péri plasmique: rendement moins important
 - co-expression de translocases
- ➤ Utilisation des Tag: avantage pour la purification mais il faut ensuite les cliver (protéases onéreuses)
 Pas de clivage à 100%
- ▶ Présence d'endotoxines bactériennes en large quantité

Vecteurs d'expression chez Saccharomyces cerevisiae Systèmes épisomiques

Vecteurs intégratifs chez Pichia pastoris

Promoteur AOX1 inductible par le méthanol

Systèmes d'expression dans la levure

AVANTAGES

- >Petit génome eucaryote facilement manipulable et bien caractérisé
- >Absence d'endotoxine
- >Fermentation peu coûteuse
- >Bons rendements (quelques grammes par litre de culture)
- > Modifications post traductionnelles simples possibles
- >Possibilité de sécrétion de la protéine d'intérêt

INCONVENIENTS

- **≻**Hypoglycosylations
- >N-glycosylation: immunogène chez l'homme
- > Mauvais repliement de la protéine produite

Vecteurs baculoviraux

Baculovirus: virus infectant les insectes

ADN circulaire super enroulé (88-200Kb) contenu dans la nucléocapside

présence d'une enveloppe

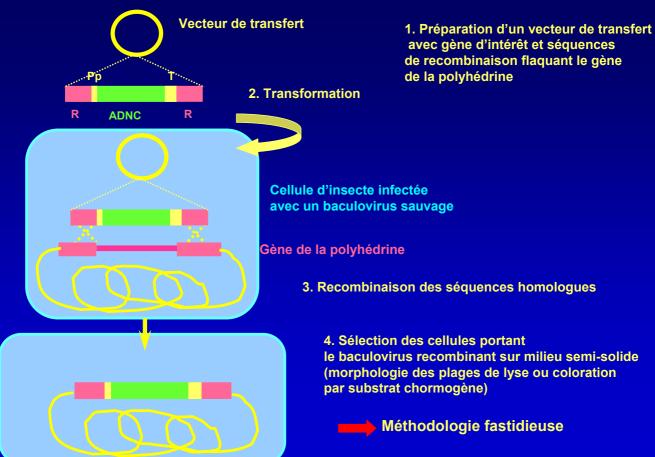
plus de 500 isolats différents (selon l'hôte infecté)

Non pathogènes pour les vertébrés

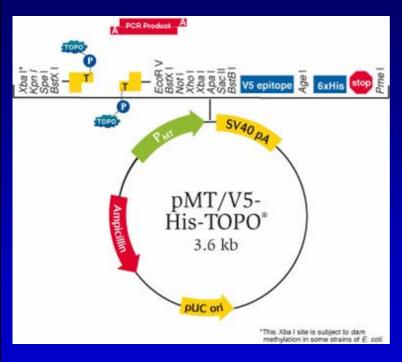
Cycle viral:

Phase d'infection: attachement, fusion à la membrane cellulaire,

dissociation de la nucléocapside,


transfert de l'ADN dans le noyau cellulaire

Phase de réplication: expression des gènes précoces (régulateurs),


intermédiaires (réplication et assemblage),

tardifs (protéines de structure P10 et polyhédrine)

Utilisation de vecteurs d'expression plasmide pour transformer les cellules de drosphile (S2)

Promoteur fort Metallothionein, inductible par Cu2+

Polylinker ou site de clonage « TOPO »

SV40: signal de polyadénylation

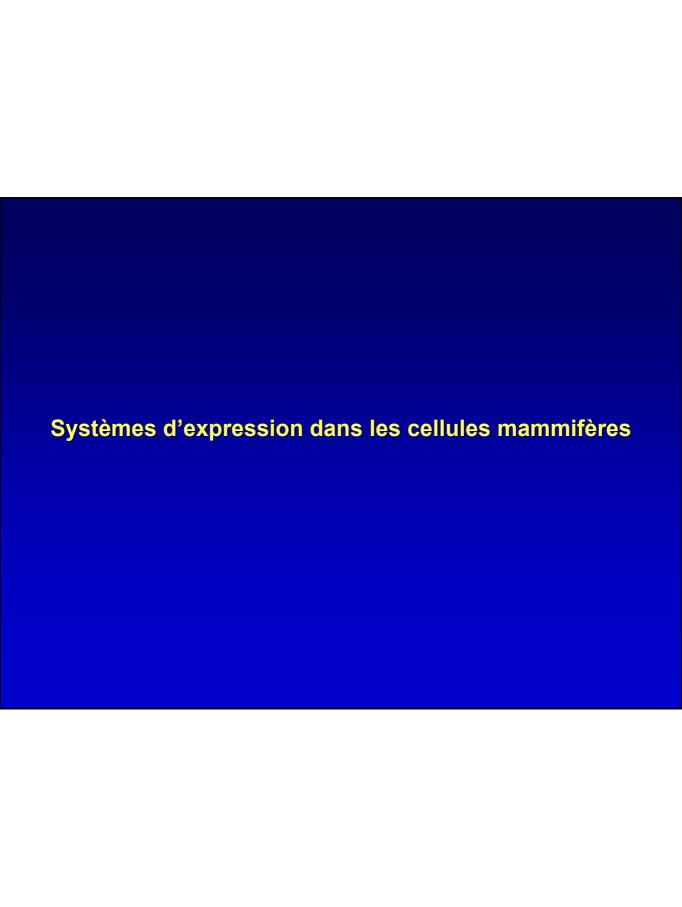
TAG poly-histidine et épitope V5

pUC ori:Origine de réplication bactérienne

[✓] Séléction bactérienne par l'ampicilline

[✓] Sélection dans les cellules S2 par co-transfection avec un plasmide portant un gène de résistance à l'hygromycine

Systèmes d'expression dans les cellules d'insecte


AVANTAGES

- >Croissance rapide des cellules, en suspension
- **▶**Bons rendements de production (centaines de mg/L de culture)
- > Modifications post-traductionnelles poussées:

reconnaissance des signaux d'adressage hétérologues (excrétion des protéines matures dans le milieu) clivage des pro-peptides et du peptide signal assemblage des complexes oligomériques formation de ponts disulfure repliement modifications chimiques (glycosylation, acétylation, ...)

INCONVENIENTS

- >Systèmes de fermentation particulier (sans apport de CO2, 22°C)
- ➤ Glycosylation: absence d'acide sialique
- ▶ Production coûteuse (mort des cellules si infection par baculovirus)

Expression constitutive de la protéine d'intérêt

Promoteur fort d'origine virale: CMV

Expression transitoire de la protéine sans pression de sélection (24-48 heures post-transfection) Expression stable avec pression de sélection: les cellules n'ayant pas incorporé le vecteur meurent (culture sur plusieurs semaines)

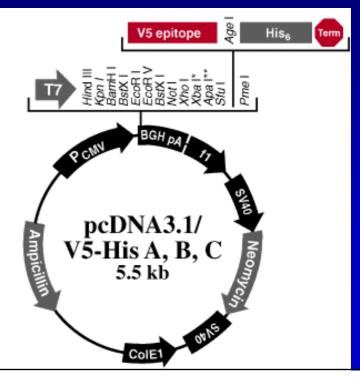
Comments for pcDNA3.1/V5-His A

5503 nucleotides

CMV promoter: bases 209-863

T7 promoter/priming site: bases 863-882

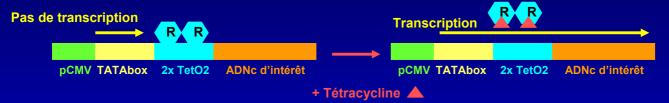
Multiple cloning site: bases 902-999 V5 epitope: bases 1000-1041 Polyhistidine tag: bases 1051-1068


pcDNA3.1/BGH reverse priming site: bases 1091-1108

BGH polyadenylation signal: bases 1090-1304 f1 origin of replication: bases 1357-1780 SV40 promoter and origin: bases 1845-2170 Neomycin resistance gene: bases 2206-3000 SV40 polyadenylation signal: bases 3019-3257

ColE1 origin: bases 3689-4362

Ampicillin resistance gene: bases 4507-5367


- * After the Xho I site, there is a unique BstE II site, but no Xba I or Apa I sites in version C.
- ** There is a unique Sac II site between the Apa I site and the Sfu I site in version B only.

Autres éléments régulateurs

□ Systèmes inductibles

Exemple: promoteur sous contrôle d'éléments régulateurs de l'opéron Tétracycline (origine bactérienne)

Utilisation de lignées cellulaires exprimant le répresseur

- ☐ Tags pour la détection et la purification des protéines exprimées
- ☐ Séquences de localisation: peptide signal de sécretion peptide transmembranaire peptides signaux de transport vers les organites

Lignées cellulaires mammifères utilisées pour l'expression de protéines recombinantes

CHO: chinese hamster ovary HeLa: human cervical carcinoma

BHK: baby hamster kidney Jurkat: human lymphocyte NOS: murine myeloma

Manipulations génétique des lignées cellulaires pour améliorer la production des protéines recombinantes:

≻Contôle de la glycosylation:

Surexpression des gènes codant pour la galactosyltransférase ou la sialyl transférase

> Contrôle de la croissance cellulaire:

Expression inductible d'une protéine régulatrice bloquant le cycle cellulaire en phase G1 Surexpression de protéines anti-apoptotiques (Bcl2 ou BclXL)

Systèmes d'expression dans les cellules mammifères

AVANTAGES

- > Nombreux vecteurs d'expression disponibles
- ➤ Maturation proche de la protéine native
 Profil de glycosylation complet si utilisation ce cellules humaines
- ➢ Possibilité de produire des protéines chimères
 ex: ligand associé à la partie Fc d'une immunoglobuline
 Anticorps humanisés

INCONVENIENTS

- >Culture des cellules difficile et coûteuse
- **≻Croissance lente**
- > Cellules recombinées peu stables (perte des vecteurs)
- **≻**Faibles rendements (10mg/L de culture)
- ▶ Peu de recul sur la sécurité virale (lignées cellulaires transformées)

Méthodes d'incorporation des vecteurs d'expression dans les cellules (1)

INFECTION:

Cas d'utilisation de phages (virus bactériens) ou virus portant l'information génétique à transférer Infection de la totalité des cellules **Utilisation limitée (sécurité)**

Les lignée cellulaires doivent exprimer le récepteur d'entrée du virus

TRANSFORMATION

Traitement chimique des cellules pour fragiliser la membrane cellulaire = cellules compétentes

- > Choc thermique (réservé aux bactéries)
- > Electroporation: brève impulsion électrique (20à 2500 volts) induisant une différence de potentiel à la membrane. Ouverture temporaire de pores laissant pénétrer l'ADN exogène Optimisation essentielle des paramètres de manipulation. 50% de mortalité cellulaire.

Méthodes d'incorporation des vecteurs d'expression dans les cellules (2)

TRANSFECTION

Chimique:

Précipitation de l'ADN au phosphate de Ca Adhésion à la membrane cellulaire, entrée du complexe ADN-Ca par endocytose Importance des conditions chimiques (pH, concentrations salines)

DEAE-dextran:

Polymère chargé + / Interaction avec ADN-Adhésion à la memrane cellulaire Choc osmotique (DMSO ou glycérol) Méthode limité aux transfections pour une expression transitoire

Méthodes d'incorporation des vecteurs d'expression dans les cellules (3)

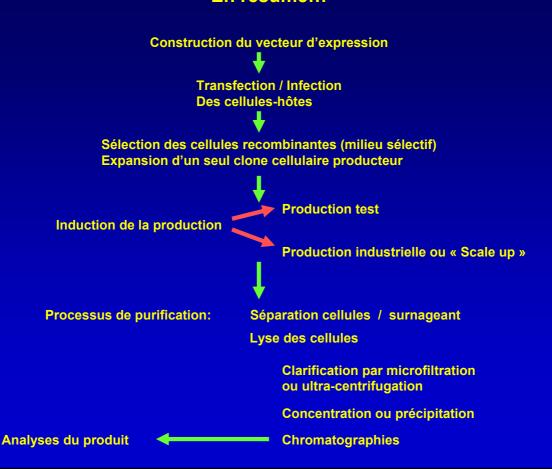
Biolistique:

L'ADN exogène est adsorbé sur des particules d'or ou de tungstène (coprécipité avec Ca) Projection du complexe sur les cellules, sous pression d'hélium

Méthodes d'incorporation des vecteurs d'expression dans les cellules (4)

Lipofection:

Utilisation de lipides cationiques = liposomes unilamellaires (100 à 400 nm) Surface chargée + / interaction avec ADN exogène. Endocytose probable des complexes


Inconvénients:

Efficacité (30%) Reproductibilité Toxicité

Avantages:

Amélioration des taux de transfection pour certains types cellulaires Diminutiuon de la quantité d'ADN exogène nécessaire

La production de protéines recombinantes En résumé...

