
TE
AM
FL
Y

Team-Fly®

Learn

Pascal

Sam A. Abolrous

Wordware Publishing, Inc.

Library of Congress Cataloging-in-Publication Data

Abolrous, Sam A.
Learn Pascal / by Sam A. Abolrous.
p. cm.
ISBN 1-55622-706-X (pb)
1. Pascal. I. Title.

QA76.73.P2 A248 2000
005.13'3--dc21 99-088051

CIP

© 2000, Wordware Publishing, Inc.

All Rights Reserved

2320 Los Rios Boulevard
Plano, Texas 75074

No part of this book may be reproduced in any form or by
any means without permission in writing from

Wordware Publishing, Inc.

Printed in the United States of America

ISBN 1-55622-706-X

10 9 8 7 6 5 4 3 2 1

0002

Product names mentioned are used for identification purposes only and may be trademarks of their respective companies.

All inquiries for volume purchases of this book should be addressed to Wordware Publishing, Inc., at the above

address. Telephone inquiries may be made by calling:

(972) 423-0090

Contents

Chapter 1 Getting Started with Pascal . 1
1-1 The Pascal Version of “Hello World!”. 1

Comments . 2
The Program Heading. 2
Syntax and Conventions . 3

1-2 Displaying Output: WRITELN, WRITE . 3
1-3 Working with Numbers . 5

Real Division: / . 6
Integer Division: DIV . 7
Remainder of the Integer Division: MOD 7
Operator Precedence in Arithmetic Expressions 7

1-4 Variables . 9
Variable Declaration. 9
The Assignment Statement . 11

1-5 Constants . 12
1-6 Type Conversion: ROUND, TRUNC . 14
1-7 Reading from the Keyboard: READLN, READ 15
1-8 Formatting Output . 16
Summary. 18

Exercises. 19
Answers . 20

Chapter 2 Data Types . 21
2-1 Overview of Data Types . 21
2-2 Numeric Types . 22

Numeric Types in Turbo Pascal . 22
2-3 Arithmetic Functions. 24

The Power Function . 25
Application: Grocery Store. 26
Turbo Pascal Additional Arithmetic Functions. 27

2-4 The CHAR Type . 28
Standard Functions for Characters . 29
Strings in Standard Pascal . 32

2-5 The STRING Type. 33
Declaration of a String . 33
The Length of a String . 34

2-6 The BOOLEAN Type . 34
Simple Boolean Expressions . 35
Compound Boolean Expressions . 37

iii

Truth Tables . 37
Turbo Pascal Logical Operators . 38
Precedence of Pascal Operators . 38

Summary. 39
Exercises. 41
Answers . 42

Chapter 3 Selection Statements . 43
3-1 Making Decisions . 43
3-2 The Simple Decision: IF-THEN . 44

Application: Pascal Credit Card . 45
Using BEGIN-END Blocks . 46

3-3 The IF-THEN-ELSE Construct . 48
3-4 The ELSE-IF Ladder . 50

Application: A Character Tester . 50
3-5 Nested Conditions . 52

Application: Scores and Grades . 52
Tips on the IF-ELSE Puzzles . 55

3-6 The Multiple Choice: CASE . 56
Application: A Vending Machine . 56
Application: Number of Days in a Month 57

3-7 Unconditional Branching: GOTO . 59
Infinite Loops. 60

3-8 Turbo Pascal Additional Features: EXIT, CASE-ELSE 61
Summary. 62

Exercises. 64
Answers . 65

Chapter 4 Iteration Statements . 67
4-1 Loops . 68
4-2 The FOR Loop. 69

Application: Powers of Two . 70
Application: The Average . 72

4-3 Stepping Up and Stepping Down . 73
Application: The Factorial . 73

4-4 Nested Loops . 75
4-5 The WHILE Loop . 76
4-6 The REPEAT Loop . 79

Application: Prime Numbers . 81
Summary. 82

Exercises. 83
Answers . 84

Chapter 5 Structured and User-defined Types 85
5-1 Classification of Data Types in Pascal . 85
5-2 Ordinal Data Types . 86

Enumerations . 87

iv

Contents

Subranges . 88
Restrictions on Using Enumerations and Subranges 90

5-3 The TYPE Section. 90
Renaming Types . 91
Naming User-Defined Types . 91

5-4 Arrays . 92
5-5 One-Dimensional Arrays . 95

Application: Scores of One Student . 95
Application: Displaying Tabulated Results 97
Application: Prime Numbers—Version 2 99
Declaration of Arrays in the Type Section 101
Application: Sorting an Array . 102

5-6 Multidimensional Arrays . 104
Application: Scores of Students . 105
Array Initialization . 108

Summary . 108
Exercises . 109
Answers. 110

Chapter 6 Working with Text . 111
6-1 Standard Input and Output Files . 111
6-2 Tips on Output Statements. 112
6-3 Tips on Input Statements . 113

Using READLN for Numeric Input . 113
Using READ for Numeric Input . 115
Using READ for Character Input . 116
Using READLN for Character Input . 118
Reading Mixed Types. 119
Application: Scrambling Letters . 120

6-4 Reading a Line of Text: EOLN . 122
Application: Character Counter . 122

6-5 Reading a File of Text: EOF . 123
Application: Frequency Counter . 123

6-6 String Manipulation . 124
Tips on String Input/Output. 124
Application: Sorting Names . 125

6-7 String Functions and Procedures . 127
LENGTH . 128
CONCAT . 128
COPY . 128
POS. 128
INSERT . 128
DELETE . 129

Summary . 130
Exercises . 130
Answers. 131

v

Contents

Chapter 7 Procedures and Functions 133
7-1 Programs and Subprograms. 133
7-2 Procedures . 134
7-3 Procedure Definition . 134

Passing Parameters to Procedures . 136
Actual and Formal Parameters. 137
Passing Parameters by Value and by Reference 138

7-4 Returning Values from Procedures: VAR 138
7-5 Global and Local Variables . 139

Application: Sorting Procedure. 140
7-6 Functions . 142

Application: The Fibonacci Sequence 143
7-7 Tips on the Scope of Variables . 144
7-8 Recursive Functions and Procedures . 146
Summary . 147

Exercises . 148
Answers. 149

Chapter 8 Sets and Records . 151
8-1 The SET Data Type . 151
8-2 Declaration and Assignment: SET OF. 152

Declaration Examples . 153
8-3 Rules of Using Sets . 154
8-4 Set Operators and Expressions . 154

Union: +. 155
Intersection: * . 156
Difference: – . 156
Tips on Using Set Operators . 157
Relational Operators . 157
Precedence of Pascal Operators . 159
Application: Text Analyzer . 159

8-5 Records . 161
Record Declaration . 161
Accessing Record Fields . 162

8-6 The WITH Statement . 163
8-7 Nesting Records . 166
Summary . 168

Exercises . 169
Answers. 170

Chapter 9 Data Files . 171
9-1 The FILE Type . 171
9-2 TEXT Files . 172
9-3 Reading TEXT Files . 173

The File Variable . 173
File Parameters. 173

vi

Contents

Opening a File for Input: RESET . 173
Closing the File: CLOSE . 174
File Input Procedures: READ, READLN 175
The EOF and EOLN Functions. 175
Application: Disk-File Text Analyzer . 176

9-4 Displaying TEXT Files . 178
Reading a TEXT File as a Set of Strings 179
Reading Multiple Strings . 180

9-5 Creating a File: REWRITE . 181
The Output Procedures: WRITE, WRITELN 182
Application: Employee File . 183
Application: Payroll . 185

9-6 Files of Other Types: FILE OF . 189
Application: Payroll System . 189
Appending a File . 193

9-7 Using the File Buffer Variable: GET and PUT 195
Summary . 196

Exercises . 197
Answers. 198

Chapter 10 Using Variant Records . 201
10-1 Variant Records. 201
10-2 Application: Enhanced Payroll System. 203

Remarks . 210
10-3 Deleting Records from the File . 211
10-4 Updating Records . 219
10-5 Enhance the Program Modularity . 222

Suggestions . 232
Summary . 233

Exercises . 233
Answers. 234

Chapter 11 Pointers and Linked Lists. 235
11-1 Dynamic Memory Allocation . 235
11-2 Pointers . 236
11-3 Pointer Operations . 238

Assignment . 238
Comparison. 239

11-4 Pointers to Records. 241
11-5 Passing Pointers as Parameters . 243
11-6 Basics of Linked Lists. 243

List Declaration . 244
Building a List. 244
Reading a List . 246
Application: A Linked List Demo . 248

11-7 Storing Lists in Files . 251

Contents

vii

11-8 Reading Lists from Files . 252
Application: Building a List of Records. 253

11-9 Searching Lists . 254
11-10 Deleting Nodes from Lists . 262
11-11 Arranging Nodes in Sequential Order 273

Inserting Nodes. 273
Searching an Ordered List . 274
Application: The Final Linked List Database. 276

Summary . 286
Exercises . 287
Answers. 289

Chapter 12 Advanced Programming Algorithms. 291
12-1 Sorting Algorithms . 291
12-2 Bubble Sort—Enhanced Version . 292

The Swap Procedure . 292
The Bubble Sort Procedure . 292
The Bubble Sort Program . 293

12-3 Quicksort Algorithm. 295
The Divide and Conquer Procedure . 297
The QuickSort Procedure . 298
The QuickSort Program . 298

12-4 Searching Algorithms . 301
12-5 Linear Search . 301
12-6 Binary Search. 301

The BinarySearch Procedure . 302
The Binary Search Program . 303

12-7 Binary Search Trees . 306
The Binary Tree Structure . 306
Searching the Tree . 308
Traversing the Tree. 310

12-8 Programming Binary Trees . 310
Tree Declaration . 310
Building a Binary Search Tree . 311
Testing the Tree . 312

12-9 Application: Building and Printing a Binary Tree 312
12-10 Application: Sorting Data Files Using Binary Trees 319
12-11 Application: Searching a Data File Using Binary Trees 322

The Search Function . 322
The Search Program . 323

Summary . 326
Exercises . 327
The Next Step . 328

Appendix A The ASCII Character Set . 329

viii

Contents

Appendix B Reserved Words and Standard Identifiers. 335

Appendix C Operators . 337

Index . 339

ix

Contents

TE
AM
FL
Y

Team-Fly®

Preface

This book is intended for both beginners and advanced users. As a beginner, you can

learn the Pascal language through examples and step-by-step procedures. You start

with simple programs that crunch numbers and end up with structured programs and

advanced problem-solving algorithms. As an experienced programmer, you can use the

book as a complete reference that covers the language and the advanced programming

techniques.

Historically, Pascal was developed by Niklaus Wirth (a Swiss computer scientist) in the

early 1970s and was named after the French mathematician Blaise Pascal (1623-1662). A

recent standard for the language was formulated in 1983 and approved by the Institute of

Electrical and Electronics Engineers (IEEE) and the American National Standards Insti-

tute (ANSI). With the growing use of microcomputers, extensions and variations have

been added to the language. The most popular of these variations are UCSD Pascal

(developed by University of California at San Diego) and Turbo Pascal (developed by

Borland International).

The goal of this book is to teach you how to write a portable program in Pascal regard-

less of the computer you use. Mainly the standard IEEE/ANSI language is used, but

the new features are discussed and their origins referred to. This book is not intended

to go into the details of the nonportable areas of the language (such as graphics), but

rather to make use of the powerful features of the modern implementations that help

in data processing. The programs included in this book were compiled using Turbo

Pascal, but you can use any compiler to run them. In a few places you may need to

make minor modifications, which will be referenced. If you are using a Windows-based

compiler (such as Delphi), you have to use the console mode to compile the examples

of this book. For your convenience, both the source files and the executable files are

included on the companion CD. Therefore, you have the option to either compile the

source files or take a sneak peek at the programs’ results without compiling them.

Sam A. Abolrous

xi

Acknowledgment

I would like to thank my daughter, Sally Abolrous, for her help with

editing this book.

xii

Chapter 1

Getting Started
with Pascal

Chapter Topics:

� Program structure

� Evaluating numeric expressions

� Arithmetic operators

� Using variables and named constants

� Reading input from the keyboard

� Displaying and formatting output

1-1 The Pascal Version of “Hello World!”

Let us start with the smallest Pascal program, which is shown in the following exam-

ple. It displays on your screen the phrase “Hello World!”

{ ----------------------------- Example 1-1 ----------------------------- }

PROGRAM FirstProgram(OUTPUT);

BEGIN

WRITELN('Hello World!')

END.

{ -- }

Whether the Pascal program is small or large, it must have a specific structure. This

program consists mainly of one statement, WRITELN, which does the actual work

1

here, as it displays whatever comes between the parentheses. The statement is

included inside a frame starting with the keyword BEGIN and ending with the key-

word END. This is called the program main body (or the program block) and usually

contains the main logic of data processing. The Pascal program may also contain other

building blocks called procedures and functions, which are explained in Chapter 7.

Comments

Consider the first line in the program:

{ ---------------------------- Example 1-1 ----------------------------- }

This is a comment and is totally ignored by the compiler. Comments can appear any-

where in the Pascal program between two braces ({}) or between the two symbols (*

and *) like this:

(* This is a comment *)

The Program Heading

The second line is called the program heading. It starts with the keyword PROGRAM,

followed by a space, followed by the program name (FirstProgram). The program

name is a user-invented word. User-invented words are classified in Pascal as identifi-

ers. An identifier must begin with a letter and may contain any number of letters or

digits (in Turbo Pascal it may contain underscores as well). You are free to choose any

meaningful name for your program, but do not expect a program name like BEGIN or

PROGRAM to be accepted. These words are called reserved words, and they are only

used in the proper place in the program. Pascal’s reserved words are summarized in

Appendix B.

The program name is followed by the word OUTPUT contained in parentheses and

terminated with a semicolon:

PROGRAM FirstProgram(OUTPUT);

The keyword OUTPUT tells the compiler that this program is going to produce output

(such as writing to the screen), which is the counterpart of INPUT (such as reading

from the keyboard). The words OUTPUT and INPUT are called file parameters. The

program may perform both input and output, in which case the file parameters take

the form:

PROGRAM FirstProgram(INPUT,OUTPUT);

In Turbo Pascal the program heading is optional. You may skip the whole line and start

your program with the word BEGIN, or you may use the program name without

parameters, like this:

PROGRAM FirstProgram;

2 � Chapter 1

Syntax and Conventions

The most important syntax is the semicolon after the program heading (which is used

as a separator) and the period after the word END (which terminates the program).

A common convention is to write Pascal keywords in uppercase and the user-invented

names (identifiers) in lowercase with the first letter capitalized. If the name consists of

more than one word (which is the case in this program), the first letter in each word is

capitalized. So, in Pascal programs you may see identifiers like:

Wages

Payroll

HoursWorkedPerWeek

This is just a convention to make your program readable, but Pascal compilers are not

case-sensitive. This means that you can write the entire program in lowercase as in

Example 1-2, or in uppercase as in Example 1-3. All three versions of the program will

compile and run.

{ ---------------------------- Example 1-2 ----------------------------- }

program firstprogram(output);

begin

writeln('Hello World!')

end.

{ --- }

{ ----------------------------- Example 1-3 ----------------------------- }

PROGRAM FIRSTPROGRAM(OUTPUT);

BEGIN

WRITELN('Hello World!')

END.

{ -- }

All blank lines, indentation, and spaces (except those following the Pascal keywords)

are optional, but it is a good programming habit to use this method to make your pro-

gram well-organized and readable.

1-2 Displaying Output: WRITELN, WRITE

To display several lines of text you need a WRITELN statement for each line, as in the

following program in Example 1-4.

Getting Started with Pascal � 3

Note: A companion compact disc comes with this book to help you
save time and effort. This CD contains the source code of all examples,
in addition to the solutions of the drills. Please read the Readme.txt or
Readme.htm file on the companion CD. It contains the instructions for
installing the files on your hard disk.

{ ----------------------------- Example 1-4 ---------------------------- }

PROGRAM LinesOfText(OUTPUT);

BEGIN

WRITELN('Hi there.');

WRITELN('How are you today?');

WRITELN('Are you ready for Pascal?')

END.

{ -- }

Now the program contains more than one statement. Each statement must be sepa-

rated from the next one with a semicolon. This is the only way the compiler can recog-

nize the end of a statement. However, for the last statement in the program block, you

may skip the semicolon.

When you compile this program it will give the following output:

Hi there.

How are you today?

Are you ready for Pascal?

The WRITELN statement displays a line of text followed by a new line (a line feed and

a carriage return). If you wish to display two strings on the same line, you need to use

the WRITE statement as shown in the following program.

{ ---------------------------- Example 1-5 ----------------------------- }

PROGRAM TwoLines(OUTPUT);

BEGIN

WRITE('Hi there. ');

WRITELN('How are you today?');

WRITELN('Are you ready for Pascal?')

END.

{ -- }

Output:

Hi there. How are you today?

Are you ready for Pascal?

As you can see in the program output, the second string is written on the same line as

the first string as a result of using the WRITE statement to display the first string.

This is the only difference between the two output statements WRITE and

WRITELN.

4 � Chapter 1

If you want to display a blank line, you only need the statement:

WRITELN;

Drill 1-1

Write a Pascal program to display the following text on the screen:

Wordware Publishing, Inc.

2320 Los Rios Boulevard

Plano, Texas 75074

1-3 Working with Numbers

The easiest task for any program is to crunch numbers. The statement WRITELN (or

WRITE) can be used to both display numbers and evaluate numerical expressions. You

can build up arithmetic expressions using the following arithmetic operators:

+ for addition

– for subtraction

* for multiplication

/ for division

Take a look at these examples:

WRITELN(123);

WRITELN(1.23 * 4);

The first example displays the number in the parentheses (123). The second example

performs multiplication of two numbers and displays the result. Notice that for

numeric values, unlike text strings, you don’t use quotes.

You may use WRITELN to display text and numbers in the same statement by using

the comma as a separator like this:

WRITELN('The result is=', 125 * 1.75);

The following program is used to evaluate two numeric expressions (multiplication

and division) and display the results preceded by the proper text.

{ ----------------------------- Example 1-6 ----------------------------- }

PROGRAM CrunchNumbers(OUTPUT);

BEGIN

WRITELN('I can easily crunch numbers.');

WRITELN('Here is multiplication of 50x4:',50*4);

WRITELN('..and here is division of 2400/8:',2400/8)

END.

{ -- }

Getting Started with Pascal � 5

Output:

I can easily crunch numbers.

Here is multiplication of 50x4:200

..and here is division of 2400/8: 3.0000000000E+02

The multiplication is done as expected. The two operands (50 and 4) are integers

(whole numbers) and the result (200) is an integer too. The format of the division

result, however, needs some explanation.

Real Division: /

The division performed with the / operator is called real division and always produces

a real number as its result . Real numbers may be written in fixed-point notation (such

as 300.0) or in scientific (exponential) notation (such as 3.0E+02), but in Pascal, real

number output will always be represented in scientific notation by default. A number

written in scientific notation is made up of two parts divided by the letter E (or e). The

left part is called the mantissa and indicates the significant digits, while the right part

is called the exponent. The exponent is a power of ten that determines the position of

the decimal point. So, in this example the number:

3.0000000000E+02

is the same as the number:

3 x 102

The same number, when expressed in fixed-point format, becomes:

300.0

If the exponent is preceded by a minus sign as in:

3.124E–02

then the decimal point is shifted two positions to the left. This number, then, is the

same as:

0.03124

If the number is negative, the minus sign should precede the mantissa:

–0.0124E–02

If the number is positive, you may omit the sign for either the mantissa or the expo-

nent:

1.23E02

The division operator (/) is called the real division operator, because the result always

appears as a real number regardless of the type of the operands.

6 � Chapter 1

Integer Division: DIV

For integer division use the DIV operator as in the example:

WRITELN(2400 DIV 8);

This will produce the output 300.

With integer division, any fraction in the result will be truncated, as in this example:

WRITELN(9 DIV 4); {Produces the output 2.}

Remainder of the Integer Division: MOD

Another important operator, MOD, is used to get the remainder of integer division

(modulo), as in these examples:

WRITELN(9 MOD 4); {Produces the output 1.}

WRITELN(3 MOD 4); {Produces the output 3.}

The DIV and MOD operators take only integer operands and produce integer output.

For the other operators (+, –, and *), if either one of the operands is real, the result

will be real.

Drill 1-2

Evaluate the following expressions and write the result either as an integer (if inte-

ger), or as a fixed-point real number (if real):

A. 144 / 12

B. 144 DIV 12

C. 17 MOD 5

D. 3 MOD 5

E. 3e+02 + 3

F. 345E–01 – 1

Operator Precedence in Arithmetic Expressions

When you build more complicated arithmetic expressions, you have to watch the pri-

ority of each operator involved in the expression. Take a look at these two expres-

sions:

2 + 10 / 2

(2 + 10) / 2

Getting Started with Pascal � 7

Although the two expressions use the same numbers and operators, the first expres-

sion is evaluated as 7, while the second is evaluated as 6. This is because in the first

expression the division is evaluated before the addition, while in the second expres-

sion the parentheses are used to change the order of evaluation, in which case the

expression inside the parentheses is evaluated first. In general, the arithmetic opera-

tors in Pascal have two levels of precedence: high and low.

The + and – have low precedence, while all other operators have high precedence.

If an expression contains two operators of the same precedence level, they are evalu-

ated from left to right. Consider this example:

5 + 3 * 2 – 6 DIV 2

The first operation to be performed is the multiplication:

5 + 6 – 6 DIV 2

The second operation, of next highest priority, is the division:

5 + 6 – 3

This leaves two operations of equal priority. They are evaluated from left to right

resulting in:

8

When parentheses are used to alter the order of evaluation, they form subexpressions

which are evaluated first. If parentheses are nested, the innermost subexpressions are

evaluated first. Consider the same example with nested parentheses:

((5 + 3) * 2 – 6) DIV 2

This expression is evaluated according to the following steps:

(8 * 2 – 6) DIV 2

(16 – 6) DIV 2

10 DIV 2

5

Arithmetic operators are summarized in Table 1-1, along with their precedence and

properties.

The + and – signs are also used as unary operators (to signify positive and negative).

The unary operators are of the same low priority as the binary operators + and –. If a

binary operator precedes the unary operator such as 5 * – 4, you must enclose the

unary operator and its number in parentheses: 5 * (–4). The first form may be

accepted by some compilers, but do not try it.

8 � Chapter 1

TE
AM
FL
Y

Team-Fly®

Table 1-1: Arithmetic operators

Operator Arithmetic Operation Operands Result Precedence

+ Addition REAL/INTEGER REAL/INTEGER Low

– Subtraction REAL/INTEGER REAL/INTEGER Low

* Multiplication REAL/INTEGER REAL/INTEGER High

/ Real division REAL/INTEGER REAL High

DIV Integer division INTEGER INTEGER High

MOD Remainder of integer division INTEGER INTEGER High

Drill 1-3

Evaluate the following expressions and write the result either as an integer (if inte-

ger), or as a fixed point real number (if real):

A. 15 – 15 DIV 15

B. 22 + 10 / 2

C. (22 + 10) / 2

D. 50 * 10 – 4 MOD 3 * 5 + 80

1-4 Variables

Data are stored in the memory locations at specific addresses. Programmers, however,

refer to these locations using variables. When variables are used in a program, they

are associated with the specific memory locations. The value of a variable is actually

the contents of its memory location. As data are processed by the program, the con-

tents of any location may change, and so does the value of the associated variable.

Variables are given names (identifiers) according to the rules mentioned earlier.

Variable Declaration

Before using a variable in a Pascal program, its name and type must be declared in a

special part of the program called the declaration part. This part starts with the key-

word VAR, as in the following example:

VAR

a :INTEGER;

x :REAL;

Getting Started with Pascal � 9

The variable a is of the type INTEGER, which means that it can hold only integer

numbers such as 4, 556, and 32145. The variable x is declared as of the type REAL

and can hold real numbers such as 3.14, 44.567, and 3.5E+02.

If you want to declare more than one variable of the same type, you may declare each

on a separate line:

VAR

a :INTEGER;

b :INTEGER;

c :INTEGER;

x :REAL;

y :REAL;

or, you may also declare all variables of the same type as a list like this:

VAR

a, b, c :INTEGER;

x, y :REAL;

The keywords INTEGER and REAL are classified as standard identifiers, which are

predefined in Pascal. The standard identifiers can be redefined by the programmer, but

this is not recommended. Standard identifiers are listed in Appendix B.

In the following program three variables are declared: a and b are integers, while x is

real. The contents of each one are displayed using the WRITELN statement.

{ ----------------------------- Example 1-7 ----------------------------- }

PROGRAM Variables(OUTPUT);

{ Variable Declarations }

VAR

a, b :INTEGER;

x :REAL;

{ Program Block }

BEGIN

WRITELN('Contents of a=',a);

WRITELN('Contents of b=',b);

WRITELN('Contents of x=',x)

END.

{ -- }

Output:

Contents of a=0

Contents of b=631

Contents of x= 2.7216107254E–26

Note that the contents of a and b are displayed as integers while the contents of x are

displayed in real format. However, the output numbers are just garbage because no

values were actually stored in those variables. Unless you store data values in your

variables, they will contain whatever was last left in those memory locations.

10 � Chapter 1

The Assignment Statement

To store a value in a variable you can use the assignment operator (:=) as in the follow-

ing examples:

a := 55;

x := 1.5;

y := 2.3E+02;

Caution: Do not use a real number like this:

.1234

A legal real number in Pascal must have a digit to the left of the decimal
point, like this:

0.1234

Also, the number:

123.

may be rejected by some compilers. It would be better to use the legal
form:

123.0

In the following program, the integers a and b are declared in the declaration part,

then assigned integer values in the program block. The WRITELN statement is then

used to evaluate and display the results of different arithmetic operations performed

on those variables.

{ ----------------------------- Example 1-8 ---------------------------- }

PROGRAM Arithmetic(OUTPUT);

{ Variable Declarations }

VAR

a, b :INTEGER;

{ Program block }

BEGIN

a := 25;

b := 2;

WRITELN('a=',a);

WRITELN('b=',b);

WRITELN('a+b=',a+b);

WRITELN('a–b=',a–b);

WRITELN('a*b=',a*b);

WRITELN('a/b=',a/b);

WRITELN('a div b=',a DIV b); {used with integers only}

WRITELN('a mod b=',a MOD b) {used with integers only}

END.

{ -- }

Getting Started with Pascal � 11

Output:

a=25

b=2

a+b=27

a–b=23

a*b=50

a/b= 1.2500000000E+01 � Real division

a div b=12 � Integer division

a mod b=1 � Remainder of integer division

You may assign one variable to another:

x := y;

In this case, the contents of the variable y are copied to the variable x. You may also

assign an arithmetic expression to a variable, like this:

z := a + b – 2;

GrossPay := PayRate * HoursWorked;

In these statements the value of the expression to the right of the assignment opera-

tor is calculated and stored in the variable to the left of the assignment operator (z or

GrossPay).

Drill 1-4

Write a Pascal program to do the following:

A. Assign the value 2 to a variable a, and the value 9 to a variable b.

B. Display the values of the expressions:

a + b DIV 2

(a + b) DIV 2

1-5 Constants

Data values (in many languages including Pascal) are called constants, as they never

change during the program execution. In Pascal there are two types of constants:

� Literal constants

� Named constants

Literal constants are data values such as explicit numbers and text strings, while a

named constant is a constant variable. The difference between a named constant and a

variable is that the value of the named constant does not change during the program.

Like variables, a named constant is given a name and has to be declared in the declara-

tion part. Actually, the declaration part is divided into two sections, CONST and VAR;

12 � Chapter 1

the CONST section comes before the VAR section. Suppose that you would like to use

the value 3.14159 (a numerical constant known as Pi) many times in your calculations.

It would be more convenient to give it a name and use the name in your code. You can

declare named constants as in the following example:

CONST

Pi = 3.14159;

ThisYear = 1992;

Department= 'OtoRhinoLaryngology';

Some constants are predefined in Pascal as standard identifiers. One useful predefined

named constant is MAXINT, which gives the maximum value an integer can possess.

The value depends on the computer used. If you want to know the value of MAXINT

in your computer, use the statement:

WRITELN(MAXINT);

A typical value is 32767 (two bytes).

In the following program, the perimeter of a circle is calculated using the named con-

stant Pi.

{ ------------------------------ Example 1-9 --------------------------- }

PROGRAM Constants(OUTPUT);

{ Constant Declarations }

CONST

Pi = 3.14159;

{ Variable Declarations }

VAR

Radius, Perimeter :REAL;

{ Program block }

BEGIN

Radius := 4.9;

Perimeter := 2 * Pi * Radius;

WRITELN('Perimeter=', Perimeter)

END.

{ -- }

Output:

Perimeter= 3.0787582000E+01

Note: If you are using Turbo Pascal, you do not need to redefine the
constant Pi, as it is predefined as a standard identifier.

Getting Started with Pascal � 13

1-6 Type Conversion: ROUND, TRUNC

You can assign an integer to a variable of the type REAL, but the opposite is not per-

mitted. The reason for this is because the storage size allocated for an integer is

smaller than that allocated for a real number. If this were permitted, data could be lost

or corrupted when a large number was moved to a smaller location in which it did not

fit. You can, however, perform the conversion with one of two functions:

ROUND(n) rounds n to the closest integer

TRUNC(n) truncates the fraction part of n

where:

n is a real variable or expression.

Consider these examples:

ROUND(8.4) returns 8

ROUND(8.5) returns 9

TRUNC(8.4) returns 8

TRUNC(8.5) returns 8

As you can see in the examples, the two functions may or may not return the same

integer value for the same argument.

In the following program the two functions are used to get the rounded and the trun-

cated integer values of the real variable Perimeter.

{ ----------------------------- Example 1-10 --------------------------- }

PROGRAM Functions1(OUTPUT);

{ Constant Declarations }

CONST

Pi = 3.14159;

{ Variable Declarations }

VAR

Perimeter, Radius :REAL;

RoundedPerimeter, TruncatedPerimeter :INTEGER;

{ Program block }

BEGIN

Radius := 4.9;

Perimeter := 2*Pi*Radius;

RoundedPerimeter := ROUND(Perimeter);

TruncatedPerimeter := TRUNC(Perimeter);

WRITELN('Perimeter=', Perimeter);

WRITELN('Perimeter (rounded)=', RoundedPerimeter);

WRITELN('Perimeter (truncated)=', TruncatedPerimeter)

END.

{ -- }

14 � Chapter 1

Output:

Perimeter= 3.0772000000E+01 � The actual result

Perimeter (rounded)=31 � Rounded result

Perimeter (truncated)=30 � Truncated result

1-7 Reading from the Keyboard: READLN, READ

The previous program is used to calculate the perimeter for a given radius, hardcoded

in the program. A more useful program would accept the radius from the user, do the

calculations, then display the result. You can use either READLN or READ to make

the program pause and wait for user input. The READLN statement is used to read

the value of one or more variables. It takes the general form:

READLN(variable-list);

To read the value of a variable x from the keyboard, you can use the statement:

READLN(x);

To read the values of the three variables x, y, and z, use the statement:

READLN(x, y, z);

When you enter the values of more than one variable (such as x, y, and z), they should

be separated by one or more blanks or by pressing the Enter key.

Replace the assignment statement in the previous program with a READLN state-

ment as follows:

READLN(Radius);

If you try the program now, it will pause until you type a number and press Enter; it

then resumes execution and displays the results. Unfortunately, you cannot use the

READLN statement to display a user prompt when the program is waiting for input.

This must be done using a WRITE (or WRITELN) statement such as:

WRITE('Please enter the radius:');

Here is the program in its new shape:

{ ---------------------------- Example 1-11 ---------------------------- }

PROGRAM KeyboardInput(OUTPUT);

{ Constant Declarations }

CONST

Pi = 3.14159;

{ Variable Declarations }

VAR

Perimeter, Radius :REAL;

RoundedPerimeter, TruncatedPerimeter :INTEGER;

{ Program block }

Getting Started with Pascal � 15

BEGIN

WRITE('Please enter the radius:');

READLN(Radius);

Perimeter := 2*Pi*Radius;

RoundedPerimeter := ROUND(Perimeter);

TruncatedPerimeter := TRUNC(Perimeter);

WRITELN('Perimeter=', Perimeter);

WRITELN('Perimeter (rounded)=', RoundedPerimeter);

WRITELN('Perimeter (truncated)=', TruncatedPerimeter)

END.

{ -- }

Sample Run:

Please enter the radius:4.9 � Type the number and press Enter

Perimeter= 3.0787582000E+01

Perimeter (rounded)=31

Perimeter (truncated)=30

Note: At this stage you can use either READ or READLN for
keyboard input as the difference between them is not noticeable in our
applications so far.

1-8 Formatting Output

You have probably thought that scientific notation is not the best format for output,

especially with business and money figures. You’re right. Scientific notation is useful

only with very large or very small numbers, where the power of ten represents an

order of magnitude of the number.

Whenever you want to see your results in fixed-point notation, use the format

descriptors as in this example:

WRITELN(Wages :6:2);

The format :6:2 determines a field width of 6 positions, including 2 decimal places. So,

if the value of the variable Wages is 45.5 it will be displayed as:

B45.50

where the letter B refers to a blank space. If the output digits are less than the field

width, which is the case in this example, the result will be shifted right. If the number

is larger than the field width, then the field will be automatically enlarged and the

entire number printed.

16 � Chapter 1

You can add a character (such as the dollar sign) to the left of the number as follows:

WRITELN('$',Wages :6:2);

This will produce the output:

$ 45.50

By using a smaller field width, you can have the number shifted to the left and the dol-

lar sign attached to the first significant digit:

WRITELN('$',Wages :0:2);

This will produce:

$45.50

You can format any type of data using the same method. The only difference is that

with integers or strings you specify the width field without decimal places.

In the following program different types of data are formatted to fit into specific fields,

as shown in the output.

{ ---------------------------- Example 1-12 ---------------------------- }

PROGRAM Format(OUTPUT);

{ Variable Declarations }

VAR

a :INTEGER;

b :REAL;

{ Program Block }

BEGIN

b := 1.2e+02;

a := 320;

WRITELN('I am a text string starting from position 1.');

WRITELN('I am now shifted to the right end of the field.':50);

WRITELN('I am an unformatted integer:', a);

WRITELN('I am an integer written in a field 6 characters wide:', a:6);

WRITELN('I am a money amount written in 8 positions:$',b:8:2);

WRITELN('I am a money amount shifted to the left:$',b:0:2)

END.

{ -- }

Output:

I am a text string starting from position 1.

I am now shifted to the right end of the field.

I am an unformatted integer:320

I am an integer written in a field 6 characters wide: 320

I am a money amount written in 8 positions:$ 120.00

I am a money amount shifted to the left:$120.00

Getting Started with Pascal � 17

If you display the numeric variables alone (without text), they will appear as follows:

320

320

$ 120.00

$120.00

Drill 1-5

Write a program to calculate employee wages according to the formula:

Wages := HoursWorked * PayRate;

Accept the HoursWorked and the PayRate from the keyboard and display the Wages in

fixed-point notation preceded by a dollar sign.

Summary

In this chapter you were introduced to the most important tools in Pascal program-

ming.

1. You are now familiar with the Pascal program structure:

� The program heading

� The declaration part

� The CONST section

� The VAR section

� The program main body between BEGIN and END.

2. You know two important data types, INTEGER and REAL, and how to express and

evaluate arithmetic expressions using both types.

3. You know the arithmetic operators in Pascal, their properties, and their precedence:

+ – * / DIV MOD

4. You know how to declare variables of both types, how to name them using identifiers,

how to store values in them whether by assignment (:=) or by entering values from

the keyboard, and how to display their values on the screen.

5. You learned how to use the following conversion functions to truncate and round real

expressions:

TRUNC(n) truncates the fraction part of n.

ROUND(n) rounds n to the closest integer.

6. You know as well how to declare named constants and use them in the program.

18 � Chapter 1

TE
AM
FL
Y

Team-Fly®

7. During your first tour of Pascal, you learned the following output statements to display

both variables and numeric or string literal constants:

WRITELN

WRITE

Also, you learned the following input statements to read variable values from the key-

board:

READLN

READ

8. Finally, you learned how to format your numeric or string output to have the results in

the desired form.

Exercises

1. What is the difference between a variable and a named constant?

2. Write declarations using suitable variable names and types to store the following items:

� Price plus tax

� Total number of employees in a company

� The root mean square of electric voltage

� The average of a student’s grades

3. Write Pascal expressions to calculate the following:

� The surface area of a rectangle (given the width and the length)

� The surface area of a cylinder (given the radius and the height)

� The mathematical expression 2x2 + 4y + 2

4. Evaluate the following expressions:

a. 4 + 3 * 2 – 6 / 2

b. (4 + 3) * 2 – 6 / 2

c. (4 + 3 * 2 – 6) / 2

d. ((4 + 3) * 2 – 6) / 2

5. Given the values:

A = 3.0, B = 4.0, J = 4, I = 3,

evaluate the following expressions and print the results using the fixed-point notation:

a. A / B

b. A / J

c. I / B

d. I DIV J

e. I MOD J

Getting Started with Pascal � 19

f. B / I

g. ROUND(B / I)

6. Write a Pascal program to display the following figure:

7. Write a Pascal program to display the user menu for a telephone database that gives the

following options:

� Enter a new phone number

� Get a phone number

� Save new records

� Remove records

� End the program

Answers

4. a. 7.00, b. 11.00, c. 2.00, d. 4.00

5. a. 0.75, b. 0.75, c. 0.75, d. 0, e. 3, f. 1.33, g. 1

20 � Chapter 1

Chapter 2

Data Types

Chapter Topics:

� Numeric data types

� Character data types

� Boolean data types

� String storage in standard Pascal and in

modern implementations of the language

� Standard functions and operators for

processing different data types

� Additional Turbo Pascal types, operators,

and functions

2-1 Overview of Data Types

You have already used the INTEGER and REAL types as both numeric constants and

variables. You have also already used arithmetic operators with variables and con-

stants to build arithmetic expressions, and you have tasted the flavor of some func-

tions such as ROUND and TRUNC. The data processed by any program may also

contain single characters, strings of text, and logical quantities. Each data type is

stored and manipulated differently. Pascal provides the following standard data types

(also referred to as simple or scalar data types):

INTEGER

REAL

21

CHAR

BOOLEAN

This chapter introduces the whole picture of numeric data types and related functions

and expressions. It also introduces the type CHAR which is used to represent single

characters, and the type BOOLEAN to represent logical values. The discussion of the

single character type contains an overview of how strings were represented in stan-

dard Pascal and also how they are represented in the modern implementations such as

Turbo Pascal and UCSD Pascal (using the type STRING).

2-2 Numeric Types

The range of numbers that may be represented as integers (or as reals) depends on

the implementation. For the type INTEGER it is determined by the following limits:

MAXINT the maximum positive integer

–(MAXINT+1) the maximum negative integer

Again, the value of MAXINT depends on the implementation.

Real numbers are generally stored in a larger number of bytes than are integers, but

they are of limited precision. Fractions such as 0.333333 and 0.666666 can never be as

precise as the exact values 1/3 and 2/3, regardless of how many digits are used to rep-

resent the number. For this reason, it is not recommended to test two real numbers

for equality. Instead, it would be better to test to see if the difference between the two

numbers is less than some specific small amount.

In Turbo Pascal, there are additional numeric types, which are introduced in the fol-

lowing section.

Numeric Types in Turbo Pascal

There are additional integer types (including the type INTEGER) in Turbo Pascal.

They are shown in Table 2-1 along with their storage sizes and the maximum range of

values that can be represented in each.

In one byte, you can store either a SHORTINT or a BYTE. The BYTE is actually an

unsigned SHORTINT, which means that it can hold only positive numbers. As you can

see in the table, the maximum range of values for a type is doubled when the sign is

not used. The same applies to the types INTEGER and WORD, as the WORD is a pos-

itive integer of doubled maximum range.

22 � Chapter 2

Table 2-1: Turbo Pascal integer types

Data Type Size (in bytes) Range

SHORTINT 1 from –128 to +127

BYTE 1 from 0 to 255

INTEGER 2 from –32768 to +32767

WORD 2 from 0 to 65535

LONGINT 4 from –2,147,483,648 to +2,147,483,647

The LONGINT is the largest integer that can be represented in Turbo Pascal. You can

test its value by displaying the value of the predefined constant MAXLONGINT as fol-

lows:

WRITELN(MAXLONGINT);

Notice that the negative range of any signed type exceeds the positive range by one

(e.g., +127 and –128). This is because zero is counted with the positive numbers.

Caution: The commas used here to express large numbers are
used only for readability. You will neither see them in the output of a
program, nor are they accepted as a part of literal constants. So, the
number 2,147,483,647 must be used as 2147483647.

In Turbo Pascal, there are also additional real types (including the type REAL) as

shown in Table 2-2. For real numbers, a new column is added to the table to describe

the accuracy of a number as the maximum number of precise digits.

Table 2-2: Turbo Pascal real types

Data Type Size (in bytes) Precision (up to) Range

SINGLE 4 7 digits from 0.71E–45 to 3.4E+38

REAL 6 11 digits from 2.94E–39 to 1.7E+38

DOUBLE 8 15 digits from 4.94E–324 to 1.79E+308

EXTENDED 10 19 digits from 3.3E–4932 to 1.18E+4932

COMP 8 integers only ±9.2E+18

If you examine the range of the type SINGLE, you will find that it is pretty close to

that of the type REAL, especially in the area of the very large numbers. The main dif-

ference between the two lies in the economical storage of the SINGLE type (4 bytes

compared to 6), which comes at the expense of precision (7 digits compared to 11).

Real number types other than REAL are not available unless a math coprocessor is

used. The type COMP actually belongs to the set of integers, as it does not accept

Data Types � 23

fractions, but it is usually mentioned among reals as it requires the use of a math

coprocessor.

2-3 Arithmetic Functions

Pascal includes a large number of predefined functions that may be used in expres-

sions among constants and variables. Table 2-3 shows the standard arithmetic func-

tions divided into three groups:

� Conversion functions

� Trigonometric functions

� Miscellaneous functions

Any function operates on the parameter that is presented inside its parentheses. The

parameter is an expression of a specific type (notice that the expression may be a sin-

gle variable or constant). Before using any of these functions, you must know the type

of parameter the function uses and the type of the returned value (which is also the

type of the function). The conversion functions, for instance, take real parameters and

return integer results. Other functions use either integer or real parameters and pro-

duce different types. The type of the returned value is important when you assign the

function to a variable.

Table 2-3: Standard arithmetic functions

Function Format Returned Value Parameter Type Result Type

CONVERSION FUNCTIONS:

ROUND(x) x rounded to the nearest integer REAL INTEGER

TRUNC(x) x with the fraction part truncated REAL INTEGER

*TRIGONOMETRIC FUNCTIONS:

ARCTAN(x) The arctangent of x REAL/INTEGER REAL

COS(x) Cosine of x REAL/INTEGER REAL

SIN(x) Sine of x REAL/INTEGER REAL

MISCELLANEOUS FUNCTIONS:

ABS(x) The absolute value of x REAL/INTEGER REAL/INTEGER

EXP(x) The exponential function
of x (ex)

REAL/INTEGER REAL

LN(x) The natural logarithm of x REAL/INTEGER REAL

SQR(x) The square of x (x²) REAL/INTEGER REAL/INTEGER

SQRT(x) The square root of x (^ x) REAL/INTEGER REAL

* All angles must be expressed in radians.

24 � Chapter 2

Look at these examples:

SQR(3)=9

SQR(2.5)=6.25

SQRT(9)=3.00

ABS(–28.55)=28.55

LN(EXP(1))=1.00

ARCTAN(1)=45 degrees

Note that the type of result returned by the function SQR is the same as the type of

the parameter, but the function SQRT returns a real number regardless of the parame-

ter type. Notice also that the parameter of any function may contain another function,

such as LN(EXP(1)).

The output returned from the last function (ARCTAN) is converted to degrees here

but will be returned in radians if not converted. The program which produced these

results is shown in Example 2-1. Pay attention to the format descriptors, which are

used to produce the output in these formats.

{ ------------------------------- Example 2-1 ---------------------------------

}

{ Arithmetic Standard Functions }

PROGRAM FunctionDemo(OUTPUT);

CONST

Pi = 3.14159; {No need for this part in Turbo Pascal}

BEGIN

WRITELN('SQR(3)=',SQR(3));

WRITELN('SQR(2.5)=',SQR(2.5):0:2); {Notice the format}

WRITELN('SQRT(9)=',SQRT(9):0:2);

WRITELN('ABS(–28.55)=',ABS(–28.55):0:2);

WRITELN('LN(EXP(1))=',LN(EXP(1)):0:2);

WRITELN('ARCTAN(1)=',ARCTAN(1)* 180/Pi:0:0,' degrees') {Notice the

conversion and the format}

END.

{ --

}

The Power Function

The power operator does not exist in Pascal as it does in some other languages (such

as Fortran and Basic), but you can make one using arithmetic functions. You can, of

course, use the function SQR to produce small powers, thus:

SQR(x) power 2

SQR(x) * x power 3

SQR(SQR(x)) power 4

You can also make use of the following mathematical relationship to express any

power:

Data Types � 25

xy = EXP(LN(x) * y)

In the following program this expression is used to raise a number to any power. The

program asks you to enter both the base x and the exponent y, then displays the for-

matted result.

{ ----------------------------- Example 2-2 ----------------------------- }

{ Arithmetic Standard Functions }

PROGRAM PowerOperator(INPUT,OUTPUT);

VAR

a, b :REAL;

BEGIN

WRITE('Enter the base and the exponent separated by a space: ');

READLN(a,b);

WRITELN('The value of ',a:0:2,' raised to the power ',b:0:2,' is ',

EXP(LN(a)*b):0:2)

END.

{ -- }

Sample Run:

Enter the base and the exponent separated by a space: 2 10

The value of 2.00 raised to the power 10.00 is 1024.00

Application: Grocery Store

In a grocery store a fast calculation is needed to count the number and type of coins

that make up the change remaining from a dollar, so it is a great help to have this logic

programmed into the cash register. The following program accepts from the keyboard

the price of the purchase (for the sake of simplicity, this is assumed to be less than one

dollar) and produces as output the number of quarters, dimes, nickels, and pennies

remaining from a dollar bill. The program is an application of the integer operators

DIV and MOD.

{ ----------------------------- Example 2-3 ---------------------------- }

{ Grocery Store }

PROGRAM Grocery(INPUT,OUTPUT);

VAR

Change, TotalPrice,

Dollars, Quarters, Dimes, Nickels, Cents :INTEGER;

BEGIN

WRITE('Enter the total-price in cents: ');

READLN(TotalPrice);

Change := 100 – TotalPrice;

{ Quarters }

Quarters := Change DIV 25;

Change := Change MOD 25;

{ Dimes }

Dimes := Change DIV 10;

Change := Change MOD 10;

26 � Chapter 2

{ Nickels }

Nickels := Change DIV 5;

Change := Change MOD 5;

{ Cents }

Cents := Change;

WRITELN('The change is:');

WRITELN(Quarters,' Quarters');

WRITELN(Dimes, ' Dimes');

WRITELN(Nickels, ' Nickels');

WRITELN(Cents, ' Cents')

END.

{ -- }

Sample Run:

Enter the total-price in cents: 22 � Type 22 and press Enter

The change is:

3 Quarters

0 Dimes

0 Nickels

3 Cents

Drill 2-1

Modify the above program to accept any amount of money as total-price (including

fractions of a dollar) and any amount of cash as amount-paid. The program should read

the amount-paid and the total-price, and display the change in bills of different denomi-

nations, quarters, dimes, nickels, and cents.

Turbo Pascal Additional Arithmetic Functions

Turbo Pascal has a considerable number of additional arithmetic functions. Of these

functions, you will especially need two of them:

FRAC(n) returns the fractional portion of the real number n

INT(n) returns the integer portion of the real number n

For example:

WRITELN(FRAC(8.22):2:2); produces 0.22

WRITELN(INT(8.22)2:2); produces 8.00

Both functions return real numbers.

You can make use of these functions in Drill 2-1.

Data Types � 27

Another couple of functions are used to generate random numbers:

RANDOM(n) returns a random integer between 0 and the integer n

(the zero is included)

RANDOM returns a real random number between 0 and 1 (the zero

is included)

Try these two statements:

WRITELN(RANDOM:2:2);

WRITELN(RANDOM(n));

where n is an integer variable readout from the keyboard.

Use the two statements in a program and look at the results for several runs. They

should be different in each run.

Drill 2-2

Write the Pascal expressions for the following:

1. The quadratic equation: Ax2 + Bx + C

2. The determinant: B2 – 4AC

3. The square root of the determinant

4. The absolute value of the determinant

Then, write a program to produce the roots of the equation according to the input val-

ues of A, B, and C. Use test values for A, B, and C that give real roots. Typical values

are:

A=1, B=2, C=1, give the solution: X1= X2= –1.00

A=1, B=4, C=2, give the solution: X1= –0.59, X2= –3.41

2-4 The CHAR Type

The CHAR type is used to store a single character in Pascal. You can declare a variable

of the type CHAR as in the following example:

VAR

SingleLetter : CHAR;

In the main body of the program (between BEGIN and END.) you may assign a single

character to the variable SingleLetter like this:

SingleLetter := 'A';

28 � Chapter 2

TE
AM
FL
Y

Team-Fly®

As is clear from this example, a constant literal of the type CHAR must be exactly one

character, included in single quotes:

'A' '3' '*' '$' ' '

In order to represent a single quotation (or apostrophe) as a character constant, use

two single quotes like this:

''''

You can use the output statements WRITELN or WRITE to display a character con-

stant or a character variable:

WRITELN('A');

WRITELN(SingleLetter);

The character set is internally represented by a one-byte integer code. The univer-

sally used code for small computers is the ASCII code (American Standard Code for

Information Interchange). The ASCII code includes 256 characters from 0 to 255 (see

Appendix A). The first half of the ASCII code (from 0 to 127) is standard on all per-

sonal computers. It includes the following characters:

� The uppercase letters (A-Z): ASCII 65 to 90

� The lowercase letters (a-z): ASCII 97 to 122

� The digits (0-9): ASCII 48 to 57

The code also contains punctuation characters and control characters.

The second half of the ASCII code is not standard and is implemented differently on

different machines.

The relative sequence of a character in the ASCII set is called the ordinal number.

Standard Functions for Characters

There are four standard functions that handle character operations:

ORD(c) returns the ordinal number of the character c

CHR(n) returns the character represented by the ordinal number n

PRED(c) returns the character preceding c in the ordinal sequence

SUCC(c) returns the next character after c in the ordinal sequence

You can get the ordinal number of any character by using the function ORD, as in the

following example:

WRITELN(ORD('A'));

This statement displays the ordinal of the character A, which is 65.

In the following program the user enters a character and the program displays the cor-

responding ordinal number.

Data Types � 29

{ ----------------------------- Example 2-4 ------------------------------- }

{ Displaying the Ordinal Number of a Character }

PROGRAM OrdinalNumber(INPUT,OUTPUT);

VAR

SingleChar :CHAR;

BEGIN

WRITE('Give me a character, please: ');

READLN(SingleChar);

WRITELN('The ordinal number of this character is ', ORD(SingleChar));

READLN {The program will pause until you press Enter}

END.

{ -- }

Sample Run:

Give me a character, please: A � Type A and press Enter

The ordinal number of this character is 65 � The program response

Tip: Notice the use of the last READLN statement. When READLN is
used without parentheses, it holds the program until you press Enter.
You cannot use READ for this purpose. This type of READLN
statement is commonly preceded by a user prompt such as:

WRITELN('Press ENTER to continue');

The counterpart of ORD is the function CHR, which takes an ordinal number as a

parameter and returns the character that corresponds to this number. Look at this

example:

WRITELN(CHR(66));

This statement displays the letter B.

In the following program, the user enters an ordinal number and the program displays

the corresponding character.

{ ------------------------------ Example 2-5 ------------------------------ }

{ Displaying the Character, Knowing its Ordinal Number }

PROGRAM CharDisplay(INPUT,OUTPUT);

VAR

OrdinalNum :BYTE;

BEGIN

WRITE('Give me a number between 0 and 255: ');

READLN(OrdinalNum);

WRITELN('This corresponds to the character "', CHR(OrdinalNum),'"');

WRITELN('Press ENTER to continue ...');

READLN {The program will pause until you press Enter}

END.

{ -- }

30 � Chapter 2

Sample Run:

Give me a number between 0 and 255: 66 � Enter the number 66

This corresponds to the character "B" � The program response

Press ENTER to continue ...

Note: Notice the use of the Turbo Pascal type BYTE to store an
ordinal number, which is a positive integer between 0 and 255. If you
don’t have this type in your compiler, you can use the INTEGER type.

The following program demonstrates the use of the functions PRED and SUCC. You

enter a character and the program displays the characters preceding and succeeding it.

{ ------------------------------ Example 2-6 ------------------------------ }

{ The Predecessor and the Successor to a Character }

PROGRAM CharPredAndSucc(INPUT,OUTPUT);

VAR

Letter: CHAR;

BEGIN

WRITE('Please Enter a character: ');

READLN(Letter);

WRITELN('The Predecessor to this character is "',PRED(Letter),'"');

WRITELN('The Successor to this character is "',SUCC(Letter),'"');

WRITELN('Press ENTER to continue ...');

READLN

END.

{ -- }

Sample Run:

Please Enter a character: K � Enter the character K

The Predecessor to this character is "J" � The program response

The Successor to this character is "L"

Press ENTER to continue ...

You can use numbers or any special symbols from your keyboard to test this program.

Remember, though, that some machines (mainframes) use a different sequence known

as EBCDIC (Extended Binary Coded Decimal Interchange Code).

You may also use the function ORD with the type INTEGER, in which case it returns

the sequence of the integer in the set of integers (from –(MAXINT+1) to MAXINT).

Thus:

ORD(0)=0, ORD(1)=1, ORD(255)=255, and ORD(–22)=–22

The functions SUCC and PRED work with integers in the same way, which means:

SUCC(1)=2 and PRED(1)=0

Some programmers increment their counters with a statement like this:

Data Types � 31

Counter := SUCC(Counter);

If you replace the type CHAR with the type INTEGER in the last program (Example

2-6), you can test these relations.

Strings in Standard Pascal

As mentioned earlier, you can represent a string constant using single quotes like this:

'This is a string enclosed in single quotes'

To include an apostrophe in the string constant, you need two of them:

'This is an apostrophe '' included in a string'

You can also assign a string to a named constant:

CONST

Name = 'Sally Shuttleworth';

After this declaration you can use the named constant Name instead of the string

itself, but remember that in the program you cannot assign any value to a named con-

stant. The string variable, however, is not defined in standard Pascal. A string, in stan-

dard Pascal, is stored in a PACKED ARRAY OF CHAR which is declared like this:

VAR

Name : PACKED ARRAY[1..15] OF CHAR;

This declaration lets you store a string of exactly 15 characters in the variable

Name—no more, no less.

Look at the following example, where the variable Message is declared and assigned the

string 'Press any key ... '. Extra spaces are padded to the end of the string constant to

make it fit into the variable Message, which was declared as a PACKED ARRAY OF

CHAR 21 characters long.

{ ----------------------------- Example 2-7 ---------------------------- }

{ Packed Array Of Characters }

PROGRAM PackedArray(OUTPUT);

VAR

Message :PACKED ARRAY[1..21] OF CHAR;

BEGIN

Message := 'Press any key ... ';

WRITELN(Message)

END.

{ -- }

Output:

Press any key ...

32 � Chapter 2

2-5 The STRING Type

Actually, you will never need to use the PACKED ARRAY OF CHAR unless you are

using one of the old implementations of Pascal on a mainframe computer. In the mod-

ern implementations (such as Turbo and UCSD), the type STRING is defined.

Declaration of a String

You can declare a variable of the type STRING, as in this example:

VAR

StudentName : STRING;

This declaration lets you store a string of up to a certain size in the variable

StudentName. Although the maximum length of the string variable is 255 in Turbo (80

in UCSD), the actual length (also referred to as dynamic length) of the string is the

number of stored characters. You can declare the string variable and its maximum

length in the same statement:

VAR

StudentName : STRING[20];

In this case the maximum length of a string stored in the variable StudentName is 20

characters. Look at this program, which reads a name with a maximum length of 20

characters and displays it on the screen.

{ ----------------------------- Example 2-8 ---------------------------- }

{ String Type in Turbo Pascal }

PROGRAM StringDemo(INPUT,OUTPUT);

VAR

Name :STRING[20];

BEGIN

WRITE('Please enter a name of 20 characters or less: ');

READLN(Name);

WRITELN('The name you entered is ',Name, '. Is that right?')

END.

{ -- }

Sample Run:

Please enter a name of 20 characters or less: Peter Rigby

The name you entered is Peter Rigby. Is that right?

Note that if you assign a string constant of more than 20 characters to the variable

Name, the extra characters will be truncated.

Data Types � 33

The Length of a String

You can measure the dynamic length of a string using the function LENGTH. If you

want, for instance, to measure the length of the string Name in the last program, you

may use the expression:

LENGTH(Name)

If you display the value of this expression, you get the exact number of characters con-

tained in the string variable, including the spaces. If the string variable is empty, the

dynamic length is zero. In the following program, you enter a name and the program

displays the actual length both before and after the variable assignment.

{ ----------------------------- Example 2-9 ----------------------------- }

{ Dynamic Length of a String }

PROGRAM StringLen(INPUT,OUTPUT);

VAR

Name :STRING[20];

BEGIN

WRITELN('The dynamic length of the string is now ',LENGTH(Name),

' characters');

WRITE('Please enter a name of 20 characters or less: ');

READLN(Name);

WRITELN('The dynamic length of the string is now ',LENGTH(Name),

' characters')

END.

{ -- }

Sample Run:

The dynamic length of the string is now 0 characters

Please enter a name of 20 characters or less: Dale Sanders

The dynamic length of the string is now 12 characters

The introduction of the type STRING in Pascal filled a gap and added a powerful tool,

especially in the field of text processing. More on string functions and operations later.

2-6 The BOOLEAN Type

The Boolean values (sometimes called logical values) are the two constants TRUE

and FALSE.

They are named after the English mathematician George Boole (1815-1864).

In Pascal you can declare a variable of the type BOOLEAN, which may only hold one

of the two Boolean constants TRUE or FALSE, as in the following example:

VAR

Result : BOOLEAN;

34 � Chapter 2

Simple Boolean Expressions

You can assign a Boolean constant to a Boolean variable, such as:

Result := TRUE;

You may also assign a Boolean expression to a variable such as:

Result := A > B;

If A, for example, holds the value 22.5 and B holds the value 2.3, then the expression

A > B (A is larger than B) is evaluated as TRUE. If A holds 1.8, then the condition is

not satisfied and the expression is evaluated as FALSE. You can build Boolean expres-

sions using the relational operators shown in Table 2-4.

Table 2-4: Relational operators

Operator Meaning Example

> Greater than A > B

< Less than C < 54

>= Greater than or equal x >= 16.8

<= Less than or equal A+B <= 255

= Equal SQR(B) = 4*A*C

<> Not equal CHR(a) <> 'N'

Relational operators are used with any data type: numeric, character, or Boolean. Here

are some examples:

Numeric: y > 66.5

Y = A * x + B

Character: FirstCharacter = 'B'

CHR(x) > 'A'

Boolean: TRUE > FALSE (always TRUE)

TRUE < FALSE (always FALSE)

For characters, an expression such as:

'A' < 'B'

is always TRUE, because the letter A comes before B in the alphabet; in other words,

it has a smaller ordinal number. Using the same logic, the following expressions are

TRUE:

'9' > '1'

'Y' < 'Z'

The following program reads from the keyboard the value of two integers, A and B,

and displays the value of the Boolean expression A = B.

Data Types � 35

{ ---------------------------- Example 2-10 ---------------------------- }

{ Boolean Variables }

PROGRAM Compare1(INPUT,OUTPUT);

VAR

A, B :INTEGER;

Result :BOOLEAN;

BEGIN

WRITE('Please enter two integers: ');

READLN(A, B);

Result := (A = B);

or,

Result := A = B;

The parentheses are not necessary.

WRITELN('The comparison is ', Result)

END.

{ -- }

Sample Runs:

Run 1:

Please enter two integers: 5 5

The comparison is TRUE

Run 2:

Please enter two integers: 50 55

The comparison is FALSE

As mentioned earlier, you may not compare two real values for equality because of

their limited precision. In the following program, the difference between the two real

variables x and y is tested to see whether it is less than a specific small value Differ-

ence, in which case they are considered to be equal.

{ ---------------------------- Example 2-11 ---------------------------- }

{ Comparing real values }

PROGRAM Compare2(INPUT,OUTPUT);

CONST

Difference = 0.0001;

VAR

x, y :REAL;

Result :BOOLEAN;

BEGIN

WRITE('Please enter two real numbers: ');

READLN(x, y);

Result := ABS(x – y) < Difference;

WRITELN('The difference is ', ABS(x–y):2:6);

WRITELN('The comparison is ', Result)

END.

{ -- }

36 � Chapter 2

Sample Run:

Please enter two real numbers: 4.5 4.50001

The difference is 0.000010

The comparison is TRUE

Compound Boolean Expressions

The Boolean expressions which use relational operators are called simple Boolean

expressions (in other languages they are called relational expressions). The compound

Boolean expressions are those which use the Boolean operators (also called the logical

operators): AND, OR, and NOT.

To understand how a compound Boolean expression works, consider the example:

(x = 4) AND (y < 50)

This expression is evaluated TRUE if both conditions x = 4 and y < 50 are TRUE.

Now consider the same expression using the operator OR:

(x = 4) OR (y < 50)

This expression is evaluated as TRUE if any one of the conditions is TRUE. For exam-

ple, if x contains the value 4, the expression is TRUE regardless of the value of y.

The logical operator NOT is used to reverse the value of a Boolean expression. Sup-

pose that the Boolean variable UnderAge means that Age is less than 18, as in the fol-

lowing statement:

UnderAge := Age < 18;

The variable UnderAge will contain the value TRUE if Age is less than 18.

Now the expression:

NOT(UnderAge)

is evaluated TRUE if Age is 18 or above.

Truth Tables

To better understand Boolean expressions, use truth tables. If A and B are Boolean

variables, you can use a truth table to display the values of a specific Boolean expres-

sion, which includes A and B, for all possible values of A and B. For example, the fol-

lowing table shows the values of the expression A AND B for all possible values of A

and B:

Data Types � 37

A B A AND B

FALSE FALSE FALSE

FALSE TRUE FALSE

TRUE FALSE FALSE

TRUE TRUE TRUE

Similarly, the following table displays the values of the expression A OR B for all pos-

sible values of A and B:

A B A OR B

FALSE FALSE FALSE

FALSE TRUE TRUE

TRUE FALSE TRUE

TRUE TRUE TRUE

The following table displays the values of the expression NOT A for all possible values

of A:

A NOT A

TRUE FALSE

FALSE TRUE

Turbo Pascal Logical Operators

Turbo Pascal also contains the logical operator XOR, which is called the exclusive OR.

It is used as in the following expression:

(x = 4) XOR (x = 400)

The value of this expression is TRUE if either one of the two conditions (x = 4 or x

= 400) is TRUE, but the expression is evaluated as FALSE if both conditions are

either TRUE or FALSE. In any implementation of Pascal you can use the operator <>

as the exclusive OR. You can write the previous expression as:

(x = 4) <> (x = 400)

Precedence of Pascal Operators

As with arithmetic expressions, the precedence of operators should be considered

when building a Boolean expression (relational or logical). Table 2-5 summarizes the

relative precedence of all operators you have used so far.

38 � Chapter 2

TE
AM
FL
Y

Team-Fly®

Table 2-5: Precedence of Pascal operators

Operator Precedence

NOT Priority 1 (highest)

* / DIV MOD AND Priority 2

+ – OR (XOR in Turbo Pascal) Priority 3

= > < >= <= <> Priority 4 (lowest)

To understand the effects of precedence, try the Boolean expression:

x = 4 OR x = 400

Because the OR has a higher precedence level than the equality, this will not compile

because it will be interpreted as:

x = (4 OR x) = 400

which is not a valid expression.

Drill 2-3

Write Boolean expressions to express the following conditions:

1. A is less than 55.5

2. x is equal to y, or x is greater than or equal to z

3. either x=40, or y=80; or both

4. either x=40, or y=80; but not both

Summary

1. In this chapter you learned the four standard data types:

� INTEGER

� REAL

� CHAR

� BOOLEAN

2. You also learned the additional numeric types of Turbo Pascal:

I. Integers:

� SHORTINT

� BYTE

� INTEGER

� WORD

Data Types � 39

� LONGINT

II. Real numbers

� SINGLE

� REAL

� DOUBLE

� EXTENDED

� COMP

3. You learned the standard arithmetic functions, classified into three groups:

Conversion:

� ROUND

� TRUNC

Trigonometric:

� ARCTAN

� COS

� SIN

Miscellaneous:

� ABS

� EXP

� LN

� SQR

� SQRT

4. You also learned some additional arithmetic functions from Turbo Pascal, such as:

� FRAC

� INT

� RANDOM

5. You can now write mathematical expressions using arithmetic operators and functions.

6. You are now familiar with four functions used to manipulate characters:

� CHR

� ORD

� PRED

� SUCC

7. You learned some of the features of text string variables in standard Pascal, and you

know that such variables are defined as PACKED ARRAYS OF CHAR. In extensions

such as Turbo Pascal and UCSD Pascal, the type STRING was added to the language

along with other features and functions.

40 � Chapter 2

You learned the STRING function:

LENGTH

which is used to measure the dynamic length of a string.

8. Using the arithmetic, relational, and Boolean operators, you learned how to build

simple and compound Boolean expressions and how to use the type BOOLEAN.

You know as well the Boolean operators:

� NOT

� AND

� OR

and you can express the exclusive OR in two ways:

� using the relational operator <>

� using the Turbo Pascal operator XOR

9. Finally, you had one last tour of Pascal operators and learned about their relative

precedence.

Exercises

1. Given three Boolean variables X, Y, and Z, design a truth table to display the values of

the following expressions for all possible values of X, Y, and Z:

a. X AND TRUE

b. X OR FALSE

c. NOT (Y AND Z)

d. X OR NOT Y

e. X AND Y AND Z

f. X AND (Y OR Z)

2. Write simple or compound Boolean expressions to express the following:

a. An uppercase letter corresponds to an ASCII code between 65 and 90

b. A lowercase letter corresponds to an ASCII code between 97 and 122

c. A digit corresponds to an ASCII code between 48 and 57

3. Using standard mathematical functions, write Pascal statements to calculate the

following:

a. Square of 12

b. Square root of 64

c. Absolute value of –1

d. Value of e (the base of the natural system of logarithms)

e. Natural logarithm of e

Data Types � 41

f. Sine of 45 degrees

g. Cosine of 45 degrees

h. Sine of 30 degrees

i. Cosine of 60 degrees

j. Cosine of 180 degrees (PI)

k. Sine of 180 degrees (PI)

4. Write a Pascal program to convert polar coordinates (r and �) to Cartesian coordinates

(x and y) according to the following definitions:

x = r * cos(�)

y = r * sin(�)

The following figure shows the point located at (x, y), represented in both types of

coordinates.

Answers

3. a. 144.00 b. 8.00 c. 1 d. 2.7182818

e. 1.00 f. 0.707 g. 0.707 h. 0.50

i. 0.50 j. –1.00 k. 0.00.

42 � Chapter 2

(x, y)

X

Y

x

yr

�

Chapter 3

Selection
Statements

Chapter Topics:

� Making simple decisions using the

IF-THEN statement

� Making decisions using the complete

IF-THEN-ELSE construct

� Nesting conditions

� Handling multiple selections using the

CASE statement

� Unconditional branching with GOTO

� Turbo Pascal additional features: EXIT

and CASE-ELSE

3-1 Making Decisions

So far, each of the programs in this book has been a series of instructions executed

sequentially one after the other. In real-life applications, however, you will usually

need to change the sequence of execution according to specified conditions. Some-

times you need to use a simple condition like:

If it is cold then put your coat on.

43

In this statement the resultant action is taken if the condition is evaluated as TRUE

(the weather is cold). If, however, the weather is fine, the whole statement is skipped.

Some conditions could be multiple, like those in the following conversation:

Ok then, if I come back early from work, I’ll see you tonight; else if it is too late

I’ll make it tomorrow; else if my brother arrives tomorrow we can get together

on Tuesday; else if Tuesday is a holiday then let it be Wednesday; else I’ll call

you to arrange for the next meeting!

Actually, your program can easily handle such chained or nested conditions as long as

you write the adequate code.

In Pascal there are two control structures used to handle conditions and their resultant

decisions: the binary choice construct IF-THEN-ELSE, and the multiple choice con-

struct CASE.

3-2 The Simple Decision: IF-THEN

To express a simple condition you can use the IF-THEN statement, as in the following

example:

IF Age < 18 THEN

WRITELN('Sorry, this is underage.');

The statement starts with the keyword IF, followed by a Boolean expression (the con-

dition to be tested), followed by the keyword THEN, followed by the result to be exe-

cuted if the condition is TRUE (the WRITELN statement). As you can see, the IF

construct is one statement ending with a semicolon. If the value of variable Age is less

than 18, the part after the keyword THEN is executed; otherwise, the whole state-

ment is skipped, and the program execution resumes its original flow at the next

statement. This type of program control is called conditional branching.

The IF-THEN statement takes the general form:

IF condition THEN

statement;

The construct is written in two lines just for readability, but it is one statement ending

with a semicolon, and there is no obligation to leave extra spaces. You only need to

separate the keywords (such as IF and THEN) from the rest of the statement by at

least one space.

44 � Chapter 3

Application: Pascal Credit Card

Take a look at the following program, where a credit card limit is tested for a certain

purchase. The program starts with declaration of the constant Limit which represents

the credit card limit ($1000), and the variable Amount, whose value will be received

from the keyboard. The program displays the message “Your charge is accepted” if the

Amount is less than or equal to the Limit. If the condition is FALSE the program will

end without response.

{ ----------------------------- Example 3-1 ---------------------------- }

PROGRAM SimpleDecision(INPUT,OUTPUT);

CONST

Limit = 1000;

VAR

Amount :REAL;

BEGIN

WRITE('Please enter the amount:');

READLN(Amount);

IF Amount <= Limit THEN

WRITELN('Your charge is accepted.'); {End of the IF statement}

WRITELN('Press ENTER to continue..');

READLN

END.

{ -- }

A READLN statement is used to pause the screen while displaying the message

“Press ENTER to continue.” Because this statement is outside the IF statement it

will be executed whether the condition is TRUE or FALSE.

Sample Runs:

Run 1:

Please enter the amount:200

Your charge is accepted.

Press ENTER to continue..

Run 2:

Please enter the amount:2000

Press ENTER to continue..

You can use two conditional statements to represent the two cases, the TRUE and the

FALSE. In the following program another IF statement is added to deal with the other

case (the amount is greater than 1000). The message “The amount exceeds your

credit limit” is displayed in this case.

{ ---------------------------- Example 3-2 ----------------------------- }

PROGRAM TwoConditions(INPUT,OUTPUT);

CONST

Limit = 1000;

VAR

Selection Statements � 45

Amount :REAL;

BEGIN

WRITE('Please enter the amount:');

READLN(Amount);

IF Amount <= Limit THEN

WRITELN('Your charge is accepted.');

IF Amount > Limit THEN

WRITELN('The amount exceeds your credit limit.');

WRITELN('Thank you for using Pascal credit card.');

WRITELN('Press ENTER to continue..');

READLN

END.

{ -- }

Sample Runs:

Run 1:

Please enter the amount:150

Your charge is accepted.

Thank you for using Pascal credit card.

Press ENTER to continue..

Run 2:

Please enter the amount:1500

The amount exceeds your credit limit.

Thank you for using Pascal credit card.

Press ENTER to continue..

As before, note that the last two lines were displayed in each case, as they do not

belong to the conditional statements.

Using BEGIN-END Blocks

If you want to use more than one statement as a result of one condition, you can use

the BEGIN-END blocks. You can actually use any number of blocks inside the pro-

gram main body, using BEGIN and END to mark the territories of each block. A block

will be treated as one unit, no matter how many statements it includes. Look at the

following example:

{ ----------------------------- Example 3-3 ----------------------------- }

PROGRAM UsingBlocks(INPUT,OUTPUT);

CONST

Limit = 1000;

VAR

Amount :REAL;

BEGIN

WRITE('Please enter the amount:');

READLN(Amount);

IF Amount <= Limit THEN

46 � Chapter 3

BEGIN

WRITELN('Your charge is accepted.');

WRITELN('Your price plus tax is $',1.05*Amount:0:2)

{The semicolon is optional}

END;

IF Amount > Limit THEN

BEGIN

WRITELN('The amount exceeds your credit limit.');

WRITELN('The maximum limit is $',Limit)

{The semicolon is optional}

END;

WRITELN('Thank you for using Pascal credit card.');

WRITELN('Press ENTER to continue..');

READLN {The semicolon is optional}

END.

{ -- }

In this example more than one statement is executed in either case (TRUE or

FALSE). For this reason two blocks were used.

Tip: Notice that in three positions in this program, the statement is
not terminated by a semicolon, as the semicolon is optional. The
statement in each of these positions is the last one inside a block.

Sample Runs:

Run 1:

Please enter the amount:120

Your charge is accepted.

Your price plus tax is $126.00

Thank you for using Pascal credit card.

Press ENTER to continue..

Run 2:

Please enter the amount:2000

The amount exceeds your credit limit.

The maximum limit is $1000

Thank you for using Pascal credit card.

Press ENTER to continue..

If you try the program without the blocks, you will find that only the first statement

that follows the keyword THEN belongs to the IF statement, but any other statement

belongs to the main program and will be executed regardless of the condition.

Selection Statements � 47

Drill 3-1

Write a program to accept from the keyboard a character and test this character to see

if it is one of the following:

1. A number

2. A lowercase letter

3. An uppercase letter

Display the suitable message in each case.

3-3 The IF-THEN-ELSE Construct

The form you have used so far for the IF statement is actually a simplified version of

the complete construct. The complete IF statement includes the two cases that result

from testing the condition. It takes the form:

IF condition THEN

statement

ELSE

statement;

Notice here that only one semicolon is used, because the whole construct is treated as

one statement. Here is an example:

IF AGE < 18 THEN

WRITELN('Underage.')

ELSE

WRITELN('Age is OK.');

This statement will display the message “Underage” if Age is less than 18. In the

other case the message “Age is OK” is displayed.

If you add another statement to either of the two cases, you have to use the

BEGIN-END blocks. The new construct will look like this:

IF AGE < 18 THEN

BEGIN

WRITELN('Underage.');

WRITELN('Wait another couple of years.')

END {No semicolon is used here}

ELSE

BEGIN

WRITELN('Age is OK.');

WRITELN('You don''t have to wait.')

END; {A semicolon is mandatory here}

48 � Chapter 3

TE
AM
FL
Y

Team-Fly®

Caution: At this point the use of semicolons becomes critical and
may lead to errors if not done properly. Notice here that the keyword
END in the first block is not terminated by a semicolon (as it is not the
end of the statement), while in the second block it is terminated by a
semicolon, indicating the end of the conditional statement.

Now, back to the Pascal credit card program to enhance it with the complete

IF-THEN-ELSE statement.

{ ---------------------------- Example 3-4 ----------------------------- }

PROGRAM CreditCard(INPUT,OUTPUT);

CONST

Limit = 1000;

VAR

Amount :REAL;

BEGIN

WRITE('Please enter the amount:');

READLN(Amount);

{ Beginning of the IF construct }

{ ----------------------------- }

IF Amount <= Limit THEN

BEGIN

WRITELN('Your charge is accepted.');

WRITELN('Your price plus tax is $',1.05*Amount:0:2)

END

ELSE

BEGIN

WRITELN('The amount exceeds your credit limit.');

WRITELN('The maximum limit is $',Limit)

END;

{ End of the IF construct }

{ ----------------------------- }

WRITELN('Thank you for using Pascal credit card.');

WRITELN('Press ENTER to continue..');

READLN

END.

{ -- }

Sample Runs:

Run 1:

Please enter the amount:1000

Your charge is accepted.

Your price plus tax is $1050.00

Thank you for using Pascal credit card.

Press ENTER to continue..

Selection Statements � 49

Run 2:

Please enter the amount:1001

The amount exceeds your credit limit.

The maximum limit is $1000

Thank you for using Pascal credit card.

Press ENTER to continue..

Drill 3-2

Modify the program you wrote in Drill 2-2 to solve a quadratic equation (Ax² + Bx +

C) for both real and imaginary roots.

3-4 The ELSE-IF Ladder

Although the IF-THEN-ELSE statement is intended for binary choice, it can be

extended to handle more complicated choices. Look at this new arrangement of the

construct, which is sometimes referred to as the ELSE-IF ladder:

IF condition-1 THEN

statement-1

ELSE IF condition-2 THEN

statement-2

ELSE IF condition-3 THEN

statement-3

...

ELSE

statement-n;

The conditions in the ladder are evaluated from the top down, and whenever a condi-

tion is evaluated as TRUE, the corresponding statement is executed and the rest of

the construct is skipped. If no condition has been satisfied, the last ELSE will be

brought into action.

Notice that the condition ladder is considered one statement ending with a semicolon,

but no semicolons are used inside. If you want to use more than one result-statement,

you have to use the BEGIN-END blocks according to the rules mentioned earlier.

Application: A Character Tester

This program starts by asking you to enter a letter, then tests the input character to

see if it is a lowercase or uppercase letter. The program can also recognize numbers

and deliver an appropriate message, but for any other non-alphabetic character it dis-

plays: “Sorry, this is not a letter.”

50 � Chapter 3

The logic used in the program depends on testing the ASCII code of the input charac-

ters using the ORD function. The characters are classified as follows:

� The uppercase letters correspond to the codes from 65 to 90.

� The lowercase letters correspond to the codes from 97 to 122.

� The digits correspond to the codes from 48 to 57.

If you already wrote this program as a solution to Drill 3-1, you will find that the

ELSE-IF ladder makes things easier.

{ ----------------------------- Example 3-5 ---------------------------- }

PROGRAM CharsTester(INPUT,OUTPUT);

VAR

InputChar :CHAR;

BEGIN

WRITE('Please enter an alphabetic character: ');

READLN(InputChar);

{ Beginning of the IF construct }

{ ----------------------------- }

IF (ORD(InputChar) > 64) AND (ORD(InputChar) < 91) THEN

WRITELN('This is an uppercase letter.')

ELSE IF (ORD(InputChar) > 96) AND (ORD(InputChar) < 123) THEN

WRITELN('This is a lowercase letter.')

ELSE IF (ORD(InputChar) > 47) AND (ORD(InputChar) < 58) THEN

WRITELN('Hey, this is a number!')

ELSE

WRITELN('Sorry, this is not a letter.');

{ End of the IF construct }

{ ----------------------------- }

WRITELN('Press ENTER to continue..');

READLN

END.

{ -- }

Sample Runs:

Run 1:

Please enter an alphabetic character: a � Enter a

This is a lowercase letter.

Press ENTER to continue..

Run 2:

Please enter an alphabetic character: B � Enter B

This is an uppercase letter.

Press ENTER to continue..

Run 3:

Please enter an alphabetic character: 5 � Enter 5

Hey, this is a number!

Selection Statements � 51

Press ENTER to continue..

Run 4:

Please enter an alphabetic character: @ � Enter @

Sorry, this is not a letter.

Press ENTER to continue..

3-5 Nested Conditions

The statement to be executed upon testing a condition can be of any kind. As a matter

of fact, it can be another IF statement nested in the original IF statement.

The IF-THEN-ELSE constructs can be nested inside each other, as in the following

form:

IF condition-1 THEN

IF condition-2 THEN

...

IF condition-n THEN

statement-n1

ELSE

statement-n2

...

ELSE

statement-2

ELSE

statement-1;

As you can see, this construct can handle any number of nested conditions, but you

have to keep track of each IF and the corresponding ELSE. Let us put the construct

into action.

Application: Scores and Grades

This program receives the score of a student and displays the grade according to the

following classification:

� Grade A corresponds to scores from 90% to 100%.

� Grade B corresponds to scores from 80% to 89%.

� Grade C corresponds to scores from 70% to 79%.

� Grade D corresponds to scores from 60% to 69%.

� Grade F corresponds to scores less than 60%.

52 � Chapter 3

Here is the program:

{ ----------------------------- Example 3-6 ----------------------------- }

PROGRAM ScoresAndGrades1(INPUT,OUTPUT);

VAR

Score :INTEGER;

BEGIN

WRITE('Please enter the score: ');

READLN(Score);

WRITELN;

{ Beginning of the IF construct }

{ ----------------------------- }

IF Score > 59 THEN

IF Score > 69 THEN

IF Score > 79 THEN

IF Score > 89 THEN

WRITELN('Excellent. Your grade is ''A''')

ELSE

WRITELN('Very good. Your grade is ''B''')

ELSE

WRITELN('Good. Your grade is ''C''')

ELSE

WRITELN('Passed. Your grade is ''D''')

ELSE

WRITELN('Better luck next time. Your grade is ''F''');

{ End of the IF construct }

{ ----------------------------- }

WRITELN('Press ENTER to continue..');

READLN

END.

{ -- }

Sample Runs:

Run 1:

Please enter the score: 92 � Enter 92

Excellent. Your grade is 'A' � The program response

Press ENTER to continue..

Run 2:

Please enter the score: 70

Good. Your grade is 'C'

Press ENTER to continue..

Run 3:

Please enter the score: 60

Passed. Your grade is 'D'

Press ENTER to continue..

Selection Statements � 53

Run 4:

Please enter the score: 59

Better luck next time. Your grade is 'F'

Press ENTER to continue..

As usual, you may cause more than one result statement to be executed upon testing a

condition by embedding the statements into a block.

You can use any one of the available variations of the IF-THEN-ELSE construct in

your applications. However, some forms are more reliable with one application, and

some with others. Look at this program, which processes the same problem of the

Scores and Grades application but uses the ELSE-IF ladder. Notice how the program

is made easier and more comprehensible to the reader by using the Boolean variables

A, B, C, D, F. Note also that illegal numbers are filtered out by the last ELSE.

{ ----------------------------- Example 3-7 ---------------------------- }

PROGRAM ScoresAndGrades2(INPUT,OUTPUT);

VAR

Score :INTEGER;

A, B, C, D, F :BOOLEAN;

BEGIN

WRITE('Please enter the score: ');

READLN(Score);

A := (Score >= 90) AND (Score <= 100);

B := (Score >= 80) AND (Score < 90);

C := (Score >= 70) AND (Score < 80);

D := (Score >= 60) AND (Score < 70);

F := (Score < 60) AND (Score >= 0);

WRITELN;

{ Beginning of the IF construct }

{ ----------------------------- }

IF A THEN

WRITELN('Excellent. Your grade is ''A''')

ELSE IF B THEN

WRITELN('Very good. Your grade is ''B''')

ELSE IF C THEN

WRITELN('Good. Your grade is ''C''')

ELSE IF D THEN

WRITELN('Passed. Your grade is ''D''')

ELSE IF F THEN

WRITELN('Better luck next time. Your grade is ''F''')

ELSE

WRITELN('This number is out of range.');

{ End of the IF construct }

{ ----------------------------- }

WRITELN('Press ENTER to continue..');

READLN

END.

{ -- }

54 � Chapter 3

Tips on the IF-ELSE Puzzles

Nesting the IF constructs inside each other may become confusing (to the program-

mer), as one may not be able to tell which ELSE belongs to which IF. Look at this sim-

ple example:

IF X >= 1 THEN

IF y >= 18 THEN

WRITELN('statement#1.')

ELSE

WRITELN('statement#2');

The rule is that each ELSE belongs to the last IF in the same block. This means that,

in this example, the ELSE belongs to the second IF. Arranging the text with the

proper indentation, according to this rule, makes it clearer:

IF X >= 1 THEN

IF y >= 18 THEN

WRITELN('statement#1.')

ELSE

WRITELN('statement#2');

If, however, you want to associate ELSE with the first IF, you can use blocks as fol-

lows:

IF X >= 1 THEN

BEGIN

IF Y >= 18 THEN

WRITELN('statement#1.')

END

ELSE

WRITELN('statement#2');

Drill 3-3

Write a program to describe the weather according to the following temperature clas-

sifications:

Temperature Classification

greater than 75 hot

50 to 75 cool

35 to 49 cold

less than 35 freezing

Selection Statements � 55

3-6 The Multiple Choice: CASE

The CASE construct is used to deal with multiple alternatives, such as the user-menu

options. It takes the general form:

CASE expression OF

label-1 : statement-1;

label-2 : statement-2;

...

label-n : statement-n;

END

The case expression, also called the selector, can be of INTEGER, CHAR, or BOOLEAN

type (or any ordinal type, which will be explained in Chapter 5). According to the value

of this expression the control of the program is transferred to one of the case labels,

and the corresponding statement is executed. The labels actually represent the differ-

ent possible values of the expression. Look at this example:

Application: A Vending Machine

The coins in the vending machine are sorted according to the weight of each coin,

which is assumed to be 35 grams for a quarter, 7 for a dime, and 15 for a nickel.

This logic can be programmed as follows:

CASE CoinWeight OF

35 : Amount := Quarter;

7 : Amount := Dime;

15 : Amount := Nickel;

END;

The numbers 35, 7, and 15 represent the CoinWeight and are used as labels. There-

fore, when the CoinWeight equals 7, for example, the statement:

Amount := Dime;

is executed. Needless to say, the name Dime is a named constant whose value is 10,

and Nickel and Quarter are named constants as well. Look at the complete program:

{ ---------------------------- Example 3-8 ----------------------------- }

PROGRAM CaseOfWeights(INPUT,OUTPUT);

CONST

Quarter = 25;

Dime = 10;

Nickel = 5;

VAR

CoinWeight, Amount :INTEGER;

BEGIN

WRITE('Please enter the weight: ');

READLN(CoinWeight);

56 � Chapter 3

CASE CoinWeight OF

35 : Amount := Quarter;

7 : Amount := Dime;

15 : Amount := Nickel;

END;

WRITELN('The amount is ', Amount, ' cents.');

WRITELN('Press ENTER to continue..');

READLN

END.

{ -- }

Sample Run:

Please enter the weight: 35 � Enter 35

The amount is 25 cents. � The program response

Press ENTER to continue..

You can use more than one label for the same result statement, which will save a lot of

writing as compared to the IF in the same situation.

Application: Number of Days in a Month

Consider, for instance, that you want to program a code that reads the number of the

month and tells the number of days in that month. The CASE construct will look

something like the following:

CASE Month OF

1,3,5,7,8,10,12 : Days := 31;

4,6,9,11 : Days := 30;

2 : Days := 28;

END;

As you can see, the CASE construct here contains three cases, two of them with more

than one label. All months that have 31 days belong to the first case, those that have

30 days belong to the second case, and February is a special case by itself. We assume

here that February has 28 days for simplicity, but you can extend the logic to deter-

mine if the year is a leap year and assign February a value of 29 or 28 accordingly. You

may use a block of statements for one case like this:

CASE Month OF

1,3,5,7,8,10,12 : Days := 31;

4,6,9,11 : Days := 30;

2 : BEGIN

WRITE('Enter the year:');

READLN(Year);

IF YEAR MOD 4 = 0 THEN

Days :=29

ELSE

Days :=28

END;

Selection Statements � 57

Here the case label 2 leads to a block of statements. So, if you enter 2 as the number

of the month, the program will ask you to enter the year. The year will be tested and

you will get 29 if the year is a leap year and 28 otherwise. Here is the complete pro-

gram:

{ ----------------------------- Example 3-9 --------------------------- }

PROGRAM DaysOfMonth1(INPUT,OUTPUT);

VAR

Days, Month, Year :INTEGER;

BEGIN

WRITE('Please enter the number of the month: ');

READLN(Month);

CASE Month OF

1,3,5,7,8,10,12 : Days := 31;

4,6,9,11 : Days := 30;

2 : BEGIN

WRITE('Enter the year:');

READLN(Year);

IF YEAR MOD 4 = 0 THEN

Days :=29

ELSE

Days :=28

END;

END;

WRITELN('There are ',Days,' days in this month.');

WRITELN('Press ENTER to continue..');

READLN

END.

{ -- }

Sample Runs:

Run 1:

Please enter the number of the month: 2

Enter the year: 1987

There are 28 days in this month.

Press ENTER to continue..

Run 2:

Please enter the number of the month: 2

Enter the year: 1984

There are 29 days in this month.

Press ENTER to continue..

Run 3:

Please enter the number of the month: 12

There are 31 days in this month.

Press ENTER to continue..

58 � Chapter 3

TE
AM
FL
Y

Team-Fly®

In cases like this, using the CASE construct is more efficient than using nested

IF-THEN-ELSE constructs or ladders. However, you must have realized that you will

sometimes need them both (as in the February case).

Drill 3-4

Write a program that reads the date from the keyboard in the form “mm dd yy” and

displays the date as in the following examples:

January 2nd, 1992

October 23rd, 1990

March 5th, 1985

3-7 Unconditional Branching: GOTO

The GOTO statement is used to transfer control of the program from one point to

another. It is classified as unconditional branching.

Note: Although the GOTO statement is very easy to use, you rarely
see it in Pascal programs because it destroys the structure of the
program. In some cases, however, it may be useful in escaping from
many levels of nesting in one jump.

The syntax of the GOTO statement is as follows:

GOTO label;

The label is a positive integer of up to four digits preceding the required statement (in

Turbo Pascal the label can be any valid identifier and may begin with a digit).

GOTO 1000;

...

1000:

WRITELN('I am a labeled statement.');

...

When the GOTO is encountered, the program control is transferred to the labeled

statement. The label must be declared in the label section of the declaration part of the

program. The LABEL section starts with the keyword LABEL and comes as the first

section in the declaration part in standard Pascal (in Turbo Pascal there is no such obli-

gation). Look at this example:

Selection Statements � 59

PROGRAM GoToDemo(INPUT,OUTPUT);

LABEL

1000;

VAR

InputChar :CHAR;

BEGIN

WRITE('Please enter a letter (or 0 to quit):');

READLN(InputChar);

IF InputChar = '0' THEN

GOTO 1000;

{ Other statements may go here... }

1000:

END.

In this example, the value of the input character is tested to see if it is zero, in which

case control is transferred to the part following the label 1000, which is the end of the

program. If you are using Turbo Pascal, you can use meaningful labels such as Wrapup

or Start instead of the numbers.

Infinite Loops

You can use the GOTO statement to build a closed loop. For example, if you want to

repeat the execution of the Character Tester application you may use the following

logic, where the control is always transferred to the label 1000 at the beginning of the

program. A condition is used to end the loop (and the program) by examining the input

value. If a zero is entered, the control is transferred to the label 2000, ending the pro-

gram. If you remove this condition from the program, it will be repeated infinitely. The

only way to exit the program in this case is to use the control keys Ctrl+Break. This

kind of loop is called an infinite loop.

{ ---------------------------- Example 3-10 ---------------------------- }

PROGRAM CharsTester2(INPUT,OUTPUT);

LABEL

1000, 2000; { label declaration }

VAR

InputChar :CHAR;

BEGIN

1000:

WRITE('Please enter a letter (or 0 to quit): ');

READLN(InputChar);

{ Beginning of the IF construct }

{ ----------------------------- }

IF InputChar = '0' THEN { a condition to exit }

GOTO 2000

ELSE IF (ORD(InputChar) > 64) AND (ORD(InputChar) < 91) THEN

WRITELN('This is an uppercase letter.')

ELSE IF (ORD(InputChar) > 96) AND (ORD(InputChar) < 123) THEN

WRITELN('This is a lowercase letter.')

ELSE IF (ORD(InputChar) > 47) AND (ORD(InputChar) < 58) THEN

60 � Chapter 3

WRITELN('Hey, this is a number!')

ELSE

WRITELN('Sorry, this is not a letter.');

{ End of the IF construct }

{ ----------------------- }

GOTO 1000; { restart the program }

2000: { exit the program }

END.

{ -- }

Sample Run:

Please enter a letter (or 0 to quit): W � Enter W

This is an uppercase letter.

Please enter a letter (or 0 to quit): e � Enter e

This is a lowercase letter.

Please enter a letter (or 0 to quit): 0 � Enter 0

This method, as you can see, is not the best method with which to build loops or con-

trol program execution, as it consists of jumps from one point to another. In the next

chapter you are introduced to Pascal structured loops.

3-8 Turbo Pascal Additional

Features: EXIT, CASE-ELSE

If you entered an illegal value in Example 3-9, such as the number 13 (as the month

number), you simply get the message:

There are 0 days in this month.

In order to handle the invalid data you have to use a suitable IF statement. In Turbo

Pascal you can add an ELSE part to the control structure CASE in order to handle data

that does not belong to any of the case labels. The CASE structure will then take the

form:

CASE expression OF

label-1 : statement-1;

label-2 : statement-2;

...

label-n : statement-n;

ELSE

statement

END

Another feature of Turbo Pascal is the EXIT statement, which ends the execution of

the program at any point. The EXIT statement is classified as an unconditional branch-

ing statement. In the following program these two features are illustrated. If you enter

Selection Statements � 61

any number other than the numbers from 1 to 12, the ELSE part and the EXIT state-

ment will end the program.

{ ---------------------------- Example 3-11 ---------------------------- }

PROGRAM DaysOfMonth2(INPUT,OUTPUT);

LABEL

Start;

VAR

Days, Month, Year :INTEGER;

BEGIN

Start:

WRITE('Please enter the number of the month: ');

READLN(Month);

CASE Month OF

1,3,5,7,8,10,12 : Days := 31;

4,6,9,11 : Days := 30;

2 : BEGIN

WRITE('Enter the year: ');

READLN(Year);

IF YEAR MOD 4 = 0 THEN

Days :=29

ELSE

Days :=28

END;

ELSE

EXIT { all other cases }

END;

WRITELN('There are ',Days,' days in this month.');

GOTO Start

END.

{ -- }

Sample Run:

Please enter the number of the month: 1

There are 31 days in this month.

Please enter the number of the month: 4

There are 30 days in this month.

Please enter the number of the month: 13 � Exit the program

Summary

In this chapter you learned the branching control structures that help you to handle

decisions in your program.

1. You are now familiar with the simple IF-THEN statement used with simple decisions. It

takes the form:

62 � Chapter 3

IF condition THEN

statement;

2. You also know the complete IF-THEN-ELSE construct that contains the result and the

alternative result:

IF condition THEN

statement

ELSE

statement;

3. You also know how to handle complicated conditions using the ELSE-IF ladder in the

form:

IF condition-1 THEN

statement-1

ELSE IF condition-2

statement-2

ELSE IF condition-3

statement-3

...

ELSE

statement-n;

4. An alternative to the ladder is nesting the IF-THEN-ELSE constructs inside each other

in the form:

IF condition-1 THEN

IF condition-2 THEN

...

IF condition-n THEN

statement-n1

ELSE

statement-n2

...

ELSE

statement-2

ELSE

statement-1;

5. You learned how to use the multiple choice construct CASE, which is ready to handle

many cases in the form:

CASE expression OF

label-1 : statement-1;

label-2 : statement-2;

...

label-n : statement-n;

END

Selection Statements � 63

6. In Turbo Pascal the CASE construct has more features, as it may contain the ELSE

part which handles all the other cases that do not correspond to a label. It takes the

form:

CASE expression OF

label-1 : statement-1;

label-2 : statement-2;

...

label-n : statement-n;

ELSE

statement

END

You also understand that in any of the above formulas you can replace one statement

by a block of statements using the BEGIN-END blocks.

7. You were introduced as well to the unconditional branching statement GOTO which

transfers the program control to a labeled statement. It takes the form:

GOTO label;

The label in standard Pascal is a positive integer of up to four digits, while in Turbo

Pascal it can be a valid identifier, or it may begin with a number. You also know how to

declare a label at the beginning of the declaration part of the program. In Turbo Pascal

the LABEL section does not need to be the first section.

8. Finally, you met the Turbo Pascal statement EXIT, which terminates the program at

any point.

In the next chapter, you continue the discussion on control structures to learn how to

build structured loops.

Exercises

1. What is the output for each of the following WRITELN statements:

a. WRITELN(300 > 4);

b. WRITELN((300 < 200) OR (300 > 100));

c. WRITELN(TRUE OR FALSE);

d. WRITELN(TRUE AND FALSE);

e. WRITELN(TRUE OR FALSE AND TRUE);

f. WRITELN(TRUE OR FALSE AND NOT FALSE);

2. Describe the function of the following case statement:

CASE GradePercentage DIV 10 OF

9, 10: WRITELN('Distinct');

8: WRITELN('Very good');

7: WRITELN('Good');

64 � Chapter 3

5,6: WRITELN('Passed');

0,1,2,3,4: WRITELN('Failed');

END;

What is the message displayed when you input each of the following grades?

a. 84

b. 63

c. 52

d. 33

e. 99

3. Write an IF statement to read and examine the code numbers of inventory items. The

valid numbers are 5, 6, 9, and 0. If the code is valid, the NumberOfItems is incremented

by 1, otherwise a proper message is issued.

4. In Example 3-9, the leap year test is a simplified version of the actual logic. It is only

useful for the years of one century. The complete logic of the leap year definition is:

� The year is divisible by 4 AND not divisible by 100

OR

� The year is divisible by 400.

Write a Pascal program to read the year from the keyboard, check if it is a leap year,

and display the result on the screen. You can make use of the following Boolean vari-

ables:

R4 := Year MOD 4 = 0;

R100 := Year MOD 100 = 0;

R400 := Year MOD 400 = 0;

Answers

1. a. TRUE b. TRUE c. TRUE d. FALSE

e. TRUE f. TRUE.

2. a. Very good b. Passed c. Passed d. Failed

e. Distinct.

Selection Statements � 65

Chapter 4

Iteration
Statements

Chapter Topics:

� Using the following iteration statements

to build loops:

FOR

WHILE-DO

REPEAT-UNTIL

� Incrementing and decrementing loop

counters using the following FOR loop

statements:

FOR-TO-DO

FOR-DOWNTO-DO

� Nesting loops of different kinds into other

constructs, including other loops

� Applying different loop constructs to

popular applications such as Average,

Factorial, Leap Year, Multiplication

Table, and Character Graphics

67

4-1 Loops

You learned in the previous chapter how to build a repetition loop using the following

tools:

� A branching statement such as GOTO to transfer the control of the program to the

starting point repeatedly

� A condition to terminate the loop as desired

The condition may be used to test the input value and to terminate the loop when a

specific value is received. You may also wish to repeat the process in the loop a spe-

cific number of times, in which case you need a counter. The condition in this case is

used to test the counter with each round of the loop. This type of loop is called a

counted loop. In the following program these elementary tools are used to display the

message “Sorry, say again..” five times.

The algorithm used in the program is as follows:

1. Initialize the counter to zero.

2. Increment the counter by 1.

3. Test the counter to see if it is less than or equal to 5.

4. Display the statement.

5. Go to step 2.

{ ----------------------------- Example 4-1 ---------------------------- }

PROGRAM GoToLoop(OUTPUT);

LABEL

1000; { label declaration }

VAR

Kounter :INTEGER;

BEGIN

Kounter := 0;

1000:

Kounter := Kounter + 1;

IF Kounter <= 5 THEN

BEGIN

WRITELN('Sorry, say again..');

GOTO 1000 { restart }

END;

WRITELN;

WRITELN('Press ENTER to continue..');

READLN

END.

{ -- }

In this program the counter is initialized to the value zero before entering the loop,

which begins at the label 1000. Inside the loop, the counter is incremented, then

tested to see if its value is less than or equal to 5. If so, the WRITELN statement is

68 � Chapter 4

TE
AM
FL
Y

Team-Fly®

executed and the loop is repeated using the GOTO statement. If the condition fails

(i.e., the counter exceeds 5) the program ends.

Output:

Sorry, say again..

Sorry, say again..

Sorry, say again..

Sorry, say again..

Sorry, say again..

Press ENTER to continue..

Pascal provides you with ready-made control structures for looping, so you can avoid

such messy code. A control structure contains both the branching statement and the

condition in one construct.

In this chapter you are introduced to the following constructs:

� The FOR loop

� The WHILE loop

� The REPEAT loop

Each of the three loops has different features that suit different applications.

4-2 The FOR Loop

The FOR loop construct is a counted loop used to repeat a statement or a block of

statements a specified number of times. It includes the initialization of the counter, the

condition, and the increment.

Look at this example:

{ ----------------------------- Example 4-2 ---------------------------- }

PROGRAM ForLoop(OUTPUT);

VAR

Kounter :INTEGER;

BEGIN

FOR Kounter := 1 TO 5 DO

WRITELN('Sorry, say again..');

WRITELN;

WRITELN('Press ENTER to continue..');

READLN

END.

{ -- }

This program gives the same results as the previous program does, but is simpler and

better organized. The FOR loop does the same work done in the previous program. It

assigns the control variable Kounter the initial value 1, then executes the statement,

Iteration Statements � 69

increments the control variable by one, and repeats the process until the value of the

Kounter reaches the final value of 5.

The general form of the FOR construct is as follows:

FOR control-variable := expression-1 TO expression-2 DO statement;

where:

control-variable is the loop counter,

expression-1 is the initial value, and

expression-2 is the final value.

The control-variable, expression-1, and expression-2 can be of any type except REAL.

All three must be of the same type.

Tip: Remember that the FOR construct is one statement ending with
a semicolon. If by mistake you add another semicolon, as in the
following loop:

FOR Kounter := 1 TO 1000 DO;

WRITELN('Sorry, say again..');

do not be surprised if the loop is executed only once, regardless of the
final value of the counter. The semicolon after the DO keyword ends the
loop at this point.

The value of the control variable may not be modified inside the loop. Look at this

assignment statement inside the loop:

FOR K := 1 TO 10 DO

K := 2

...

Even if the compiler accepts this statement, it will repeal the effect of the loop counter

as it sets it to the value 2 all the time. The same rule applies for the initial value and

the final value of the control variable.

As usual, you can include as many statements as you want inside the loop by using the

BEGIN-END blocks.

Application: Powers of Two

The number 2 and its powers are very important numbers in the computer field. Some

of the numbers, such as 1024 bytes (equivalent to 1 KB) and 65,536 bytes (64 KB), are

commonly used. In the following program a FOR loop is used to display the powers of

two, using the same logic which was used to calculate the power in Example 2-2. The

program output gives the power and the number 2 raised to this power. The initial and

70 � Chapter 4

final values of the counter are supplied by the user during the execution. Thus, you

can determine the range of numbers you would like to examine.

{ ----------------------------- Example 4-3 ---------------------------- }

PROGRAM ForLoop(INPUT, OUTPUT);

VAR

Base, Power, Start, Final :INTEGER;

BEGIN

Base := 2;

WRITE('Enter starting exponent:');

READLN(Start);

WRITE('Enter ending exponent:');

READLN(Final);

WRITELN;

WRITELN('Number Power of two');

FOR Power := Start TO Final DO

BEGIN

WRITE(Power:3);

WRITELN(EXP(LN(Base)*Power):20:0)

END;

WRITELN;

WRITELN('Press ENTER to continue..');

READLN

END.

{ -- }

Sample Run:

Enter starting exponent:1

Enter ending exponent:20

Number Power of two

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

11 2048

12 4096

13 8192

14 16384

15 32768

16 65536

17 131072

18 262144

19 524288

Iteration Statements � 71

20 1048576

Press ENTER to continue..

Drill 4-1

Write a program to test the leap years in the range from 1990 to 2000. Display on the

screen each year and the test result as in the following output:

The year 1990 is not a leap year.

The year 1991 is not a leap year.

The year 1992 is a leap year.

The year 1993 is not a leap year.

The year 1994 is not a leap year.

The year 1995 is not a leap year.

The year 1996 is a leap year.

The year 1997 is not a leap year.

The year 1998 is not a leap year.

The year 1999 is not a leap year.

The year 2000 is a leap year.

Application: The Average

The following program demonstrates data entry using a loop. It receives from the key-

board a series of numbers and calculates the sum and the average of the numbers. At

the beginning of the program you are asked to enter the number of the elements (N),

which is used as the final value of the counter. Inside the loop the sum is accumulated

in the variable Sum using the statement:

Sum := Sum + Number;

When the loop exits, the average is calculated from the sum and the number of ele-

ments, using the statement:

Average := Sum / N;

Here is the program.

{ ----------------------------- Example 4-4 ---------------------------- }

PROGRAM AverageProg1(INPUT,OUTPUT);

VAR

Average, Sum, Number :REAL;

N, Kounter :INTEGER;

BEGIN

Sum := 0;

WRITE('Enter Number of Elements: ');

READLN(N);

FOR Kounter := 1 TO N DO

BEGIN

WRITE('Enter Element #',Kounter,': ');

72 � Chapter 4

READLN(Number);

Sum := Sum + Number { The semicolon is optional }

END;

Average := Sum / N;

WRITELN;

WRITELN('Sum of Numbers = ', Sum:0:2);

WRITELN('Average of Numbers = ', Average:0:2);

WRITELN;

WRITELN('Press ENTER to continue..');

READLN

END.

{ -- }

Sample Run:

Enter Number of Elements: 5

Enter Element #1: 1

Enter Element #2: 2

Enter Element #3: 3

Enter Element #4: 4

Enter Element #5: 5

Sum of Numbers = 15.00

Average of Numbers = 3.00

Press ENTER to continue..

Notice how the element numbers were displayed inside the loop using the values of

the control variable Kounter.

4-3 Stepping Up and Stepping Down

In the previous examples, the FOR loop counter was always incremented. This means

that the final value of the counter must be greater than the initial value, or else the

loop will never be executed.

You can decrement the counter using an alternative form of the FOR loop, by replacing

the keyword TO with the keyword DOWNTO as in the following form:

FOR control-variable := expression-1 DOWNTO expression-2 DO

statement;

With this formula you can start the counter with the larger value and step down until

the final value is reached.

Application: The Factorial

The factorial of a positive integer N is defined as:

Iteration Statements � 73

N! = N * (N–1) * (N–2) ... * 3 * 2 * 1

Thus the factorial of 4 is 4 * 3 * 2 * 1, and the factorial of 3 is 3 * 2 * 1. You can then

express the following relationships for the factorial:

4! = 4 * 3!

3! = 3 * 2!

2! = 2 * 1!

1! = 1

In general, you can write the following Pascal statement to calculate the factorial using

a counter:

Factorial := Factorial * Kounter;

The variable Kounter can be incremented from 1 to N or decremented from N to 1.

The following program uses this logic in a loop with a decremented step.

{ ---------------------------- Example 4-5 ----------------------------- }

PROGRAM FactorialProg1(INPUT,OUTPUT);

VAR

Factorial :REAL;

Kounter, Number :INTEGER;

BEGIN

WRITE('Give me a number, and I will tell you the factorial: ');

READLN(Number);

Factorial := 1;

FOR Kounter := Number DOWNTO 1 DO

Factorial := Factorial * Kounter;

WRITELN('The factorial of ', Number,' is ', Factorial:0:0);

WRITELN;

WRITELN('Press ENTER to continue..');

READLN

END.

{ -- }

Notice that the variable Factorial must be initialized to the value 1 before starting the

iterative process.

Sample Run:

Give me a number, and I will tell you the factorial: 8

The factorial of 8 is 40320

Press ENTER to continue..

74 � Chapter 4

Tip: Although the factorial of a number is always an integer, using
the type REAL (or the Turbo Pascal type LONGINT) for the variable
Factorial gives you a large storage size with which to receive the
quickly increasing results of factorial calculations. If you use the
INTEGER type, the program will start giving you funny results after the
factorial of 7!

Drill 4-2

Modify the previous program to test the input value of the number. If the value is zero,

the program should exit without going through the loop. You may use a GOTO state-

ment or the Turbo Pascal function EXIT.

4-4 Nested Loops

Like any other statement, the FOR loop statement can be used inside another loop. In

this case it is said that the inner loop is nested inside the outer loop. You can nest as

many loops as you wish inside one another, according to your application. The next

program displays on your screen the following array of numbers.

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

The array consists of three rows and five columns. You can control the number of rows

and columns by using the counters of two nested loops. As you can see, for each round

of the outer loop counter (Row), the inner loop counter (Column) loops five times.

The values that appear in the output are the values of the counter Column. Notice that

a blank line is displayed after a complete row is done, using the outer loop counter.

{------------------------------ Example 4-6 -----------------------------}

PROGRAM NestedLoops(OUTPUT);

VAR

Row, Column :INTEGER;

BEGIN

FOR Row := 1 TO 3 DO { Start of the outer loop }

BEGIN

FOR Column := 1 to 5 DO { Start of the inner loop }

WRITE(Column, ' '); { End of the inner loop }

WRITELN { This statement belongs to the outer loop }

END { The end of the outer loop }

END.

{ -- }

Iteration Statements � 75

Tip: Notice the two END keywords in the previous program. The first
one comes without a semicolon because it is the last statement in the
main block (the program main body). Also, the keyword WRITELN,
which comes before this END, was not terminated by a semicolon. This
is because it is the last statement in the loop block. All of these are
options, but you may use the semicolons if you wish. If you add another
statement at the end of the program (to suspend the screen, for
instance), the situation will change.

Drill 4-3

Modify the last program to draw the fifty stars of the American flag, as shown:

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

4-5 The WHILE Loop

The WHILE loop construct contains the necessary condition to terminate the loop,

but unlike the FOR loop, no counter is included. It takes the general form:

WHILE condition DO

statement;

This form simply says: “Execute the following statement as long as the condition is

TRUE.”

When the loop is entered, the condition (a Boolean expression) is evaluated. If it is

TRUE, the statement that follows the keyword DO is executed. The loop will be

repeated, and the statement will be reexecuted until the condition becomes FALSE. In

your program, you must include the necessary logic to make the condition FALSE at

the right time. You may use a counter with this loop, but you need to increment or

decrement the counter yourself.

The following program demonstrates the same algorithm of calculating the average of

a set of numbers entered from the keyboard but uses the WHILE loop. The condition

is used here to test the value of a counter Kounter against the maximum number of

elements N. When this maximum is reached the loop exits.

{ ----------------------------- Example 4-7 ---------------------------- }

PROGRAM AverageProg2(INPUT,OUTPUT);

76 � Chapter 4

VAR

Average, Sum, Number :REAL;

Kounter, N :INTEGER;

BEGIN

Sum := 0;

Kounter := 1;

WRITE('Enter Number of Elements: ');

READLN(N);

WHILE Kounter <= N DO

BEGIN

WRITE('Enter Element #',Kounter,': ');

READLN(Number);

Sum := Sum + Number;

Kounter := Kounter + 1

END;

Average := Sum / N;

WRITELN;

WRITELN('Sum of Numbers = ', Sum:0:2);

WRITELN('Average of Numbers = ', Average:0:2);

WRITELN;

WRITELN('Press ENTER to continue..');

READLN

END.

{ -- }

Notice that the counter is initialized at the beginning of the program and incremented

inside the loop. The initial value is used for the first round in the loop (Kounter := 1),

because the incrementing takes place after the process. This is one way to do it, but

other arrangements are used in the next few programs. Notice also that when you

want to include more than one statement in the WHILE loop, you must use the

BEGIN-END blocks.

Sample Run:

Enter Number of Elements: 3

Enter Element #1: 1

Enter Element #2: 2

Enter Element #3: 3

Sum of Numbers = 6.00

Average of Numbers = 2.00

Press ENTER to continue..

If you do not want to enter the number of elements beforehand, you can count them

inside the loop. In this case you need a cue to end the loop, like entering a negative

number. Look at this modified version of the program, where the input number is

tested with every round to see if it is –1.

Iteration Statements � 77

{ ----------------------------- Example 4-8 ---------------------------- }

PROGRAM AverageProg3(INPUT,OUTPUT);

VAR

Average, Sum, Number :REAL;

Kounter :INTEGER;

BEGIN

Sum := 0;

Average := 0;

Number := 0;

Kounter := 0;

WHILE Number <> –1 DO

BEGIN

Kounter := Kounter + 1;

Sum := Sum + Number;

WRITE('Enter element #',Kounter,' (or –1 to end): ');

READLN(Number)

END;

IF Kounter > 1 THEN

Average := Sum / (Kounter – 1);

WRITELN;

WRITELN('Sum of Numbers = ', Sum:0:2);

WRITELN('Average of Numbers = ', Average:0:2);

WRITELN;

WRITELN('Press ENTER to continue..');

READLN

END.

{ -- }

Sample Run:

Enter element #1 (or –1 to end): 1

Enter element #2 (or –1 to end): 2

Enter element #3 (or –1 to end): 3

Enter element #4 (or –1 to end): –1

Sum of Numbers = 6.00

Average of Numbers = 2.00

Press ENTER to continue..

Notice the following points in this program:

� The input statement comes at the end of the loop block so that the input value can

be tested before any processing.

� The average is calculated by dividing the sum by the value of the counter

decremented by one. This is to counteract the extra round which took place when

Number was –1.

� The average is calculated only if the variable Kounter is not equal to 1. This is to

avoid the divide by zero error, in case you want to exit the program without

entering any data. In such a case you would get the following response:

78 � Chapter 4

TE
AM
FL
Y

Team-Fly®

Enter element #1 (or –1 to end): –1

Sum of Numbers = 0.00

Average of Numbers = 0.00

Press ENTER to continue..

Drill 4-4

Use the WHILE loop construct to write a program to display a multiplication table as

in the following example:

1 * X = Y

2 * X = Y

3 * X = Y

4 * X = Y

5 * X = Y

6 * X = Y

7 * X = Y

8 * X = Y

9 * X = Y

...

The value of X is received from the keyboard and the value Y is the multiplication

result.

4-6 The REPEAT Loop

This loop is used to execute a group of statements until a specified condition is met. It

takes the form:

REPEAT

statement-1;

statement-2;

...

statement-n;

UNTIL condition;

As you can see in the form, this loop is ready to execute more than one statement

without using the BEGIN-END blocks. Another difference between the WHILE loop

and the REPEAT loop is that the REPEAT loop is executed at least once, regardless of

the condition, because it starts each round by executing the statements and ends by

testing the condition. In some applications this feature is necessary.

Look at the factorial algorithm using a REPEAT loop:

Iteration Statements � 79

...

Factorial := 1;

Kounter := Number;

REPEAT

Factorial := Factorial * Kounter;

Kounter := Kounter – 1;

UNTIL Kounter = 0;

When Kounter reaches zero (which means that the value 1 was already used up), no

other rounds are needed, and the loop is terminated. You may also use the stepping-up

algorithm, like this:

...

Factorial := 1;

Kounter := 1;

REPEAT

Factorial := Factorial * Kounter;

Kounter := Kounter + 1;

UNTIL Kounter = Number + 1;

In this case the loop is terminated when the value of Kounter reaches Number+1,

which means that the value of Number was already used up.

In the following program this REPEAT loop is nested in a WHILE loop. The program

will be repeatedly executed until you enter 0 to terminate it.

{ ----------------------------- Example 4-9 ---------------------------- }

PROGRAM FactorialProg2(INPUT,OUTPUT);

VAR

Factorial :REAL;

Kounter, Number :INTEGER;

BEGIN

WRITE('Give me a number (or 0 to exit): ');

READLN(Number);

WHILE Number <> 0 DO { Start of the WHILE loop }

BEGIN

Factorial := 1;

Kounter := 1;

REPEAT { Start of the REPEAT loop }

Factorial := Factorial * Kounter;

Kounter := Kounter + 1;

UNTIL Kounter = Number + 1; { End of the REPEAT loop }

WRITELN('The factorial of ', Number,' is ', Factorial:0:0);

WRITE('Give me a number (or 0 to exit): ');

READLN(Number)

END; { End of the WHILE loop }

WRITELN('I am out of here!')

END.

{ -- }

80 � Chapter 4

Notice here that two similar input statements are used, one before the WHILE loop

and one inside it. The first one is used to initialize the variable Kounter before enter-

ing the loop, in order to be ready for testing within the loop.

Sample Run:

Give me a number (or 0 to exit): 3

The factorial of 3 is 6

Give me a number (or 0 to exit): 5

The factorial of 5 is 120

Give me a number (or 0 to exit): 0

I am out of here!

Drill 4-5

Rewrite the last program using an inner FOR loop and an outer WHILE loop.

Application: Prime Numbers

A prime number is an integer greater than 1, whose only positive divisor is 1 and

itself. For example, the prime numbers in the range from 1 to 20 are 2, 3, 5, 7, 11, 13,

17, and 19. The numbers 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, and 20 are not prime num-

bers because they are multiples of other numbers. The following program displays the

prime numbers between 1 and a maximum number N, which is read from the keyboard

at run time. The algorithm used in the program is as follows:

1. Start with the first prime number 2, and go through all the numbers from 2 to N.

2. Check if the current number is a multiple of any smaller number. The number A is a

multiple of another number B if the remainder of integer division (A MOD B) is zero.

3. Exclude the numbers that are multiple of other numbers.

4. Display the remaining numbers, which are all prime numbers.

{ --------------------------- Example 4-10 ---------------------------- }

PROGRAM PrimaryNumbers(INPUT,OUTPUT);

{ This program reads the number N and displays the prime numbers in the }

{ range from 1 to N. }

LABEL

100;

VAR

I, J :INTEGER; {Loop counters}

N :INTEGER; {The maximum limit of the numbers range}

BEGIN

WRITE('Please enter the maximum number in the range: ');

READLN(N);

WRITELN('Prime numbers between ', 1, ' and ', N, ' are:');

FOR I := 2 TO N DO

Iteration Statements � 81

BEGIN

FOR J := 2 TO I–1 DO

BEGIN

IF (I MOD J) = 0 THEN

GOTO 100;

END; {End of J Loop}

WRITELN(I);

100: END; {End of I Loop}

WRITELN('Press ENTER to continue...');

READLN

END.

{ -- }

Sample Run:

Please enter the maximum number in the range: 10

Prime numbers between 1 and 10 are:

2

3

5

7

Press ENTER to continue...

Because you don’t have enough Pascal tools yet, you have to use a GOTO statement

in this program. However, in the next chapter, when you learn how to use arrays, the

prime numbers will be revisited with a stronger algorithm.

Summary

In this chapter you were introduced to three control structures used to build loops.

These structures are:

� The FOR loop

� The WHILE loop

� The REPEAT loop

1. The FOR loop is used to repeat a statement or a block of statements a specified

number of times. The loop takes the general form:

FOR control-variable := expression-1 TO expression-2 DO statement;

where:

control-variable is the loop counter,

expression-1 is the initial value, and

expression-2 is the final value.

2. An alternate form of the FOR loop is used to decrement the counter:

82 � Chapter 4

FOR control-variable := expression-1

DOWNTO expression-2 DO

statement;

3. The WHILE loop is used to execute a statement or a block of statements as long as a

specified condition is TRUE. The construct takes the general form:

WHILE condition DO

statement;

4. With both the FOR and the WHILE loops you can use multiple statements by including

them in a BEGIN-END block.

5. The REPEAT loop is used to execute a group of statements until the specified

condition fails. It takes the general form:

REPEAT

statement-1;

statement-2;

...

statement-n;

UNTIL condition;

6. You understand now that the main difference between the REPEAT loop and the other

two is that the statements inside the REPEAT loop are executed at least once

regardless of the condition.

7. You understand also that the REPEAT loop can handle many statements without using

BEGIN-END blocks.

8. Finally, you learned in this chapter that loop constructs may be nested inside other

constructs (including other loops).

Exercises

1. Determine whether or not each of the following statements is true or false:

a. The body of the WHILE loop is executed at least once.

b. The body of the REPEAT loop is executed at least once.

c. The body of the REPEAT loop, when it contains more that one statement, doesn’t

have to be included between BEGIN and END.

d. The body of the WHILE loop, when it contains more that one statement, doesn’t

have to be included between BEGIN and END.

2. Determine whether or not the following statement is valid. If valid, how many times

should it be executed?

FOR I := 4 DIV 2 TO 8 DIV 2 DO

WRITELN('Hello..');

Iteration Statements � 83

3. Describe the expected output from the following loop:

FOR I := 1 TO 2 DO

FOR J := 1 TO 2 DO

FOR K := 1 TO 2 DO

WRITELN(I,J,K);

How many times will the WRITELN statement be executed if you add a fourth loop?

How many times will the WRITELN statement be executed if you add an nth loop?

4. What is the expected output from the following code?

FOR I := 1 TO 6 DO

BEGIN

FOR J := 1 TO I DO

WRITE('*');

WRITELN;

END;

FOR I := 6 DOWNTO 1 DO

BEGIN

FOR J := I DOWNTO 1 DO

WRITE('*');

WRITELN;

END;

5. Write a program to print the even numbers from 1 to 30.

Answers

1. a. False, b. True, c. True, d. False

2. Valid. The loop is repeated three times.

3. The number of repetitions is 2n, where n is the number of FOR loops.

4. The program displays the figure as shown on the right:

5. You may use the following code segment, which represents the main

algorithm in the program:

FOR I := 1 TO 30 DO

IF (I MOD 2) = 0 THEN

WRITELN(I);

84 � Chapter 4

Chapter 5

Structured and
User-defined
Types

Chapter Topics:

� An overview of standard Pascal types

� Features of the ordinal data types

� Subranges

� Enumerations

� Single-dimensional and multidimensional

arrays

� The TYPE section in Pascal program

� User-defined types

5-1 Classification of Data Types in Pascal

Before you begin using the advanced features of the language, it is best to get an over-

view of the data architecture in Pascal. Standard data types consist of the following

main categories:

85

Standard types:

� Simple types (also known as scalar types)

� Structured types

� Pointer types

The data types explained so far are called simple data types, as opposed to structured

data types. Each datum of a simple data type is one single element, while in structured

types (such as arrays) a datum may contain a collection of items. Pointers are special

types used to build structures such as linked lists and trees.

Simple types are divided into two main categories, ordinal and real types:

Simple types:

� Ordinal types:

� Predefined: INTEGER, CHAR, and BOOLEAN

� User-defined: enumerations and subranges

� Real type: REAL

The structured data types are divided into the following categories:

Structured types:

� Arrays

� Records

� Sets

� Files:

� Predefined: TEXT files

� User-defined: non-TEXT files

In this chapter, you will cover the user-defined simple types (enumerations and

subranges) and arrays. Sets and records are introduced in Chapter 8 and expanded on in

Chapter 10. The file type and its applications are explained in Chapter 9. Pointers are

discussed in Chapters 11 and 12 along with linked lists and trees.

5-2 Ordinal Data Types

Simple types fall into two main categories, ordinal and real types. The ordinal types

include the INTEGER, CHAR, and BOOLEAN types. An ordinal type is distinguished

by data values that form a series of discrete elements such that every element has a

discrete predecessor (except the first element) and successor (except the last ele-

ment). Integers are like that, as they form a set of distinct numbers ranging from

–(MAXINT+1) to +MAXINT. The element 4, for example, is preceded by 3 and fol-

lowed by 5. The type CHAR includes a set of characters ordered sequentially accord-

86 � Chapter 5

ing to their ordinal numbers. The type BOOLEAN contains the set TRUE and FALSE.

The value FALSE has the ordinal number 0 while TRUE has the ordinal number 1.

Real numbers, on the other hand, are not discrete. For example, between the number

0 and 1 there exists an infinite number of fractions. Between any two real numbers,

then, there is another real number.

Enumerations

It is sometimes useful in a program to define days of the week as integers in order to

make the program code more readable. In this case, you need to either assign each day

a number or declare each a named constant as in:

CONST

Monday = 0;

Tuesday = 1;

Wednesday = 2;

Thursday = 3;

Friday = 4;

Saturday = 5;

Sunday = 6;

After these declarations you can refer to any of these days by its name:

IF Today = Sunday THEN

WRITELN('Sorry, we are closed on Sundays..');

In this statement an integer variable Today is tested to check if it is Sunday; in other

words, if it contains the value 6. Using such declarations will take a lot of programming

effort, though, especially when you have a large number of constants (such as the

names of the months).

The enumerated type gives you a shortcut to doing the same thing. Look at the follow-

ing declaration:

VAR

Day :(Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday);

In this declaration, the identifiers representing the months are listed in an ordered

series and separated by commas. Thus, Monday is internally coded as 0 and Sunday is

coded as 6. Other days are represented by numbers between 0 and 6 according to their

sequence in the enumeration. It is, however, illegal to read or write these values

directly as you do with simple types (using WRITELN and READLN statements).

With enumerations you may use any of the following operations:

1. You may assign any one of the enumeration elements to the variable Day like this:

Day := Friday;

but it is illegal to assign an explicit number to the variable Day, such as Day := 1. This

feature assures that the enumeration will only be assigned valid data.

Structured and User-defined Types � 87

2. You can obtain and use the values associated with the enumeration elements using the

ORD function. For example:

WRITELN(ORD(Monday)); gives the value 0

WRITELN(ORD(Tuesday)); gives the value 1

3. You may also use the functions PRED and SUCC to obtain the predecessor and the

successor of a specified element:

WRITELN(PRED(Friday)); gives the value 3

WRITELN(SUCC(Monday)); gives the value 1

4. You can compare values of the enumerated type using the Boolean operators (simple or

compound), like this:

IF (Day = Saturday) OR (Day = Sunday) THEN

WRITELN('This is a weekend day.');

Again, you cannot use the explicit values in comparisons such as IF Day = 2. This

results in an error.

In the following program a FOR loop uses the enumeration Month to display the cor-

responding integer values from 0 to 11.

{ ----------------------------- Example 5-1 ---------------------------- }

PROGRAM Enumeration1(OUTPUT);

VAR

Month :(Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec);

BEGIN

WRITELN;

FOR Month := Jan TO Dec DO

WRITE(ORD(Month),' ')

END.

{ -- }

Output:

0 1 2 3 4 5 6 7 8 9 10 11

Notice that the values corresponding to the twelve months range from 0 to 11. If you

would like to see the values range from 1 to 12 as the months in the calendar do, you

can use the expression ORD(month)+1 instead of the expression ORD(month).

The enumerated type is an ordinal data type and is classified as a user-defined type.

Subranges

The subrange, another user-defined ordinal type, helps to eliminate out-of-range data.

For example, instead of using the INTEGER type to represent the month numbers,

you can declare the variable Month as a subrange like this:

VAR

Month : 1..12;

88 � Chapter 5

TE
AM
FL
Y

Team-Fly®

As such, any value outside the range 1 to 12 will be considered an error either in com-

pilation or at run time. In other words, you cannot, after this declaration, write a state-

ment like this in your program :

Month := 13; ---> illegal statement

Also, if a user responds to an input statement by entering an out-of-range number, the

program will issue the proper error message, though with some compilers you have to

set a switch to make the compiler detect out-of-range errors.

The type used to represent month values in this example is INTEGER. It is called the

base type of the subrange. You may use any ordinal type as the base type. For example,

you can declare the uppercase letters as a subrange using the base type CHAR as fol-

lows:

VAR

Uppercase : 'A'..'Z'

In this case, only the uppercase letters will be permitted as data for the subrange

Uppercase.

The following example demonstrates the use of a subrange to represent months, fol-

lowed by a CASE statement to classify months as seasons. The program prompts you

to enter the month number, and displays the season to which this month belongs.

{ ----------------------------- Example 5-2 ---------------------------- }

PROGRAM Subrange1(INPUT,OUTPUT);

VAR

MonthNumber :1..12;

BEGIN

WRITE('Please enter the number of the month: ');

READLN(MonthNumber);

CASE MonthNumber OF

12, 1 ,2 :WRITELN('This is wintertime.');

3, 4, 5 :WRITELN('This is springtime.');

6, 7, 8 :WRITELN('This is summertime.');

9, 10, 11 :WRITELN('This is autumn.')

END

END.

{ -- }

The following are two sample runs. The second one gave a runtime error message

because the number 14 was entered as a month number.

Sample Runs:

Run 1:

Please enter the number of the month: 2

This is wintertime.

Structured and User-defined Types � 89

Run 2:

Please enter the number of the month: 14

Runtime error 201 at 0000:00BE.

The subrange, in general, can be a subset of any previously defined sequence (of the

ordinal type). So, if the enumeration Day has already been defined in your program,

you may then define a subrange like this:

VAR

WorkingDay : Monday..Friday;

This is valid because the words Monday and Friday are already known to the compiler.

Restrictions on Using Enumerations and Subranges

� The first element in a subrange must be less than the last one.

� Though a subrange can be a subset of an enumeration, an enumeration cannot use

elements from another enumeration.

� The enumeration elements cannot be used as identifiers for other variables. It is

the same as declaring the same variable identifier twice in one program.

Drill 5-1

Write a declaration to define the following subranges:

A. The uppercase letters

B. The lowercase letters

C. The decimal digits

Accept values that correspond to each subrange and display them preceded by the

proper message. The output may look something like this:

Lowercase letter : r

Uppercase letter : T

Digit : 5

5-3 The TYPE Section

The enumerations and subranges are usually associated with the TYPE statement,

which is used to declare new user-defined types or to rename predefined types. The

TYPE statement comes in the TYPE section of the declaration part. It takes the form:

TYPE

type-name = type-definition;

90 � Chapter 5

where type-name is the type identifier, and type-definition is a predefined type or new

type definition.

Renaming Types

It is possible to rename any data type, even the simple types such as INTEGER, as in

this example:

TYPE

Day = INTEGER;

In this declaration the type INTEGER is given a new name (Day). Thus, in the VAR

section, you can declare some other variables of the type Day like this:

VAR

Holiday, Yesterday, Tomorrow : Day;

The type Day is actually the type INTEGER, but given another name (a synonym). In

your program, you may use either one of the two names (INTEGER or Day) because

the type INTEGER is still recognized by the compiler. This is not, however, the

proper use of the TYPE statement. It is meant to be used for naming types such as

enumerations and subranges.

Naming User-Defined Types

Instead of declaring enumerations and subranges in the VAR section, it would be

better to declare them as types. Look at these declarations:

TYPE

Day = (Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday);

WorkingDay = Monday..Friday;

Here, two new types are declared: the enumerated type Day and the subrange

WorkingDay. Notice that the subrange is defined as a subset of the enumeration Day.

Needless to say, the enumeration declaration must come first in this case.

You can use these new types in the VAR section to declare variables in the same way

you use the predefined types of the language. Thus:

VAR

Today, Yesterday, Tomorrow, Holiday :Day;

DayOff :WorkingDay;

The use of the TYPE statement saves you the effort of writing long declarations for

the enumeration variables Today, Yesterday, Tomorrow, and Holiday. They are all sim-

ply of the type Day.

Now in your program you may write assignment statements like the following:

Holiday := Friday;

DayOff := Tuesday;

Structured and User-defined Types � 91

Tomorrow := Sunday;

In order to see the values contained in your variables, use an output statement such

as:

WRITELN(ORD(Holiday), ', ',ORD(DayOff),', ', ORD(Tomorrow));

In this case, the statement will give you the values 4, 1, and 6 respectively.

In standard Pascal the TYPE section should come in the following sequence relative to

the other sections:

LABEL section

CONST section

TYPE section

VAR section

In Turbo Pascal, as mentioned before, the order is not important, but the TYPE sec-

tion should still precede the VAR section because it contains the definitions of the

user-defined types.

Drill 5-2

Which of the following declarations are valid if they all come in one program?

TYPE

{1} Football = (Saints, Cowboys);

{2} Games = (Football, Baseball, Basketball)

{3} Week = (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

{4} Weekend = Sat..Sun;

{5} Compiler = (C, Pascal, Fortran, Ada, Basic);

VAR

{6} WholeWeek :Week;

{7} WorkingDay :(Mon, Tue, Wed, Fri);

{8} Weekday :Mon..Fri;

{9} SW :(Compiler, OperatingSystem, ApplicationProgram);

{10} DpTools :(Hardware, Software, PeopleWare);

{11} DpTool :(HW, SW, PW);

{12} C :(TurboC, QuickC);

{13} Margin : –10..+10;

5-4 Arrays

If you would like to represent the names of the players on a football team using only

simple data types, you would need to use one variable for each player’s name. In such

a case, you would need too many variables, such as:

92 � Chapter 5

FirstPlayer

SecondPlayer

ThirdPlayer

...

This is not a good idea. Now imagine the case if you were dealing with a class of one

hundred students. It would be almost impossible to use one hundred variables to store

names.

The practical way to store this kind of data is to use the array data structure, which is

useful for storing a collection of related data items. In the case of the football team you

would need to declare only one subscripted variable, and you would represent your

data like this:

Player[1]

Player[2]

Player[3]

...

The name of the variable is Player, and the number between the brackets is called the

subscript or index. Changing the index gives you a new memory location in which to

store a new name. This type of data structure is called a one-dimensional array. It is

useful to represent data such as names of a group of people, scores of one student in

several classes, or any similar set of related items (see Table 5-1).

Table 5-1: Example of a one-dimensional array

Player[1] Player[2] Player[3] Player[4] Player[5] …

Able Baker Charlie John Sam …

In Chapter 2 you met a special type of one-dimensional array (the PACKED ARRAY

OF CHAR), which is used to store a string of text in standard Pascal, and you already

know that each element (character) in this array is referred to by a number (index).

In other applications you may need a two-dimensional array, which is capable of han-

dling more complicated structures. For example, suppose that you want to store the

scores of a group of students in different classes, as represented in Table 5-2.

Each element in this table is related to a row (the student number) and a column (the

class number); these are the two dimensions of the array. The data item itself is a real

number.

Structured and User-defined Types � 93

Table 5-2: Example of a two-dimensional array

Class # (second index)

1 2 3 4 5

Student #

(first index)

1

2

3

...

100

55.5 60.9 66.5 80.3 70.5

89.1 77.6 99.9 88.7 50.3

40.5 67.4 90.5 45.1 66.9

...

68.8 87.2 90.4 60.1 60.4

To represent the data in this table your variables will look something like this:

StudentScore[3][4]

This variable represents the score of student #3 in class #4; in other words, the num-

ber at the intersection of row #3 and column #4. You may assign a numeric value

which represents a score to this variable, thus:

StudentScore[3][4] := 45.1;

Compare now the following assignment statements to the values in the table:

StudentScore[1][1] := 55.5; {the score of student #1 in class #1}

StudentScore[1][2] := 60.9; {the score of student #1 in class #2}

StudentScore[3][5] := 66.9; {the score of student #3 in class #5}

StudentScore[100][2] := 87.2; {the score of student #100 in class #2}

Arrays are classified as structured data types (as opposed to the simple [or unstruc-

tured] types you have used thus far). There are many other structured data types in

Pascal which are useful for different applications.

As a matter of fact, the quality of a program is mainly measured by two criteria:

� The structural efficiency of the program; that is, how readable, easy to debug, and

prone to errors it is

� The use of the most efficient data structures applicable, to save time and enable

the program to manipulate data in the most efficient way

Note: An array variable may be called either a subscripted variable
or an indexed variable. The array elements referred to by the array
variables are also called array components. In mathematics, a
one-dimensional array is called a vector, while a two-dimensional array
is called a matrix. You may come across these names in mathematical
applications.

94 � Chapter 5

5-5 One-Dimensional Arrays

A one-dimensional array is declared using the following form:

VAR

array-name : ARRAY[index-range] OF element-type;

If you want, for example, to declare an array to store test scores of ten students as real

numbers, you can declare your array like this:

VAR

Score : ARRAY[1..10] OF REAL;

This array (named Score) can hold up to ten real numbers. The index range [1..10]

indicates that the indexes of the array elements start from 1 and end at 10. The index

range, which is a subrange (of integers in this example), can be of any ordinal type, but

the array elements can be of any data type. The above declaration, then, reserves a

sequence of ten memory locations in which to store ten REAL values of ten array ele-

ments.

Application: Scores of One Student

In the following program the array Score is used to store the scores of one student in

six different classes. The scores are entered from the keyboard, then the sum and

average of the scores are displayed.

{ ----------------------------- Example 5-3 ---------------------------- }

PROGRAM Scores1(INPUT,OUTPUT);

CONST

NumberOfClasses = 6;

VAR

Score :ARRAY[1..NumberOfClasses] OF REAL;

Average, SumOfScores :REAL;

Index :INTEGER;

BEGIN

{ Read the scores array }

{ --------------------- }

FOR Index := 1 TO NumberOfClasses DO

BEGIN

WRITE('Enter score for class #', Index,': ');

READLN(Score[Index])

END;

{ Calculate the sum }

{ ----------------- }

SumOfScores := 0;

FOR Index := 1 TO NumberOfClasses DO

SumOfScores := SumOfScores + Score[Index];

{ Calculate the average }

{ --------------------- }

Structured and User-defined Types � 95

Average := SumOfScores / NumberOfClasses;

{ Display Results }

{ --------------- }

WRITELN;

WRITELN('Sum of scores = ', SumOfScores:0:2);

WRITELN('Average of scores = ', Average:0:2);

WRITELN;

WRITELN('Press ENTER to continue..');

READLN

END.

{ -- }

Sample Run:

Enter score for class #1: 90

Enter score for class #2: 80

Enter score for class #3: 85

Enter score for class #4: 75

Enter score for class #5: 89

Enter score for class #6: 91

Sum of scores = 510.00

Average of scores = 85.00

Press ENTER to continue..

The following points in this program are worthy of your attention:

1. The size of the array is declared as a constant (NumberOfClasses).

2. The index-range of the array is declared using the previously defined constant

NumberOfClasses as follows:

Score :ARRAY[1..NumberOfClasses] OF REAL;

This is the same as:

Score :ARRAY[1..6] OF REAL;

The first declaration, however, is much better, because if you would like to process a

different number of classes, you just change the value of the constant

NumberOfClasses without modifying the program main body.

3. Notice that after the program reads the scores, they are stored in the array elements

and are available in memory. This means that the sum can be processed later in the

program. When you calculated the sum and the average of some numbers before

(Example 4-4), you had to accumulate the values during data entry in one variable Sum.

Now, you have six variables.

4. The index of the array is used as a counter in the FOR loops, both for reading data and

calculating the sum. Actually, the index of the array is very useful for displaying results,

especially if you like to display the results in table form.

96 � Chapter 5

Application: Displaying Tabulated Results

The following program deals with the same problem but displays the results in a tabu-

lated form.

{ ----------------------------- Example 5-4 ---------------------------- }

PROGRAM Scores2(INPUT,OUTPUT);

CONST

NumberOfClasses = 6;

Tab = CHR(9);

VAR

Score :ARRAY[1..NumberOfClasses] OF REAL;

Average, SumOfScores :REAL;

Index :INTEGER;

BEGIN

{ Read the scores array }

{ ------------------ }

FOR Index := 1 TO NumberOfClasses DO

BEGIN

WRITE('Enter score for class #', Index,': ');

READLN(Score[Index])

END;

{ Calculate the sum }

{ --------------- }

SumOfScores := 0;

FOR Index := 1 TO NumberOfClasses DO

SumOfScores := SumOfScores + Score[Index];

{ Calculate the average }

{ ------------------ }

Average := SumOfScores / NumberOfClasses;

{ Display Results }

{ ------------- }

WRITELN;

WRITELN(Tab,'CLASS #');

WRITE(' '); { 6 spaces }

FOR Index := 1 TO NumberOfClasses DO

WRITE(Index:7);

WRITELN;

WRITE(Tab);

FOR Index := 1 TO NumberOfClasses DO

WRITE('-------');

WRITELN;

WRITE('SCORES ');

FOR Index := 1 TO NumberOfClasses DO

WRITE(Score[Index]:7:2);

WRITELN;

WRITE(Tab);

FOR Index := 1 TO NumberOfClasses DO

WRITE('-------');

WRITELN;

Structured and User-defined Types � 97

WRITELN(Tab,'Sum of scores = ', SumOfScores:0:2);

WRITELN(Tab,'Average of scores = ', Average:0:2);

WRITELN;

WRITELN('Press ENTER to continue..');

READLN

END.

{ -- }

Sample Run:

Enter score for class #1: 90.5

Enter score for class #2: 80.5

Enter score for class #3: 86.2

Enter score for class #4: 90.3

Enter score for class #5: 74.8

Enter score for class #6: 98.5

CLASS #

1 2 3 4 5 6

--

SCORES 90.50 80.50 86.20 90.30 74.80 98.50

--

Sum of scores = 520.80

Average of scores = 86.80

Press ENTER to continue..

In this program extensive use of loops has been made to display the dashed lines, the

class numbers, and the scores; this makes the program more generic. For example,

the dashed line could be displayed using the statement:

WRITELN(' --');

This is useful only for six classes, but the following statements:

WRITE(Tab);

FOR Index := 1 TO NumberOfClasses DO

WRITE('-------');

are useful for any number of classes, because a seven-dash segment is displayed for

each class. Thus, if you had only four classes, the output would look like this:

CLASS #

1 2 3 4

SCORES 80.00 90.00 85.00 75.00

Sum of scores = 330.00

Average of scores = 82.50

Notice that the number of dashes is equal to the field width specified in the output for-

mat of Score and Index:

WRITE(Index:7);

98 � Chapter 5

TE
AM
FL
Y

Team-Fly®

WRITE(Score[Index]:7:2);

Note also the use of the constant Tab for proper indentation of the output. The control

character CHR(9) is used as a value of this constant (See the horizontal tab HT in the

Control Characters table in Appendix A). You can also design your own tab by using a

literal constant to specify the number of required spaces, for example:

Tab = ' ';

A weak point of this program is that we have to repeat the same lines of code every

time we want to draw a line. Such repetitive tasks can instead be programmed sepa-

rately as procedures and called whenever wanted. This is discussed later in the book.

Drill 5-3

Write a Pascal program to read and store the test scores of five students, then display

the output as shown below:

Student # Score

1 90.00

2 88.00

3 91.00

4 78.00

5 75.00

Average score = 84.40

Application: Prime Numbers—Version 2

In Chapter 4, you wrote the prime numbers program using a GOTO statement, which

is not a good programming technique. In this version, you can make use of arrays to

store a group of numbers and build a Boolean sieve to filter out all the numbers except

the prime ones.

{ --------------------------- Example 5-5 ------------------------------ }

PROGRAM PrimeNumbers2(INPUT,OUTPUT);

{This algorithm extracts the prime numbers from a set of integers from 1}

{to NumberOfElements. It starts with an array of TRUE Boolean elements.}

{Then it excludes all the multiples and sets their status to FALSE.}

{Finally, it prints the TRUE elements, which are the prime numbers.}

CONST

Size = 200; {The maximum size of the array}

VAR

Flags :ARRAY[1..Size] OF BOOLEAN;

Prime :INTEGER; {Prime number temporary variable}

NotPrime :INTEGER; {Counter for excluded numbers}

PrimeCount :INTEGER; {Counter of prime numbers}

Structured and User-defined Types � 99

I :INTEGER; {General loop counter}

NumberOfElements :INTEGER; {Actual number of elements}

BEGIN

{Read number of elements}

WRITE('Please enter the number of elements: ');

READLN(NumberOfElements);

{Initialize variables}

Prime := 2; { First prime }

NotPrime := Prime * 2; { First excluded multiple }

PrimeCount := 0; { Number of primes }

I := 1; { Array counter }

{Set all the array elements to TRUE}

WHILE I <= NumberOfElements DO

BEGIN

Flags[I] := TRUE;

I := I +1;

END;

{The actual algorithm loop}

WRITELN('Prime numbers from 1 to ', NumberOfElements, ' :');

WHILE Prime <= NumberOfElements DO

BEGIN

{Select only the TRUE elements}

IF Flags[Prime] = TRUE THEN

BEGIN

{Start with the first multiple}

NotPrime := Prime*2;

WHILE NotPrime <= NumberOfElements DO

BEGIN

{Exclude multiples}

Flags[NotPrime] := FALSE;

NotPrime := NotPrime + Prime;

END;

{After the WHILE loop, all the primes are TRUE}

PrimeCount := PrimeCount +1;

WRITELN(Prime);

END;

{Increment the WHILE counter}

Prime := Prime + 1;

END;

WRITELN('Number of primes = ', PrimeCount);

WRITELN('Press ENTER to continue..');

READLN

END.

{ -- }

Sample Runs:

Run 1:

Please enter the number of elements: 19

Prime numbers from 1 to 19:

100 � Chapter 5

2

3

5

7

11

13

17

19

Number of primes = 8

Press ENTER to continue…

Run 2:

Please enter the number of elements: 5

Prime numbers from 1 to 5:

2

3

5

Number of primes = 3

Press ENTER to continue…

Declaration of Arrays in the Type Section

It is preferable that array declarations be associated with the TYPE statement, as in

this example:

TYPE

AnArray = ARRAY[1..6] OF INTEGER;

VAR

MyArray :AnArray;

In this case you can declare more than one array of the type AnArray in the VAR sec-

tion:

VAR

YourArray, MyArray :AnArray;

It is also possible to use a previously declared subrange as an index range for an array,

like this:

TYPE

MyRange = 1..6;

AnArray = ARRAY[MyRange] OF INTEGER;

VAR

MyArray :AnArray;

Although we have started our arrays from the index 1, there is no obligation to do so.

The index range can be any valid subrange, but you must always remember not to

exceed the defined index range.

Structured and User-defined Types � 101

Application: Sorting an Array

If you would like to sort some numbers (or names), the best way is to store them in an

array, then use one of the sorting algorithms. A simple way (but not the most efficient)

to sort numbers in an ascending order is known as the bubble sort. The algorithm is as

follows:

1. Compare the first element to the second one. If the first element is greater, swap them.

2. Repeat the comparison between the first element and each of the rest of the array

elements. If it is greater than any element, swap them.

3. By the end of these comparisons the first element will be the smallest in the array.

4. Repeat the previous steps for the second element, the third, and so on until the

next-to-last element.

After this process is completed, the array will be sorted in an ascending order. This

algorithm is demonstrated in the following program. The comparisons need two

nested loops. The outer loop (index I) starts from the first element (I=1) and ends

before the last element (I=ArraySize–1). The inner loop (index J) starts one step after

the start of the outer loop (J=I+1) and goes all the way to the last element

(J=ArraySize).

{ ----------------------------- Example 5-6 ---------------------------- }

PROGRAM Sorting(INPUT,OUTPUT);

CONST

ArraySize = 6;

TYPE

Range = 1..ArraySize;

NumbersArray = ARRAY[Range] OF INTEGER;

VAR

Numbers :NumbersArray;

I, J , Pot :INTEGER;

BEGIN

{ Read the array }

{ -------------- }

FOR I := 1 TO ArraySize DO

BEGIN

WRITE('Enter element #', I,': ');

READLN(Numbers[I])

END;

{ Sort the array }

{ -------------- }

FOR I := 1 TO ArraySize–1 DO { outer loop }

BEGIN { optional block }

FOR J := I+1 TO ArraySize DO { inner loop }

BEGIN

IF Numbers[I] > Numbers[J] THEN

BEGIN { swap contents }

Pot := Numbers[J];

102 � Chapter 5

Numbers[J] := Numbers[I];

Numbers[I] := Pot

END

END { end of inner loop }

END; { end of outer loop }

{ Display Results }

{ --------------- }

WRITELN;

WRITELN('The sorted array is:');

FOR I := 1 TO ArraySize DO

WRITELN(Numbers[I]);

WRITELN('Press ENTER to continue..');

READLN

END.

{ -- }

Sample Run:

Enter element #1: 6

Enter element #2: 33

Enter element #3: 4

Enter element #4: 2

Enter element #5: 55

Enter element #6: 9

The sorted array is:

2

4

6

9

33

55

Press ENTER to continue..

Swapping the contents of two elements is done by using a third variable (Pot) to hold

the contents of one variable temporarily, thus:

Pot := Numbers[J];

Numbers[J] := Numbers[I];

Numbers[I] := Pot

This process is similar to swapping the contents of two cups, one of which contains

coffee and the other tea; all you need is an empty cup (Pot).

To have the array sorted in descending order, simply reverse the greater than process

to less than.

In order to sort arrays of different sizes, you can read the number of elements during

the execution of the program. To do that, declare a maximum size for the array, for

example 100, and the actual size, which must be less than the maximum size. You can

then read the actual size by using either one of the following ways:

Structured and User-defined Types � 103

1. Set a counter that is incremented each time you enter an element from the keyboard.

When you finish entering all the array elements, this counter will contain the number

of elements.

2. Read the number of elements from the keyboard and use it as a limit for the FOR loop

that reads the array elements. The sorting program will be revisited and enhanced in

Chapter 12.

Drill 5-4

Modify your program from Drill 5-3 to display the best score and the number of the

highest scoring student in the class. The output should look like this:

Student # Score

1 70.00

2 88.00

3 67.00

4 90.00

5 86.00

Average score = 80.20

The best score = 90.00

The best of the class is student #4

You may use the following algorithm to obtain the highest number in the array of

scores:

1. Store the score of the first student in a variable such as BestScore, and the

index of that student in a variable BestOfClass.

2. Starting from the second element in the array of scores, and continuing all

the way to the end, repeat the following comparison:

3. If any number is greater than BestScore, store it in BestScore and store its

index in BestOfClass.

4. By the end of the loop, the variable BestScore will contain the highest score,

and the corresponding student number will be stored in BestOfClass.

5-6 Multidimensional Arrays

To declare a two-dimensional array, use the form:

VAR

array-name : ARRAY[index-range-1, index-range-2] OF element-type;

You may also declare it in the type section as follows:

104 � Chapter 5

TYPE

type-name = ARRAY[index-range-1, index-range-2] OF element-type;

where index-range-1 and index-range-2 are the ranges of the first and second dimen-

sions.

Look at this declaration:

TYPE

Score = ARRAY[1..100, 1..6] OF INTEGER;

This statement declares an array Score, which can store the scores of 100 students in

six different classes; generally speaking, it can store up to 600 integers. As you can

see, each dimension is represented by a subrange.

You can also declare a multidimensional array of any number of dimensions using the

general form:

TYPE

type-name = ARRAY[index-range-1, index-range-2,

..., index-range-n] OF element-type;

In most applications, however, you will not need more than two dimensions.

Application: Scores of Students

The following program is used to read the scores of a number of students in different

classes as represented in Table 5-2. For simplicity of demonstration, only four stu-

dents and three classes will be considered; you can, however, modify the number of

students or classes by simply changing the values of the two constants

NumberOfClasses and NumberOfStudents.

{ ----------------------------- Example 5-7 ---------------------------- }

PROGRAM Scores3(INPUT,OUTPUT);

{ using two-dimensional array }

CONST

NumberOfClasses = 3; { Change this number for more classes }

NumberOfStudents = 4; { Change this number for more students }

Tab = ' '; { 7 spaces }

Dash = '-';

NumberOfDashes = 23;

TYPE

ScoreArray = ARRAY[1..NumberOfStudents, 1..NumberOfClasses] OF REAL;

AverageArray = ARRAY[1..NumberOfStudents] OF REAL;

VAR

Score :ScoreArray;

Average :AverageArray;

SumOfScores :REAL;

StudentCount, ScoreCount, DashCount :INTEGER;

BEGIN

{ Read the scores array }

Structured and User-defined Types � 105

{ --------------------- }

FOR StudentCount := 1 TO NumberOfStudents DO

BEGIN

WRITELN;

WRITELN('Scores of student #', StudentCount,': ');

FOR ScoreCount := 1 TO NumberOfClasses DO

BEGIN

WRITE('Enter score for class #', ScoreCount,': ');

READLN(Score[StudentCount, ScoreCount])

END;

END;

{ Calculate the average for each student }

{ -------------------------------------- }

FOR StudentCount := 1 TO NumberOfStudents DO

BEGIN

SumOfScores := 0; { Initialize for each student }

FOR ScoreCount := 1 TO NumberOfClasses DO

SumOfScores := SumOfScores + Score[StudentCount, ScoreCount];

Average[StudentCount] := SumOfScores/NumberOfClasses

END;

{ Display results }

{ --------------- }

WRITELN;

WRITELN(Tab, 'Student #', Tab, 'Average');

WRITE(Tab);

FOR DashCount := 1 TO NumberOfDashes DO

WRITE(Dash);

WRITELN;

FOR StudentCount := 1 TO NumberOfStudents DO

WRITELN(Tab, StudentCount:3, Tab, Average[StudentCount]:12:2);

WRITE(Tab);

FOR DashCount := 1 TO NumberOfDashes DO

WRITE(Dash);

WRITELN;

WRITELN('Press ENTER to continue..');

READLN

END.

{ -- }

Sample Run:

Scores of student #1:

Enter score for class #1: 90

Enter score for class #2: 89

Enter score for class #3: 93

Scores of student #2:

Enter score for class #1: 80

Enter score for class #2: 70

106 � Chapter 5

Enter score for class #3: 60

Scores of student #3:

Enter score for class #1: 77

Enter score for class #2: 78

Enter score for class #3: 90

Scores of student #4:

Enter score for class #1: 91

Enter score for class #2: 94

Enter score for class #3: 95

Student # Average

1 90.67

2 70.00

3 81.67

4 93.33

Press ENTER to continue..

Notice the following in this program:

1. Two types of arrays were declared in the TYPE section, a two-dimensional array

ScoreArray and a one-dimensional array AverageArray. These type identifiers are used

in the VAR section to declare the two arrays Score and Average. The first array is used

to store the scores of the four students in three classes, while the second is used to

hold the averages of the four students (which are, of course, only four values).

2. Data are read through two loops, using the index StudentCount as a counter of

students in the outer loop and ScoreCount as a counter of scores in the inner loop.

Each value read from the keyboard is assigned to the general array variable:

Score[StudentCount, ScoreCount]

The exact location of the array element is determined by the two indexes

StudentCount and ScoreCount.

3. The average of scores is calculated for each student and stored in the array variable:

Average[StudentCount]

The index StudentCount indicates which student has each average.

4. Notice the initialization of the variable SumOfScores before the average calculation.

This is a very important step because if it is not done, the average of the previous

student will remain in the variable and be added to the new average.

Structured and User-defined Types � 107

Array Initialization

If you are assigning values to only some of the elements of an uninitialized array, do

not expect that the rest of the elements will contain zeros. In such applications you

have to initialize the whole array using a loop like this:

FOR I := 1 TO N DO

MyArray[I] := 0;

You need another loop if the array is two-dimensional:

FOR I := 1 TO N DO

FOR J := 1 TO M DO

MyArray[I,J] := 0;

In the last example, we assigned values to each element of the array, so there was no

need for initialization.

Drill 5-5

Modify the last program to display the students’ names in descending order according

to their scores, as in this example:

Student name Average

Porter, Thomas 84.00

Dalton, Jack 83.33

Dixon, Jane 83.33

Bobbin, Dale 66.67

Summary

In this chapter you have had an overview of all Pascal data types.

1. You know that types are either predefined or user-defined. You also know that data

types are either simple or structured.

2. You now know that simple data types are classified as either real or ordinal types. Of

the ordinal types, you learned how to use the user-defined types, enumerations, and

subranges.

3. You learned how to use the TYPE statement to declare a new type or rename a

predefined type. It takes the general form:

TYPE

type-name = type-definition;

108 � Chapter 5

TE
AM
FL
Y

Team-Fly®

In standard Pascal the relative sequence of the TYPE section among the other sec-

tions in the declaration part is as follows:

LABEL section

CONST section

TYPE section

VAR section

4. You learned about the array as a predefined structured data type that may be declared

either in the TYPE section or VAR section. You also learned how to declare and use

both one- and two-dimensional arrays. The general form to declare an array of any

number of dimensions (in the TYPE section) is:

TYPE

type-name = ARRAY[index-range-1, index-range-2,

..., index-range-n] OF element-type;

Exercises

1. Determine whether or not the following TYPE section declarations are valid:

TYPE

{a} Size = 1..100 DIV 2;

{b} Size1 = 1..200;

{c} Size2 = 1..100/2;

{d} Color = (Red, Green, Blue);

{e} int = INTEGER;

2. Using the correct declarations in question #1, determine whether or not the following

VAR section declarations are valid:

VAR

{a} MyArray :ARRAY[Size] OF INTEGER;

{b} HisArray :ARRAY[1..Size] OF INTEGER;

{c} YourArray :ARRAY[Color] OF int;

{d} HerArray :ARRAY[1..Color] OF INTEGER;

{e} Score :ARRAY[1..5, Size] of REAL;

{f} I :int;

{g} Colors :(Red, Green, Blue);

{h} ColorsComp :(Cyan, Magenta, Yellow);

{i} Subrange1 :1..12 DIV 2;

{j} Subrange2 :1..7;

3. Using the correct declarations in questions #1 and #2, determine whether or not the

following statements are valid:

{a} FOR I := 1 TO 5 DO

BEGIN

MyArray[I]:= I;

WRITE(MyArray[I]);

END;

WRITELN;

Structured and User-defined Types � 109

{b} FOR I := 0 TO 2 DO

WRITE(YourArray[color]);

{c} FOR I:= Red TO Blue DO

WRITE(YourArray[I);

{d} ColorsComp := Yellow;

{e} ColorsComp := Cyan + 1;

{f} WRITELN(ORD(Cyan), ' ', ORD(Yellow));

{g} WRITELN(Cyan);

4. If you have the following declaration in your program:

VAR

Day :(Mon, Tue, Wed, Thu, Fri, Sat, Sun);

determine whether or not the following CASE statement is valid:

CASE Day OF

Mon..Fri:

WRITELN('Working Day.');

Sat..Sun:

WRITELN('Weekend Day.');

END;

Answers

1. The only invalid declaration is c.

2. Invalid declarations are b, d, and g.

3. Invalid statements are b, c, e, and g.

4. Valid—the case selector can be of any ordinal type.

110 � Chapter 5

Chapter 6

Working with Text

Chapter Topics:

� Understanding the standard input and

output files: the keyboard and the screen

� Using the input and output statements

with numbers, strings, characters, and

mixed types of data

� Reading and manipulating text files using

the Boolean functions: EOLN and EOF

� Sorting strings

� The string functions: LENGTH, CONCAT,

COPY, and POS

� The string procedures: INSERT and

DELETE

6-1 Standard Input and Output Files

In this chapter, you learn to use characters and strings to manipulate text data, paying

special attention to input and output of characters and strings using the keyboard and

the screen. These devices are treated as files; they are referred to as the standard

INPUT file (the keyboard), and the standard OUTPUT file (the screen).

111

6-2 Tips on Output Statements

If you would like to display many lines of text, or display numeric results on separate

lines, you can use as many WRITELN statements as the number of required lines.

Another way to do this (one requiring less effort) is to use the ASCII control codes 13

(carriage return) and 10 (line feed) whenever a new line is required. You can then use

one WRITE or WRITELN statement to print all of the results. With most microcom-

puter systems the carriage return/line feed pair is interpreted as the end-of-line mark.

In the following example the control character CHR(10) is declared as a named con-

stant LF (a common abbreviation for Line Feed), and the control character CHR(13) as

CR (a common abbreviation for Carriage Return). The combination of the two charac-

ters CR and LF gives the same effect as pressing Enter.

{ ----------------------------- Example 6-1 ---------------------------- }

PROGRAM Display1(INPUT,OUTPUT);

CONST

LF = CHR(10);

CR = CHR(13);

VAR

X, Y, Z :INTEGER;

BEGIN

WRITE('Enter three integers: ');

READLN(X, Y, Z);

WRITELN('X=', X, CR, LF, 'Y=', Y, CR, LF, 'Z=', Z)

END.

{ -- }

Sample Run:

Enter three integers: 11 22 33

X=11

Y=22

Z=33

If you tried this program using the LF only, you would get the following output:

X=11

Y=22

Z=33

Try it now using the CR only, and you will find that the last result overwrites the first

two. The output will be only one line like this:

Z=33

112 � Chapter 6

6-3 Tips on Input Statements

When you use the input statements READ or READLN some pitfalls can occur during

successive reads, especially with character input. For this reason it is important to

understand how the input statements work with different types of data.

When a READ or a READLN statement is executed, values are stored in the standard

INPUT file (the keyboard). The stored values are then read from this file and assigned

to the variables specified in the input list. Each time you press the Enter key, an

end-of-line mark is written to the INPUT file.

Using READLN for Numeric Input

Assume that your input contains the following numbers:

123 45 678 <Enter>

You may imagine that the numbers are stored in the INPUT file as in the following

figure:

The end-of-line mark is shown at the last location and is indicated by the asterisk (*).

At the first location, there is a little arrow (called the file pointer) pointing to the

beginning of the file. Consider now that these values are read by the following state-

ment:

READLN(X, Y, Z);

After the first integer (123) is read and assigned to the variable X, the pointer moves

to the space before the second numeric value (45). The second value is then read and

assigned to the variable Y, and the pointer moves to the space before the third value.

When the third value is read and assigned to Z, all of the variables will have been

assigned values, and the pointer moves past the end-of-line mark, where the work of

the READLN statement ends. If you leave more than one space between numeric val-

ues, the extra spaces will be ignored and you will still get correct results.

Suppose now that you entered a fourth value by mistake :

123 45 678 90 <Enter>

The last value (90) will be ignored by the program, as the pointer will move past the

end-of-line mark after the three values are read, in order to be ready for a subsequent

read.

Working with Text � 113

1 2 3 4 5 6 7 8 *

file pointer ^

Note: This feature of the READLN statement is inherited from the
old days when data were read from punched cards (each card
represents a line of data). The READLN was used to read only a
specific number of items and eject to the next card.

You may also enter your numeric values separated by the Enter key, in which case

each numeric value will be followed by the end-of-line mark like this:

As long as the three variables have not yet been assigned values, the end-of-line

marks between the values are treated as spaces and are thus ignored. The pointer

moves from one end-of-line mark to another until all of the values have been read,

then the pointer moves past the end of the next end-of-line mark, ending the

READLN statement. Try the following program (which contains two READLN state-

ments) using the values shown in the sample runs.

{ ----------------------------- Example 6-2 ---------------------------- }

PROGRAM ReadLnNumbers(INPUT,OUTPUT);

CONST

CR = CHR(13);

LF = CHR(10);

VAR

A, C , D, E :INTEGER;

B :REAL;

BEGIN

WRITE('Enter A, B, C: ');

{ If you enter more than three values, only the first three will be read }

READLN(A, B, C);

{ Now a subsequent READLN will start to read values after the end-of-line

mark, ignoring any leftovers from the previous read }

WRITE('Enter D, E: ');

READLN(D, E);

WRITELN('A=',A,', B=',B:0:2,', C=', C, CR, LF,

'D=', D,', E= ',E)

END.

{ -- }

114 � Chapter 6

21 3 4 5 6 7 8 9 0 *
file pointer ^

1 2 3 4 5 6 7 8 ***

file pointer ^

Sample Run:

Enter A, B, C: 1 2 3 4 5 6 � Enter these values

Enter D, E: 7 8 � Enter these values

A=1, B=2.00, C=3 � The program response

D=7, E= 8

Notice that the extra values (4, 5, 6) in the first input line were ignored completely

and the second read started from the value 7, which follows the end-of-line mark.

Drill 6-1

Try the last program using the following inputs and study the results:

1 2 <Enter>

3 4 5 6 <Enter>

7 8 <Enter>

Using READ for Numeric Input

With the READ statement the reading procedure is different, because after the READ

statement is done, the file pointer does not move past the end-of-line mark, and so any

subsequent READ will start from where the previous READ left off. Replace the

READLN statements in the previous program with READ statements and try the fol-

lowing input:

1 2 3 4 5 6 7 <Enter>

When you press Enter, the program will not pause at the second input statement

because the input file contains sufficient numeric values for five variables. In this case,

the program displays the following results:

A=1, B=2.00, C=3

D=4, E= 5

Drill 6-2

Using the last program with the READ statement, try the following inputs:

1.

1 2 <Enter>

3 4 5 6 7 <Enter>

2.

1 2 3 4 <Enter>

5 6 7 <Enter>

Working with Text � 115

Using READ for Character Input

With character input, the input statements work in a different way. The READ state-

ment reads successive characters from the keyboard file, including the end-of-line

mark (which is actually two characters CR and LF), and assigns each character to the

next variable in the input list. Consider the following input statement:

READ(C1, C2, C3, C4);

where C1, C2, C3, and C4 are variables of the type CHAR.

If you enter the four characters that follow:

ABCD

they will all be read and assigned to the variables, thus:

C1 contains 'A'

C2 contains 'B'

C3 contains 'C'

C4 contains 'D'

Now consider the case of an input like this:

A B C D

The first four characters (including blank spaces) in this input will be assigned to the

four variables and the rest ignored, giving the following result:

C1 contains 'A'

C2 contains ' ' (blank space)

C3 contains 'B'

C4 contains ' ' (blank space)

Run the following program and use the sample run values to see how things work.

Notice that the output of the program gives you both the variables’ contents and the

corresponding ASCII codes, which will help you to recognize any nonprintable charac-

ter such as the space, the line feed, or the carriage return.

{ ----------------------------- Example 6-3 ---------------------------- }

PROGRAM CharRead1(INPUT,OUTPUT);

CONST

LF = CHR(10);

CR = CHR(13);

VAR

C1, C2, C3, C4 :CHAR;

BEGIN

WRITE('Enter four characters: ');

READ(C1, C2, C3, C4);

WRITELN('Your inputs have been assigned to the variables as follows:',

CR, LF,

'C1= ', C1, CR, LF,

'C2= ', C2, CR, LF,

116 � Chapter 6

'C3= ', C3, CR, LF,

'C4= ', C4);

WRITELN('The corresponding ASCII codes are:', CR, LF,

ORD(C1),' ', ORD(C2),' ', ORD(C3),' ',ORD(C4))

END.

{ -- }

Sample Runs:

Run 1:

Enter four characters: A BCD

Your inputs have been assigned to the variables as follows:

C1= A

C2= blank space

C3= B

C4= C

The corresponding ASCII codes are:

65 32 66 67

The second variable was here assigned the ASCII code 32, which is the code of the

blank space.

Run 2:

Enter four characters: ABCDEFG

Your inputs are assigned to the variables as follows:

C1= A

C2= B

C3= C

C4= D

The corresponding ASCII codes are:

65 66 67 68

In the second case, the first four characters are read and the rest are ignored. If there

were a subsequent READ statement in the program, it would start at the letter E.

The end-of-line mark is treated like any other nonnumeric character. For example, if

you test the program using these inputs:

AB <Enter>

CD <Enter>

the program will terminate after entering the first two characters and you will get an

output like this:

Run 3:

C1= A

C2= B

C3= { CR }

C4= { LF }

The corresponding ASCII codes are:

Working with Text � 117

65 66 13 10

The third and the fourth characters contain CR and LF respectively, because when you

press Enter, you send two characters to the INPUT file, CR and LF. Notice that the

CR appears as a blank space (actually, it returns the cursor to the beginning of the

line), while the LF advances to a new line.

The same thing will happen if you use two separate READ statements. To see this,

replace the READ statement in the program by two READ statements:

READ(C1, C2);

READ(C3, C4);

When you run the program now, you will notice that if you type the first two charac-

ters and press Enter, the program will be terminated and you get the same output as

in Run 3.

Also, if you enter more characters than are required, only the first four will be read.

Using READLN for Character Input

If you would like to enter your characters like this:

AB <Enter>

CD <Enter>

you have to get rid of the extra characters remaining in the file (the CR and the LF) by

using the READLN statement.

In the following program two READLN statements are used, so you are able to enter

two characters (or more) followed by Enter and start the next read with a clean buffer.

{ ----------------------------- Example 6-4 ---------------------------- }

PROGRAM CharReadln3(INPUT,OUTPUT);

CONST

LF = CHR(10);

CR = CHR(13);

VAR

C1, C2, C3, C4 :CHAR;

BEGIN

WRITE('Enter two characters: ');

READLN(C1, C2);

WRITE('Enter two characters: ');

READLN(C3, C4);

WRITELN('Your inputs have been assigned to the variables as follows:',

CR, LF,

'C1= ', C1, CR, LF,

'C2= ', C2, CR, LF,

'C3= ', C3, CR, LF,

'C4= ', C4);

WRITELN('The corresponding ASCII codes are:',

CR, LF, ORD(C1),' ', ORD(C2),' ', ORD(C3),' ',ORD(C4))

118 � Chapter 6

TE
AM
FL
Y

Team-Fly®

END.

{ -- }

Sample Run:

Enter two characters: abcd <Enter>

Enter two characters: efgh <Enter>

Your inputs have been assigned to the variables as follows:

C1= a

C2= b

C3= e

C4= f

The corresponding ASCII codes are:

97 98 101 102

Reading Mixed Types

It is legal to use one READ (or READLN) statement for mixed numeric and character

data, but this requires extra attention. It is better to use a separate READLN state-

ment for each type, as in the following program. This way is less prone to data entry

errors.

{ ---------------------------- Example 6-5 ----------------------------- }

PROGRAM CharNumRead(INPUT,OUTPUT);

CONST

LF = CHR(10);

CR = CHR(13);

VAR

A, B :CHAR;

X, Y :INTEGER;

BEGIN

WRITE('Enter two characters: ');

READLN(A, B);

WRITE('Enter two integers: ');

READLN(X, Y);

WRITELN('Your inputs have been assigned to the variables as follows:',

CR, LF,

'A= ', A, CR, LF,

'B= ', B, CR, LF,

'X= ', X, CR, LF,

'Y= ', Y)

END.

{ -- }

Sample Runs:

Run 1:

Enter two characters: ABCD

Enter two integers: 3 4

Your inputs have been assigned to the variables as follows:

Working with Text � 119

A= A

B= B

X= 3

Y= 4

As you can see in the output, the extra characters (C and D) were skipped after the

first READLN. Remember, however, that the rules of character entry still apply; in

other words, if you press Enter after the first letter, a CR will be assigned to the vari-

able B. Here is the sample run:

Run 2:

Enter two characters: A <Enter>

B <Enter>

Enter two integers: 5 6

Your inputs have been assigned to the variables as follows:

A= A

B= B is assigned a CR

X= 5

Y= 6

Application: Scrambling Letters

The following example is good practice both for handling characters and building

loops. The program asks you to enter four characters, then it displays all of the possi-

ble combinations of those characters. If you are a Basic programmer, you would have

had to use a lot of GOTOs to achieve these results. In Pascal the program is better

structured.

{ ----------------------------- Example 6-6 ---------------------------- }

PROGRAM Scrambling(INPUT,OUTPUT);

TYPE

ScrambleArray = Array[1..4] OF CHAR;

VAR

A :ScrambleArray;

I1, I2, I3, I4 :INTEGER;

BEGIN

WRITE('Enter four letters: ');

READ(A[1], A[2], A[3], A[4]);

FOR I1 := 1 TO 4 DO

BEGIN

FOR I2 := 1 TO 4 DO

BEGIN

IF I2 <> I1 THEN

FOR I3 := 1 TO 4 DO

BEGIN

IF I3 <> I1 THEN

IF I3 <> I2 THEN

BEGIN

I4 := 10 – (I1 + I2 + I3);

120 � Chapter 6

WRITELN(A[I1],' ',A[I2],' ',

A[I3],' ',A[I4]);

END { End of IF }

END { End of I3 loop }

END { End of I2 loop }

END { End of I1 loop }

END.

{ -- }

Sample Run:

Enter four letters: ABCD

A B C D

A B D C

A C B D

A C D B

A D B C

A D C B

B A C D

B A D C

B C A D

B C D A

B D A C

B D C A

C A B D

C A D B

C B A D

C B D A

C D A B

C D B A

D A B C

D A C B

D B A C

D B C A

D C A B

D C B A

An array A of four elements (of the type CHAR) is used to hold the four characters,

and three nested loops are used to build the different combinations of the elements.

The algorithm is based on choosing four different indexes corresponding to the four

different array elements.

Note that all of the BEGIN-END blocks (except the innermost one) are optional and

are used only for clarity.

Working with Text � 121

6-4 Reading a Line of Text: EOLN

The EOLN function is a Boolean function used to detect the end of the line during

reading of the INPUT file. The function is FALSE until the end-of-line mark is

detected, then it becomes TRUE.

This function is useful when you do not know the number of characters to expect.

In order to read a line of text up to (but not including) the end-of-line mark, you can

use a loop like this:

WHILE NOT EOLN DO

BEGIN

READ(Ch);

...

END;

The READ statement will continue to read characters until the end-of-line mark is

detected, thus terminating the WHILE loop. Notice, however, that the end-of-line

mark is still in the buffer and could be read by any subsequent READ statement, so

before any subsequent READ you have to clean the buffer with a READLN.

Application: Character Counter

The following program reads a line of text from the keyboard and displays the number

of characters in the line. The program will continue to read the characters you type

until you press Enter, at which time it displays the result.

{ ----------------------------- Example 6-7 --------------------------- }

PROGRAM CharCounter1(INPUT,OUTPUT);

VAR

Ch :CHAR;

Counter :INTEGER;

BEGIN

Counter := 0;

WHILE NOT EOLN DO

BEGIN

READ(Ch);

Counter := Counter + 1

END;

WRITELN;

WRITELN('Number of characters= ', Counter)

END.

{ -- }

Drill 6-3

Modify the previous program to count only the alphabetic characters in the text.

122 � Chapter 6

6-5 Reading a File of Text: EOF

Another Boolean function, EOF, is used to detect the end-of-file mark. The function is

FALSE until the end-of-file mark is reached, at which time it becomes TRUE. When

using the keyboard for input, the end of file is reached if you press Ctrl+Z (ASCII 26).

This function is useful for reading several lines of text (a file). You can use EOF along

with EOLN to read and analyze several lines of text as follows:

WHILE NOT EOF DO

BEGIN

WHILE NOT EOLN DO

BEGIN

READ(Ch);

... { Processing data }

END; { End of line }

READLN { Advance the pointer }

END; { End of file }

In this code, the file is read line by line. After a complete line has been read, the

EOLN function becomes TRUE and no more characters are read from this line. The

READLN statement is then used to advance the pointer to the beginning of the next

line. The program ends when the end-of-file mark is detected and the outer loop is

terminated. Let us see an example.

Application: Frequency Counter

The following program asks you to enter a letter. Then it starts reading whatever you

type from the keyboard. When you press Ctrl+Z the program ends and displays how

many times the specified letter was repeated in the file.

{ -------------------------- Example 6-8 ------------------------------- }

PROGRAM FreqCounter1(INPUT,OUTPUT);

VAR

Ch, SpecificChar :CHAR;

Counter, FreqCounter :INTEGER;

BEGIN

Counter := 0;

FreqCounter := 0;

WRITE('Enter the required letter: ');

READLN(SpecificChar);

WRITELN('Start typing. Press Ctrl+Z to finish.');

WHILE NOT EOF DO

BEGIN

WHILE NOT EOLN DO

BEGIN

READ(Ch);

IF (Ch >= 'A') AND (Ch <= 'Z') OR

(Ch >= 'a') AND (Ch <= 'z') THEN

Working with Text � 123

Counter := Counter + 1;

IF Ch = SpecificChar THEN

FreqCounter := FreqCounter + 1;

END;

READLN

END;

WRITELN('Total number of letters= ', Counter);

WRITELN('The letter ''', SpecificChar, ''' was repeated ',

FreqCounter, ' time(s)');

WRITELN('Frequency of repetition= ', FreqCounter/Counter*100:2:2,'%')

END.

{ -- }

The specific letter is assigned to the variable SpecificChar and compared to the input

letter Ch. If the comparison is TRUE, the FreqCounter is incremented by one. The

total number of letters is accumulated in the variable Counter. The frequency of repe-

tition of the letter is calculated by dividing FreqCounter by Counter and multiplying

the result by 100.

Sample Run:

Enter the required character: a

Start typing. Press Ctrl+Z to finish.

This is a test to count the repetition frequency

of the letter "a" in a keyboard file

^Z

Total number of letters= 67

The letter 'a' was repeated 4 time(s)

Frequency of repetition= 5.97%

6-6 String Manipulation

In Chapter 2, you learned how to declare, read, and write variables of the type

STRING, which was introduced by the modern Pascal implementations (such as

Turbo, UCSD, and Macintosh). You also learned how to use the function LENGTH to

count the number of letters in a string. In this section you are introduced to more

string features that help in manipulating text.

Tips on String Input/Output

For both input and output, you may either treat a string variable as one unit, or you

may treat it as an array whose elements are the characters that make up the string.

Look at this simple program, which reads a string variable and displays it character by

character, with each character on a separate line (using the LF character).

124 � Chapter 6

{ ----------------------------- Example 6-9 ---------------------------- }

PROGRAM String1(INPUT,OUTPUT);

CONST

LF = CHR(10);

VAR

Name :STRING[30];

I :INTEGER;

BEGIN

WRITE('Please enter a name: ');

READLN(Name);

FOR I := 1 TO LENGTH(Name) DO

WRITE(Name[I],LF)

END.

{ -- }

Sample Run:

Please enter a name: PASCAL

P

A

S

C

A

L

Application: Sorting Names

You may build an array of the type STRING to store related items such as names or

addresses. In this way, you can sort names in alphabetical order using the same algo-

rithm which you have used before to sort numbers. Each two strings are compared

character by character. So, the following expressions are TRUE:

'Able' < 'Baker'

'Baker' < 'Charlie'

'Charley' < 'Charlie'

All uppercase letters are greater than lowercase letters. Also, the leading and trailing

spaces are included in the comparison. The ASCII code of the blank space (32) is less

than that of any letter or digit. In the following program an array of four names is read,

sorted, and displayed.

{ ----------------------------- Example 6-10 --------------------------- }

PROGRAM SortStrings(INPUT,OUTPUT);

CONST

Tab = ' ';

NumOfElements = 4;

TYPE

StringArray = ARRAY[1..NumOfElements] OF STRING[30];

Working with Text � 125

VAR

Name :StringArray;

I, J :INTEGER;

Temp :STRING[30];

BEGIN

{ Read the array elements }

{ ----------------------- }

FOR I := 1 TO NumOfElements DO

BEGIN

WRITE('Please enter name #', I, ': ');

READLN(Name[I])

END;

{ Sort names }

{ ---------- }

FOR I := 1 TO NumOfElements-1 DO

FOR J := I+1 TO NumOfElements DO

IF Name[I] > Name[J] THEN

BEGIN

Temp := Name[I];

Name[I] := Name[J];

Name[J] := Temp

END;

{ End of inner and outer loops }

{ Display sorted names }

{ -------------------- }

WRITELN('Serial # Name');

WRITELN('-----------------------------');

FOR I := 1 TO NumOfElements DO

WRITELN(I:2, Tab, Name[I])

END.

{ -- }

Sample Run:

Please enter name #1: Laurence Smith

Please enter name #2: Clara Bui

Please enter name #3: Brian Welcker

Please enter name #4: Craig Combel

Serial # Name

1 Brian Welcker

2 Clara Bui

3 Craig Combel

4 Laurence Smith

126 � Chapter 6

Drill 6-4

Write a program to scramble three strings. The following is an example of the output

for the strings “WHO,” “ARE,” and “YOU”:

WHO ARE YOU

WHO YOU ARE

ARE WHO YOU

ARE YOU WHO

YOU WHO ARE

YOU ARE WHO

6-7 String Functions and Procedures

When working with text editors, you sometimes need to cut and paste, delete a part

from here, and insert a part there. The tools that make these operations possible are

included in the modern implementations of Pascal to help the programmer process

strings. Some of them are called functions because they return a value which replaces

the function call (e.g., LENGTH). Others are called procedures, as they perform spe-

cific operations that do not necessarily return a value (e.g., WRITELN). They are all

shown in Table 6-1.

In addition to these tools you may find more functions, procedures, or operators in a

specific implementation, but here we are concerned only with the most common tools,

which are almost standardized.

Table 6-1: String functions and procedures

Form Use

Functions:

LENGTH(str) Returns the number of character in the string str.

CONCAT(str1, str2,...) Returns the string formed by concatenating str1, str2,...

COPY(str, pos, len) Returns a substring from the string str, starting at the position pos,
with length len.

POS(str1, str2) Returns the position of the first occurrence of the first character of
str1 within str2.If str1 does not occur within str2 it returns zero.

Procedures:

INSERT(str1, str2, pos) Inserts the string str1 into the string str2, at the position pos.

DELETE(str, pos, len) Deletes a substring from a string str starting from position pos with
length len.

Working with Text � 127

LENGTH

You can measure the dynamic length of a string using the function LENGTH. If you

want, for instance, to measure the length of the string Name in the last program, you

may use the expression:

LENGTH(Name)

If you display the value of this expression, you get the exact number of characters con-

tained in the string variable, including the spaces. If the string variable is empty, the

dynamic length is zero.

CONCAT

As an example of using the function CONCAT, you can concatenate the three strings

'John ', 'M.', and 'Smith' and assign the result to a string variable Name, as follows:

Name := CONCAT('John ','M. ','Smith');

Now the variable Name contains the complete name: John M. Smith. In Turbo Pascal

the operator + may also be used to concatenate strings:

Name := 'John '+ 'M. '+ 'Smith';

The variable Name has the same contents as before.

COPY

Using the function COPY you can do the opposite, i.e., extract a substring from the

string Name. The following statement extracts the first name from the string Name

and assigns it to the variable FirstName:

FirstName := COPY(Name, 1, 4);

As you can see, you have to include the starting position of the extracted substring (1

in this case) and the length of the substring (4 in this case).

POS

The function POS returns an integer that indicates the position of the first occurrence

of a substring in a string. For example, the statements:

Str1 := 'This is a test';

WRITELN(POS('is', Str1));

result in displaying the number 3, which is the position of the letter i in This.

INSERT

You can insert the substring that you deleted in the right place again. Use the INSERT

procedure to put the last name Smith back in the string:

128 � Chapter 6

TE
AM
FL
Y

Team-Fly®

INSERT('Smith', Name, 9)

Now the variable Name contains 'John M. Smith'.

DELETE

To delete the substring 'Smith' from a name string, use the DELETE procedure as fol-

lows:

DELETE(Name, 9, 5);

Note that the substring 'Smith' starts at the ninth position and contains five charac-

ters.

Using a procedure changes the value of the original variable Name, while using a func-

tion does not. If you checked the contents of the variable now, it would be 'John M.'

The following program demonstrates the use of string functions. It accepts from you

the first, middle, and last name and produces the complete name, including the trailing

spaces. Also, the middle name is converted to an initial.

{ ----------------------------- Example 6-11 ---------------------------- }

PROGRAM StringFunctions1(INPUT,OUTPUT);

VAR

Name :STRING[30];

First, Middle, Last :STRING[10];

BEGIN

WRITE('Please enter your first name: ');

READLN(First);

First := CONCAT(First, ' ');

WRITE('Please enter your middle name: ');

READLN(Middle);

Middle := COPY(Middle, 1, 1);

Middle := CONCAT(Middle, '. ');

WRITE('Please enter your last name: ');

READLN(Last);

Name := CONCAT(First, Middle, Last);

WRITELN;

WRITELN('Your complete name is: ',Name)

END.

{ -- }

Sample Run:

Please enter your first name: Sally

Please enter your middle name: Ann

Please enter your last name: Abolrous

Your complete name is: Sally A. Abolrous

Working with Text � 129

Drill 6-5

Modify the last program to make it capitalize the first letter of each name if lowercase.

Summary

In this chapter you learned how the input statements READ and READLN work with

numeric values and characters. You also learned how to use the end-of-line function

EOLN to read a line of text from the keyboard, and the end-of-file function EOF to

read a file of text. You also learned some of the important string-processing functions

and procedures which are available in the modern implementations of Pascal.

� LENGTH

� CONCAT

� COPY

� POS

� INSERT

� DELETE

Most importantly, through the examples and drills you gained experience in text pro-

cessing with both strings and individual characters.

Exercises

1. Write a program to read a line of text and display it backwards. The following is a

sample run of the required program:

Please enter a name: Camelia Solomon

The reversed name is:

nomoloS ailemaC

2. Write a program to read a line of text, or a text file, and reverse the case of each letter.

Thus all the uppercase letters are changed to lowercase letters and vice versa. The

following is a sample run of the required program:

Please enter a name: Mr. John Martin Smith

The reversed name is:

mR. jOHN mARTIN sMITH

3. Write a program to encode a text string such that each character is replaced by its

successor. Also write the decoding program that converts to the original text before

encoding. The following is a sample run of the required program:

Please enter a string: THIS TEXT IS CODED

The coded string is:

UIJT!UFYU!JT!DPEFE

130 � Chapter 6

You can enhance the program by encoding the space and the letter Z separately in

order to avoid using the non-alphabetic characters in the encoded string. For example,

you can encode the letter Z as A. You can also keep the space character unchanged.

This is a sample run of the enhanced program:

Please enter a string: This is a secret message

The coded string is:

Uijt jt b tfdsfu nfttbhf

Answers

1. You may use the following code segment, which represents the main algorithm, in your

program:

READLN(Name);

WRITELN('The reversed name is:');

FOR I := LENGTH(Name) DOWNTO 1 DO

WRITE(Name[I])

2. You may use the following code segment in your program. It represents the main

algorithm to replace each lowercase letter in the string Name by an uppercase letter,

and vice versa:

FOR I := 1 TO LENGTH(Name) DO

BEGIN

UpperCase := (ORD(Name[I]) > 64) AND (ORD(Name[I]) < 91);

LowerCase := (ORD(Name[I]) > 96) AND (ORD(Name[I]) < 123);

IF UpperCase THEN

Name[I] := CHR(ORD(Name[I])+32)

ELSE IF LowerCase THEN

Name[I] := CHR(ORD(Name[I])–32);

WRITE(Name[I])

END;

3. In the following code segment, each character of the string Name is replaced by its

successor:

FOR I := 1 TO LENGTH(Name) DO

BEGIN

Name[I] := SUCC(Name[I]);

WRITE(Name[I])

END;

Working with Text � 131

Chapter 7

Procedures and
Functions

Chapter Topics:

� An overview of the program architecture:

programs and subprograms

� Defining and calling procedures and

functions

� The scope of variables in the program

and its subprograms

� Using actual and formal parameters

� Changing parameter values passed to

procedures

� Understanding recursion and recursive

subprograms

� Applications on using subprograms

7-1 Programs and Subprograms

When you deal with real applications the problems get more complex than those you

have met so far, so you usually have to break the main problem down into simpler

tasks and program each individually in a subprogram. The subprograms are then com-

bined together to build up the complete program. If you can break your application

133

down into the smallest possible modules, you will find that many of them are common

problems such as sorting names or numbers. This means that you can write some

generic subprograms and use them later in different applications. Another advantage

of using subprograms is that you can thus avoid the repetition of several statements to

print a header or display a menu; you can program such tasks as subprograms and call

them whenever needed. In Pascal you can divide your program into smaller

subprograms called procedures and functions. Actually, the Pascal language itself is

made up of predefined procedures and functions. When the compiler encounters a

WRITELN statement in a program, for example, the predefined procedure WRITELN

is invoked to perform the required task.

7-2 Procedures

If divided into procedures, the main body of the Scores program from Chapter 5 might

look something like this:

BEGIN

ReadScores;

GetAverage;

DisplayResults

END.

The main program contains only three calls, each of them the name of a procedure

which performs a specific task. The procedure ReadScores reads the array of the

scores, GetAverage calculates the average score, and DisplayResults displays the

results. As you can see, a user-defined procedure is called by its name just like any

standard procedure.

Before calling a procedure it must be defined in the subprogram section, which is the

last section of the declaration part. The following is a complete list of all the sections

of the declaration part:

LABEL section

CONST section

TYPE section

VAR section

PROCEDUREs and FUNCTIONs section

7-3 Procedure Definition

A procedure definition is very similar to a program definition in that it consists of a

header, a declaration part, and statements. Let us begin with a simple procedure to

draw a line 20 characters long.

134 � Chapter 7

{ --------------------------- Example 7-1 -------------------------- }

PROGRAM Procedures1(OUTPUT);

{ ------------ Beginning of Procedure ------------ }

PROCEDURE DrawLine;

CONST

Dash = '-';

LineLength = 20;

VAR

Counter :INTEGER;

BEGIN

FOR Counter := 1 TO LineLength DO

WRITE(Dash);

WRITELN

END;

{ -------------- End of Procedure -------------- }

{ --------------- Main program ----------------- }

BEGIN

WRITELN;

DrawLine;

WRITELN('** THIS IS A TEST **');

DrawLine

END.

{ --- }

Output:

** THIS IS A TEST **

There are no variables or constants in the main program here, so the declaration part

contains only the procedure definition. The definition starts with the procedure

header:

PROCEDURE DrawLine;

The header includes the name of the procedure (DrawLine), which must be a valid

identifier. Then comes the declaration part:

CONST

Dash = '-';

LineLength = 20;

VAR

Counter :INTEGER;

The declaration part of the procedure includes the same sections as that of the main

program. In our example, two named constants and a variable were declared. Then

come the statements of the procedure which represent the task to be done (drawing a

line), enclosed in a block.

BEGIN

FOR Counter := 1 TO LineLength DO

Procedures and Functions � 135

WRITE(Dash);

WRITELN

END;

Notice that the END statement in a subprogram is terminated by a semicolon rather

than a period. In the main program, the procedure is called twice to draw a line both

before and after the displayed text.

Passing Parameters to Procedures

The procedure DrawLine is used to draw a line of a specific length (20), which may not

be useful for any other application. In the following program the procedure is modified

to draw a line whose length varies according to the length of the displayed text. When

you run the program it asks you to enter a sentence, then displays the sentence

between two lines of the same length as that sentence. Try the program first and then

read the discussion.

{ -------------------------- Example 7-2 -------------------------- }

PROGRAM Procedures2(OUTPUT);

VAR

Len :INTEGER;

TestSentence :STRING;

{ ------------ Beginning of Procedure ------------- }

PROCEDURE DrawLine(LineLength :INTEGER);

CONST

Dash = '-';

VAR

Counter :INTEGER;

BEGIN

FOR Counter := 1 TO LineLength DO

WRITE(Dash);

WRITELN

END;

{ --------------- End of Procedure ---------------- }

{ ----------------- Main program ------------------ }

BEGIN

WRITE('Please enter a sentence: ');

READLN(TestSentence);

Len := LENGTH(TestSentence);

WRITELN;

DrawLine(Len);

WRITELN(TestSentence);

DrawLine(Len)

END.

{ --- }

Sample Run:

Please enter a sentence: Learn C++ in Three Days

136 � Chapter 7

Learn C++ in Three Days

Instead of defining the number of dashes as a constant, the length of the sentence is

declared in the main program as a variable Len. After the sentence is entered, its

length is calculated and passed to the procedure as a parameter. The procedure call in

this case becomes:

DrawLine(Len);

The procedure header must also include a receiver parameter:

PROCEDURE DrawLine(LineLength :INTEGER);

Between the parentheses comes the parameter LineLength, followed by a colon, fol-

lowed by the type of the parameter (INTEGER).

Actual and Formal Parameters

When the procedure is invoked, the value of the variable Len (from the main program)

is passed to the procedure and assigned to the variable LineLength, where it is used in

processing. The variable Len is called the actual parameter, and the variable

LineLength is called the formal parameter. After the procedure has been executed, the

control is transferred back to the main program, and execution resumes at the next

statement following the procedure call. Except during the procedure execution, the

value of the formal parameter is undefined.

Note: Functions and procedures can also be passed as parameters,
but many implementations forbid this.

A procedure call may contain more than one parameter, like this:

Process(A, B, C);

The number of actual parameters in the procedure call must be the same as the num-

ber of formal parameters, which means that the procedure header may look something

like this:

PROCEDURE Process(X, Y :INTEGER; Z :REAL);

The variables A and B in the calling program must be of the type INTEGER as they

correspond to X and Y respectively, while the variable C must be of the type REAL as

it corresponds to Z. Note the semicolon that separates the declarations in the proce-

dure header.

In brief, the actual and formal parameters must match in number, type, and position.

Procedures and Functions � 137

Passing Parameters by Value and by Reference

You may use literal values as actual parameters to call the procedure, such as:

DrawLine(30);

This call results in the drawing of a line 30 characters long.

When a value is used as a parameter, it is said that the parameter is passed by value; if

the parameter is a variable, it is said to be passed by reference.

Drill 7-1

Modify the last program so that you can pass to the procedure the type of line charac-

ter (“-” or “*”, etc.), and have the output displayed in the middle of the line (assume

that the line is 80 characters wide). This is a sample run of the required program:

Please enter a sentence: Learn C in Three Days

Please enter the line character: *

Learn C in Three Days

7-4 Returning Values from Procedures: VAR

A procedure may be used to change the value of a variable and pass it back to the call-

ing program. In such a case, the formal parameters must be preceded by the word

VAR. Consider the case of a procedure that receives the value of two variables and

returns the cube of each. The procedure header might look something like this:

PROCEDURE CubeThem(VAR X, Y :REAL);

You can only pass parameters to this procedure by reference:

CubeThem(A, B);

The values of A and B will be passed to the procedure, substituted for X and Y respec-

tively, cubed, and sent back to the calling program. It is illegal in this case to use literal

values or expressions as actual parameters.

When formal parameters are preceded by the word VAR they are called variable

parameters; otherwise they are value parameters.

The general form of the procedure header is:

PROCEDURE name;

or

PROCEDURE procedure-name(formal-parameter-list);

138 � Chapter 7

TE
AM
FL
Y

Team-Fly®

The general form of a procedure call is:

procedure-name;

or

procedure-name(actual-parameter-list);

The following program is an example of using both types of formal parameters. It dem-

onstrates the same logic as in Example 2-2 does but uses a procedure to receive the

base and the power and send back the result.

{ -------------------------- Example 7-3 ---------------------------}

PROGRAM VarParms(INPUT,OUTPUT);

VAR

a, b, c :REAL;

{ ------------- Procedure Definition ------------ }

PROCEDURE PowerOperator(X, Y :REAL; VAR Z:REAL);

BEGIN

Z := EXP(LN(X)*Y)

END;

{ ----------------- Main Program ----------------- }

BEGIN

WRITE('Enter the base and the exponent separated by a space: ');

READLN(a, b);

PowerOperator(a, b, c);

WRITELN('The value of ',a:0:2,' raised to the power of ',b:0:2,' is ',c:0:2)

END.

{ --- }

Sample Run:

Enter the base and the exponent separated by a space: 2 5

The value of 2.00 raised to the power of 5.00 is 32.00

Notice in the procedure that X and Y were declared as value parameters because they

only receive values from the calling program, while Z was declared as a variable

parameter because it sends back the result.

7-5 Global and Local Variables

Both the formal parameters and the variables declared in a procedure are called local

variables because they are accessible only within their procedure; in other words, they

are invisible to the main program or to any other subprogram. The variables declared

in the main program, on the other hand, are called global variables because they are

accessible from any program unit. In Example 7-2, for example, the variable

TestSentence is a global variable and may be accessed from the procedure DrawLine

without passing it as a parameter. Any assignment to this variable in the procedure

will change its value in the main program. The local variable Counter, however, is not

accessible from the main program.

Procedures and Functions � 139

Consider now the case if you declared two variables with the same name (such as X),

one in the main program and one in a procedure. The redeclaration of the global vari-

able X in a procedure will create a local variable with the same name and hide the

global variable from the procedure. This means you will have two different variables

that correspond to two different locations in memory. When the procedure exits, there

will be one global variable with the name X. These restrictions help the programmer

not to modify the value of a global variable from a subprogram by accident.

The variables in the main program can only be modified from other procedures if they

are global (and not redeclared in the procedure) or are passed by reference as variable

parameters to the procedure. Accessing global variables from a subprogram is not rec-

ommended, as it repeals the modularity of the program. Using parameters is safer, and

it also keeps the subprogram independent and useful with different programs.

Application: Sorting Procedure

Go back to Example 5-5, and split it into generic procedures. This program was used

to read, sort, and display an array of six elements. What you need to do now is write

three procedures that read, sort, and display an array of any size. By passing the array

and the number of elements to the procedures, the same results will be achieved as

before. The main body of the program will contain only three calls:

ReadNumbers(ArraySize, Numbers);

SortNumbers(ArraySize, Numbers);

PrintNumbers(ArraySize, Numbers);

In this way, any one of the three procedures can be used in any program. One impor-

tant point to mention here is that when you pass an array to a procedure or function, it

must be declared in the TYPE section. The formal parameters in the procedure

header will then look something like this:

PROCEDURE ReadNumbers(L: INTEGER; VAR R :NumbersArray);

The parameter L corresponds to ArraySize, and the array R corresponds to the array

Numbers. As you can see in the parameter declaration it is of the type NumbersArray,

which is the same type as the array Numbers. Here is the complete program:

{ -------------------------- Example 7-4 -------------------------- }

PROGRAM Sorting(INPUT,OUTPUT);

CONST

ArraySize = 6;

TYPE

Range = 1..ArraySize;

NumbersArray = ARRAY[Range] OF INTEGER;

VAR

Numbers :NumbersArray;

{ ----------------- Read procedure ----------------- }

PROCEDURE ReadNumbers(L: INTEGER; VAR R :NumbersArray);

VAR

140 � Chapter 7

I :INTEGER;

BEGIN

FOR I := 1 TO L DO

BEGIN

WRITE('Enter element #', I,': ');

READLN(R[I])

END

END;

{ ----------------- Sort procedure ----------------- }

PROCEDURE SortNumbers(M: INTEGER; VAR S :NumbersArray);

VAR

I, J, Pot :INTEGER;

BEGIN

FOR I := 1 TO M-1 DO

FOR J := I+1 TO M DO

IF S[I] > S[J] THEN

BEGIN { Swap contents }

Pot := S[J];

S[J] := S[I];

S[I] := Pot

END

END;

{ ----------------- Print procedure ----------------- }

PROCEDURE PrintNumbers(N: INTEGER; T :NumbersArray);

VAR

I :INTEGER;

BEGIN

WRITELN;

WRITE('The sorted array is: ');

FOR I := 1 TO N DO

WRITE(T[I],' ');

WRITELN;

END;

{ ----------------- Main Program ------------------- }

BEGIN

ReadNumbers(ArraySize, Numbers);

SortNumbers(ArraySize, Numbers);

PrintNumbers(ArraySize, Numbers);

WRITELN('Press ENTER to continue..');

READLN

END.

{ --- }

Sample Run:

Enter element #1: 44

Enter element #2: 22

Enter element #3: 8

Enter element #4: 1

Enter element #5: 667

Procedures and Functions � 141

Enter element #6: 3

The sorted array is: 1 3 8 22 44 667

Press ENTER to continue..

Note that the array is passed as a variable parameter to the procedures which are

expected to change the value of the array (e.g., ReadNumbers and SortNumbers), but

there was no need to do that for the procedure PrintNumbers, which displays the

array without returning any value to the main program. In the latter case the array

was passed as a value parameter. Notice also the use of local variables in different pro-

cedures, which makes each an independent unit. If any of these procedures have to be

used with a different type of array, you need only change the type NumbersArray or

use the same type name for the new array in the main program. In this example it is

possible to use procedures without any parameters at all and process the global vari-

ables directly, but in that case you would have to use the same variable names in all of

the procedures and the main program, which is a lot of effort and also entails the risk

of dealing with global variables.

Tip: Like arrays, enumerated types and subranges must be declared
in the TYPE section if they are to be used as formal parameters in a
subprogram.

7-6 Functions

A function is a subprogram that returns a value, which is then assigned to the function

name in the calling program. Like predefined functions, user-defined functions have

one or more parameters. The function definition comes in the subprogram section of

the declaration part and includes a header, a declaration part, and statements. Look at

this header of a function that returns the average of three numbers:

FUNCTION Avg(X, Y, Z :REAL) :REAL;

The header is similar to the procedure header except that the type of the return value

follows the function header (:REAL). You can call this function using statements like

these:

D := Avg(A, B, C);

WRITELN(Avg(F, G, H):2:2);

WRITELN(Avg(94, 33.5, 45*1.2):2:2);

As you can see, the parameter may be a literal constant, an expression, or a variable.

The function header takes the following form:

FUNCTION function-name(formal-parameter-list) :return-type;

142 � Chapter 7

Like procedures, functions are independent subprograms. All parameters, variables,

and constants declared within the function body are local to it and are invisible to other

program units. In a function subprogram, the function must be assigned a value.

Application: The Fibonacci Sequence

A Fibonacci sequence is the sequence of numbers, 1, 1, 2, 3, 5, 8, 13, . . . , in which each

successive number is equal to the sum of the two preceding numbers (named after the

Italian mathematician Leonardo Fibonacci). The following example reads the number

of elements and displays the Fibonacci sequence up to this number.

{ -------------------------- Example 7-5 -------------------------- }

PROGRAM FibonacciNumbers(INPUT, OUTPUT);

{ Fibonacci sequence example}

CONST

TAB = CHR(9);

VAR

I : INTEGER; { General loop counter }

N : INTEGER; { Maximum number of elements }

{ --- }

{ ---------------------- FUNCTION Fibonacci ----------------------- }

FUNCTION Fibonacci(I: INTEGER): LONGINT;

{ The function returns the Fibonacci numbers according to the argument I }

BEGIN

IF I <= 1 THEN

Fibonacci := 1

ELSE

Fibonacci := Fibonacci(I-1) + Fibonacci(I-2)

END;

{ --- }

{ -------------------------- Main Program ------------------------- }

BEGIN

WRITE('Please enter the maximum number of elements: ');

READLN(N);

WRITELN('Number', TAB, 'Fibonacci number');

I := 0;

WHILE I < N DO

BEGIN

WRITELN(I, TAB, Fibonacci(i));

I := I + 1;

END;

WRITELN;

WRITELN('Press ENTER to continue..');

READLN

END.

{ --- }

Procedures and Functions � 143

Sample Run:

Please enter the maximum number of elements: 20

Number Fibonacci number

0 1

1 1

2 2

3 3

4 5

5 8

6 13

7 21

8 34

9 55

10 89

11 144

12 233

13 377

14 610

15 987

16 1597

17 2584

18 4181

19 6765

Note: In a function subprogram, the function name cannot be treated
like a variable; i.e., it may not be involved in expressions. It may only be
assigned a value.

Drill 7-2

Write a function to return the maximum number in a one-dimensional array and

include the function in a program. You may use any procedures you wrote before to

build the program.

7-7 Tips on the Scope of Variables

The following program frame consists of three program units, procedure Kid1, proce-

dure Kid2, and the main program Parent. According to the rules of variable scope, any

variable declared in Parent (global variable) is accessible to both Kid1 and Kid2 unless

it is redeclared locally in either of them. On the other hand, any local variable declared

in Kid1 is hidden from both Parent and Kid2. The same thing applies for Kid2 vari-

ables. If you consider the main program as a parent and the subprograms as kids, it

144 � Chapter 7

then follows that whatever belongs to the parent belongs to the kids, but the opposite

is not valid. In other words, the kids inherit everything from the parent, but each one

of them has his own property, which is not inherited by a parent or a sibling.

{ --------------------------- Example 7-6 ------------------------- }

PROGRAM Parent;

{ --------------- PROCEDURE KID1 --------------- }

PROCEDURE Kid1(...);

...

BEGIN

...

END; { -------- END OF PROCEDURE KID1 ---------- }

{ ---------------- PROCEDURE KID2 -------------- }

PROCEDURE Kid2(...);

...

BEGIN

...

END; { -------- END OF PROCEDURE KID2 ---------- }

{ ------------------------- MAIN PROGRAM -------------------------- }

BEGIN

...

END.

{ --- }

Either of the two procedures may be called from the main program. The procedure

Kid1 may also be called from Kid2 because it has already been defined, but the proce-

dure Kid2 cannot be called from Kid1 because it has not yet been defined. There is a

way to get around this restriction using a forward declaration by including the header

of Kid2, followed by the keyword FORWARD, at the beginning of the program, like

this:

PROGRAM Parent;

{ Forward declaration of Kid2 }

PROCEDURE Kid2(...); FORWARD;

{ Definition of Kid1 }

PROCEDURE Kid1(...);

...

{ Definition of Kid2 }

PROCEDURE Kid2(...);

...

{ Main program }

...

Now take a look at the new program structure in the following example. The proce-

dure GrandKid is defined inside the procedure Kid, which means that Kid has become

the parent of another subprogram. In such a case, any variable in Kid is global in

GrandKid, and so are the variables of the Parent (unless any of them is redeclared in

GrandKid). The local variables in GrandKid, however, are not accessible to either Kid

or Parent.

Procedures and Functions � 145

{ -------------------------- Example 7-7 -------------------------- }

PROGRAM Parent;

{ ----------------- PROCEDURE KID ----------------- }

PROCEDURE Kid(...);

...

{ ----------- PROCEDURE GRANDKID ------------- }

PROCEDURE GrandKid(...);

BEGIN

...

END; { ------ END OF PROCEDURE GRANDKID ------ }

BEGIN

...

END; { ---------- END OF PROCEDURE KID ------------ }

{ ------------------------- MAIN PROGRAM ------------------------- }

BEGIN

...

END.

{ --- }

To summarize:

� The scope of a variable is the program unit in which it is declared.

� A global variable is accessible in any program unit unless it is redeclared locally in

that unit.

� A local variable is not accessible outside the program unit in which it is declared. It

is, however, accessible to any subprogram defined within this program unit unless

redeclared inside that sub-subprogram.

� Any subprogram can be called from any program unit as long as its definition (or its

forward declaration) preceded the call.

7-8 Recursive Functions and Procedures

A function or procedure may call itself, a property called recursion. The factorial func-

tion is a good example of recursion. You know (from Chapter 4) that the factorial of a

number X can be obtained from the relation:

factorial(X) = X * factorial(X–1)

In other words, to get the factorial of 4 you multiply 4 by the factorial of 3; to get the

factorial of 3 you multiply 3 by the factorial of 2, etc. This continues until you reach

the value 1.

Here is the program that contains the factorial function.

{ ------------------------- Example 7-8 --------------------------- }

PROGRAM FunctionRecursion(INPUT, OUTPUT);

VAR

146 � Chapter 7

A :INTEGER;

{ ------------- Function Definition ------------- }

FUNCTION Factorial(X :INTEGER) :REAL;

BEGIN

IF X <= 1 THEN

Factorial := 1

ELSE

Factorial := X * Factorial(X-1);

END;

{ ----------------- End of Function ---------------- }

{ ------------------ Main program ----------------- }

BEGIN

WRITE('Enter a number: ');

READLN(A);

WRITELN('The Factorial of ', A,' = ', Factorial(A):0:0)

END.

{ --- }

Sample Run:

Enter a number: 6

The Factorial of 6 = 720

Notice in the function program that in the statement:

Factorial := X * Factorial(X-1);

the left side contains the name of the function, while in the right side there is a call of

the function to calculate the factorial of X–1. This process will continue until the con-

dition terminates the function.

Drill 7-3

Write the factorial subprogram as a procedure and compare it to the factorial function.

Summary

In this chapter you learned about the Pascal program structure.

You know how to divide your program into subprograms, whether functions or proce-

dures. These are important points to remember:

1. A subprogram is declared in the last section of the declaration part and consists of a

header, a declaration part, and statements.

The header of a procedure takes the form:

Procedures and Functions � 147

PROCEDURE name;

or

PROCEDURE procedure-name(formal-parameter-list);

The header of a function takes the form:

FUNCTION function-name(formal-parameter-list) :return-type;

2. A procedure is called by its name exactly like a statement.

When parameters are used in a procedure call, they must match the parameters in the

procedure header. Procedure parameters are either value or variable parameters. A

variable parameter is used when it is required to have the procedure change the value

of the parameter.

3. A function is usually called as part of an expression; it returns a single value that

replaces the name of the function in that expression.

4. You now know that each variable has a scope, and you learned the rules that control the

scope and the relationship between global and local variables.

Exercises

1. True or false:

a. The scope of a variable is the program unit in which it is declared.

b. A global variable is accessible in any program unit unless it is redeclared locally in

that unit.

c. A local variable is not accessible outside the program unit in which it is declared. It

is, however, accessible to any subprogram defined within this program unit unless

redeclared inside that sub-subprogram.

d. Any subprogram can be called from any program unit as long as its definition, or its

forward declaration, precedes the call.

2. True or false:

a. A function must have one or more parameters.

b. A procedure may have one or more parameters.

c. A function always returns a value.

d. A procedure cannot return a value.

e. In a procedure definition, the formal parameters must be preceded by the keyword

VAR.

f. Unlike a value parameter, a variable parameter is preceded by the keyword VAR.

g. The function name can be assigned a value.

h. The function name can be involved in expressions.

i. Arrays, enumerations, and subranges must be declared in the TYPE section if they

are to be used as formal parameters in a subprogram.

148 � Chapter 7

TE
AM
FL
Y

Team-Fly®

3. Write a procedure definition that takes three integer parameters x, y, and z. The

parameter x is changed by the procedure and returned back to the caller. Also write the

procedure call.

4. Write the Prime Numbers procedure (see the Prime Numbers program, Example 5-5,

in Chapter 5).

5. Write a function to calculate and return the average of three real numbers.

Answers

1. All true.

2. d, e, and h are false.

3. PROCEDURE MyProcedure(VAR X:REAL; Y, Z:REAL);

4. Following is the Prime Numbers procedure:

{ --- }

PROCEDURE DisplayPrimes(N: INTEGER);

CONST

Size = 200; {The maximum size of the array}

VAR

Flags :ARRAY[1..Size] OF BOOLEAN;

Prime :INTEGER; {Prime number temporary variable}

NotPrime :INTEGER; {Counter for excluded numbers}

PrimeCount :INTEGER; {Counter of prime numbers}

I :INTEGER; {General loop counter}

BEGIN

{Initialize variables}

Prime := 2; { First prime }

NotPrime := Prime * 2; { First excluded multiple }

PrimeCount := 0; { Number of primes }

I := 1; { Array counter }

{Set all the array elements to TRUE}

WHILE I <= NumberOfElements DO

BEGIN

Flags[I] := TRUE;

I := I +1;

END;

{The actual algorithm loop}

WRITELN('Prime numbers from 1 to ', NumberOfElements, ' :');

WHILE Prime <= NumberOfElements DO

BEGIN

{Select only the TRUE elements}

IF Flags[Prime] = TRUE THEN

BEGIN

{Start with the first multiple}

NotPrime := Prime*2;

WHILE NotPrime <= NumberOfElements DO

BEGIN

Procedures and Functions � 149

{Exclude multiples}

Flags[NotPrime] := FALSE;

NotPrime := NotPrime + Prime;

END;

{After the WHILE loop, all the primes are TRUE}

PrimeCount := PrimeCount +1;

WRITELN(Prime);

END;

{Increment the WHILE counter}

Prime := Prime + 1;

END;

WRITELN('Number of primes = ', PrimeCount);

WRITELN('Press ENTER to continue..');

READLN

END;

{ --- }

5. Following is the code of the average function and the main program:

PROGRAM MyFunctions(INPUT, OUTPUT);

VAR

A, B, C :REAL;

{ --- }

FUNCTION Avg(X, Y, Z :REAL) :REAL;

BEGIN

AVG := (X + Y + Z) / 3

END;

{ --- }

BEGIN

WRITE('Enter three numbers: ');

READLN(A, B, C);

WRITELN('The average is= ', Avg(A, B, C):0:2)

END.

150 � Chapter 7

Chapter 8

Sets and Records

Chapter Topics:

� The SET data type

� Declaring and manipulating sets

� Set operators and expressions

� The RECORD data type

� Declaring, processing, and nesting

records

� Using the WITH statement to qualify

field names

8-1 The SET Data Type

The set is a structured data type that may include ordered or unordered elements.

The set elements are referred to as members. You can express a set literal constant by

listing its elements between brackets separated by commas, for example:

['a'..'z'] (The set of lowercase letters)

['A'..'Z', 'a'..'z'] (The set of all letters)

[0..9] (The set of digits)

[1,3,5,7] (The set of odd numbers between 1 and 7)

Unlike arrays, the order of elements in a set is not important. For example, the set:

[1,3,5,7]

151

is the same as the set:

[1,7,5,3]

This leads to another difference between sets and arrays. In arrays you can access any

element by its position in the array, but with sets you cannot access individual ele-

ments. You can only test a data item to see if it is a member of the set using the IN

operator. For example, if you would like to test a character to see if it is an uppercase

letter, you may use the following condition:

IF Character IN ['A'..'Z'] THEN ...

This statement speaks for itself; it is almost plain English. It says: “if the character is

in the set of uppercase letters then. . . . ” It is equivalent to, but simpler than, the con-

ditional statement:

IF (Character >= 'A') AND (Character <= 'Z') THEN ...

If the elements of a set form a continuous subrange, you may use the two periods (..);

for example, the set:

[1,2,3,4,6,8]

can be written as:

[1..4,6,8]

The elements of a set can be of any ordinal type, but all of the elements must be of the

same type, which is called the base type.

8-2 Declaration and Assignment: SET OF

To declare set variables use the keywords SET OF, as in the following example where

two sets of the base type CHAR are declared:

VAR

LowerCase, UpperCase :SET OF CHAR;

After this declaration you can assign the variables LowerCase and UpperCase set con-

stants of the base type CHAR, for example:

LowerCase := ['a'..'z'];

UpperCase := ['A'..'Z'];

You may then test a variable of the type CHAR for membership in these sets using

expressions like:

IF Character IN LowerCase THEN ...

IF Character IN UpperCase THEN ...

Note that the expression IN LowerCase is equivalent to the expression IN ['a'..'z'], and

the expression IN UpperCase is equivalent to the expression IN ['A'..'Z'].

152 � Chapter 8

As with other structured types, it is preferable to declare sets in the TYPE section;

you can then use this type in the VAR section to declare variables. The declaration

takes the general form:

type-identifier = SET OF base-type;

Declaration Examples

The following are examples of set declarations in the TYPE and the VAR sections:

TYPE

Days = (Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday);

Languages = (C,CPP,Pascal,Fortran,Basic,Cobol,Assembly);

Digits = SET OF 0..9;

Lowercase = SET OF 'a'..'z';

Uppercase = SET OF 'A'..'Z';

DaySet = SET OF Days;

LanguageSet = SET OF Languages;

CharacterSet = SET OF CHAR;

VAR

WholeWeek, WorkingDays, WeekEnd :DaySet;

OddNum, EvenNum, Numbers :Digits;

Small :Lowercase;

Capital :Uppercase;

ProgCodes, HLL, LLL, MLL :LanguageSet;

Alphabet :CharacterSet;

In the preceding declarations, variables such as WeekEnd, WorkingDays, and

WholeWeek are all sets of the base type Days. Any of these set variables may be

assigned one or more elements of the enumeration Days, such as:

WeekEnd := [Saturday,Sunday];

WorkingDays := [Monday..Friday];

WholeWeek := [Monday..Sunday];

The last statement is equivalent to the statement:

WholeWeek := [Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday];

The value of a set variable is undefined until it is assigned a value. When you assign a

set constant to a set variable, their base types must be compatible, i.e., they must be of

the same type, subranges of the same type, or one of them must be a subrange of the

other. Here are more assignments:

OddNum := [1,3,5,7,9];

EvenNum := [2,4,6,8];

ProgCodes := [C..Assembly];

LLL := [Assembly];

Sets and Records � 153

The empty set is a set with no members and is denoted by the constant []. You may

assign this constant to any set variable of any base type, for example:

OddNum := [];

8-3 Rules of Using Sets

The following are the main rules and restrictions that control the use of sets:

1. All the set members must be of the same base type.

2. There is usually a limit on the maximum number of elements of a set. This limit varies

with different Pascal implementations; in Turbo Pascal, for example, it is 255. The

declaration SET OF INTEGER is not allowed because the range of integers exceeds

this maximum number, but you can get around that by using subranges such as SET

OF 0..99.

In some implementations, the declaration SET OF CHAR is not allowed either, in

which case a subrange of the type CHAR might be used.

3. You may assign a set to another set:

NewSet := OldSet;

In this case, NewSet is an exact copy of OldSet.

4. You may declare an array of sets, as in:

DaysArray = ARRAY[1..10] OF DaySet;

where DaySet is a previously declared set type.

5. You cannot read or write a set using the input/output statements, but there are some

programming techniques using set operations (explained in the next section) that may

be used.

6. Sets can be passed as parameters of subprograms, in which case they must be declared

as types.

8-4 Set Operators and Expressions

In addition to the membership operator IN, which is specific to sets, other Pascal oper-

ators may be used in set operations. However, when used with sets, many operators

have different meanings, and some have different names.

The arithmetic operators +, –, and * perform special operations on sets of compatible

types. These operations are shown in the following table along with the corresponding

operator:

154 � Chapter 8

Table 8-1: Set operations

Operation Operator

Union +

Intersection *

Difference –

To demonstrate these operations, consider the two sets, A and B, shown in the follow-

ing figure. Each set is represented by a circle. (This representation is known as a Venn

diagram.)

Union: +

The union of the two sets A and B is a set whose elements are in either A or B, or in

both, as shown in the following figure. The operator + is used to perform this opera-

tion.

For example, if Small is the set of lowercase letters and Capital is the set of uppercase

letters, the union of these two sets is the Alphabet set, that is:

Alphabet := Small + Capital;

Sets and Records � 155

A B

A+B

Union

The set Alphabet will thus contain both the lowercase and the uppercase letters.

Intersection: *

The intersection of the two sets, A and B, is a set whose members are the elements

common to both sets, as shown in the following figure. The operator * is used to per-

form this operation.

For example, the statement:

MLL := [C,CPP,Cobol] * [Basic,Fortran,C,CPP]

results in the set MLL, which contains both C and CPP.

Difference: –

The difference A–B is a set whose members are in A but not in B, as shown in the fol-

lowing figure. The operator – is used to perform this operation.

For example, the statement (see the preceding declarations):

HLL := ProgCodes - [Assembly];

156 � Chapter 8

A*B

Intersection

A B�
Difference

results in the set HLL, which contains all the elements of the set ProgCodes except

Assembly.

It is obvious that the difference B–A is a set whose members are in B but not in A.

Tips on Using Set Operators

� You can make use of the union operation to construct a new set (read a set) by

reading one element at a time and adding it to the set, for example:

Read(NewElement);

Set1 := Set1 + [NewElement];

� You can also make use of the difference operation to display the elements of a set.

This is done by testing the membership of a variable of the same base type as that

of the set. If the element is a set member, it is displayed, subtracted from the set,

and replaced by its successor. This continues until the set is empty.

Drill 8-1

Evaluate the following expressions:

(See the answers in the file DRL8-1.TXT on the companion CD. The program

DRL8-1.PAS is also provided to help you test the results.)

1. ['A','B','C','D'] + ['E','F']

2. ['A','B','C','D'] + ['B','C','E','F']

3. [1,3,7] + []

4. ['A','D','F'] * ['O','F']

5. [1,2,3,4] * [5,6,7]

6. [1,2,3,4] - [5,6,7]

7. [5,6,7] - []

8. [Able, Baker, Charlie] - [Able, Charlie]

Relational Operators

The relational operators =, >=, <=, and <> can be used with sets of compatible

types.

The meanings of the set relational operators are indicated in Table 8-2 by comparing

two sets, A and B. The table contains TRUE expressions as examples of each opera-

tion.

The operators > and < are not mentioned in the table as they may not be used with

sets.

Sets and Records � 157

Table 8-2: Set relational operators

Expression Meaning Example

A = B Both A and B contain the same elements [1,0] = [1,0]

A <> B A and B do not contain the same elements [1,0] <> [1,4]

A >= B All elements of B are in A [1,2,3,4] >= [1,2]

[1,2,3] >= [1,2,3]

A <= B All elements of A are in B [] <= [1,2,3]

[1,2,3] <= [1,2,3]

In order to test the relational expressions, use a Boolean variable to store the expres-

sion, then print the variable to see if it is TRUE or FALSE. For example:

VAR

H :BOOLEAN;

...

BEGIN

H:= [Able, Baker, Charlie] - [Able, Charlie] = [Baker];

WRITELN('H = ',H);

...

The output of this code is:

H = TRUE

You can also check to see if a specific member belongs to the resulting set. For exam-

ple, you can test the preceding expression to see if Able, Baker, or Charlie are in the

resulting set. Only Baker’s test will be TRUE.

Drill 8-2

Write a program to test the expressions in Table 8-2.

Note: Remember that the membership operator IN is used to test
the membership of one element. In order to determine whether a set A
is a subset of B, in other words, all the elements of A are in B, use the
relational operators <= or >=. That is:

A <= B

-or-

B >= A

158 � Chapter 8

TE
AM
FL
Y

Team-Fly®

Precedence of Pascal Operators

After introducing the set operators, all Pascal operators are now complete. The rela-

tive precedence of Pascal operators is shown in Table 8-3. Notice that the set opera-

tors (+, –, *) use the same symbols as the arithmetic operators. Also, the relational

operators are used with either simple data types or sets.

Table 8-3: Precedence of Pascal operators

Operator Precedence

NOT Priority 1 (highest)

* / DIV MOD AND Priority 2

+ – OR (XOR in Turbo Pascal) Priority 3

= > < >= <= <> IN Priority 4 (lowest)

You may combine relational expressions using the Boolean operators AND, OR, and

NOT, but you must watch the precedence of operators, for example:

IF (Ch IN Small) AND (Ch IN Capital) THEN ...

The parentheses are necessary in this expression because the IN operator has a lower

precedence than the AND operator.

Application: Text Analyzer

In the following program, the printable characters are divided into the following sets:

� Lowercase letters

� Uppercase letters

� Alphabetic characters (which is the union of the above two sets)

� Digits

� Punctuation characters

� Other characters

The program reads a text file from the keyboard, character by character, and tests each

character to see if it is a member in any one of these sets. The program is straightfor-

ward and contains four parts: declarations of sets, initialization of counters, testing

memberships of characters, and displaying results.

{ -------------------------- Example 8-1 -------------------------- }

PROGRAM TextAnalyzer(INPUT,OUTPUT);

TYPE

LowerCase = SET OF 'a'..'z';

UpperCase = SET OF 'A'..'Z';

Digits = SET OF '0'..'9';

Characters = SET OF CHAR;

VAR

Sets and Records � 159

Capital :UpperCase;

Small :LowerCase;

Numerals :Digits;

Alphabet, Punctuation, Others :Characters;

A, C, S, N, P, O, Counter :INTEGER;

Ch :CHAR;

BEGIN

Counter := 0; { counter of all characters }

A := 0; { counter of alphabetic characters }

C := 0; { counter of capital letters }

S := 0; { counter of small letters }

N := 0; { counter of numeric characters }

P := 0; { counter of punctuation characters }

O := 0; { counter of other characters }

Small := ['a'..'z'];

Capital := ['A'..'Z'];

Alphabet := Small + Capital;

Numerals := ['0'..'9'];

Punctuation := [',',';','-','''','.','!','?',')','(','"',':','_'];

WRITELN('Start typing your text file. To terminate press Ctrl+Z:');

WHILE NOT EOF DO

BEGIN

WHILE NOT EOLN DO

BEGIN

READ(Ch);

Counter := Counter + 1;

IF Ch IN Alphabet THEN

BEGIN

A := A + 1;

IF Ch IN Small THEN

S := S + 1

ELSE IF Ch IN Capital THEN

C := C + 1

END

ELSE IF Ch IN Numerals THEN

N := N + 1

ELSE IF Ch IN Punctuation THEN

P := P + 1

ELSE

O := O + 1

END;

READLN

END;

WRITELN('Total number of characters = ', Counter);

WRITELN('Number of alphabetic characters = ', A);

WRITELN(' .Number of lowercase letters: ', S);

WRITELN(' .Number of uppercase letters: ', C);

WRITELN('Number of numeric characters = ', N);

WRITELN('Number of punctuation characters = ', P);

WRITELN('Number of other characters = ', O)

160 � Chapter 8

END.

{ --- }

Sample Run:

Start typing your text file. To terminate press Ctrl+Z:

The standard set operators are:

1. Union (+).

2. Intersection (*).

3. Difference (-).

^Z � Press Ctrl+Z to end the text

Total number of characters = 85

Number of alphabetic characters = 53

.Number of lowercase letters: 49

.Number of uppercase letters: 4

Number of numeric characters = 3

Number of punctuation characters = 14

Number of other characters = 15

Sets are useful for testing conditions. One common use of sets is to precede a CASE

statement in order to filter out the unwanted data, which do not belong to any case.

8-5 Records

A record, another structured type in Pascal, is a collection of related data items, which

may be of different types. Each item in the record is called a field. Take a look at this

record, which is used to store information about each employee in a company:

Employee Record

Field # Information Possible Data Type

1. Name STRING

2. Address STRING

3. Phone number STRING/INTEGER

4. Hourly rate REAL

5. Marital status CHAR/Enumeration

Unlike arrays (which contain elements of the same type), records may contain fields of

any data type, including the type RECORD itself.

Record Declaration

The declaration of a record takes the form:

type-identifier = RECORD

field-list

END;

Sets and Records � 161

The field list contains the name and type of each field as in this declaration of the

record EmployeeRecord.

TYPE

EmployeeRecord = RECORD

Name :STRING[25];

Address :STRING[40];

Phone :STRING[12];

Rate :REAL;

MaritalStatus :CHAR;

END;

Note: If your Pascal implementation does not support the STRING
type, you may replace the STRING variables by INTEGER or CHAR
variables, in which case you need to replace the variable Name with
another variable like ID, etc.

A record declaration must be terminated by the keyword END.

In the VAR section, the record is then declared as a variable of the type

EmployeeRecord:

VAR

EmployeeRec :EmployeeRecord;

As with other structured and user-defined data types, you can declare a record in the

VAR section directly, but you now know the advantages of declaring data structures as

types.

Accessing Record Fields

Each field in a record can be accessed using both the record identifier and the field

identifier separated by a period. For example, you can assign values to the fields with

statements like:

EmployeeRec.Name := 'Charles A. Dixon';

EmployeeRec.Rate := 22.5;

You can do the same thing with input and output operations:

WRITELN('Employee Name: ', EmployeeRec.Name);

This type of compound variable is called a fielded variable. Actually, the scope of the

field identifier (such as Name) is the record in which it was declared, and it may be

used elsewhere in the program as the name of another variable if desired.

In the following example, the record EmployeeRec is filled and then displayed.

{--------------------------- Example 8-2 ---------------------------}

PROGRAM RecordExample1(OUTPUT);

162 � Chapter 8

TYPE

EmployeeRecord = RECORD

Name :STRING[25];

Address :STRING[40];

Phone :STRING[12];

Rate :REAL;

MaritalStatus :CHAR;

END;

VAR

EmployeeRec :EmployeeRecord;

BEGIN

{ Assign values to the fielded variables }

EmployeeRec.Name := 'Diane J. Bedford';

EmployeeRec.Address := '20 Carmen Avenue, New Orleans, LA 70112';

EmployeeRec.Phone := '504-666-5043';

EmployeeRec.Rate := 28.5;

EmployeeRec.MaritalStatus := 'S';

{ Display record information }

WRITELN('Employee Name: ', EmployeeRec.Name);

WRITELN('Address: ', EmployeeRec.Address);

WRITELN('Telephone #: ', EmployeeRec.Phone);

WRITELN('Hourly Rate: $', EmployeeRec.Rate:0:2);

WRITELN('Marital Status: ', EmployeeRec.MaritalStatus)

END.

{ --- }

Output:

Employee Name: Diane J. Bedford

Address: 20 Carmen Avenue, New Orleans, LA 70112

Telephone #: 504-666-5043

Hourly Rate: $28.50

Marital Status: S

8-6 The WITH Statement

The WITH statement enables you to access record fields without using the fielded

variables. Look at this block of assignments using the WITH statement:

WITH EmployeeRec DO

BEGIN

Name := 'Charles A. Dixon';

Address := '202 Greenwood, Gretna, LA 70088';

Phone := '504-666-7574';

Rate := 22.5;

MaritalStatus := 'M'

END;

Sets and Records � 163

The effect of using the WITH statement is to attach each field name to the record

name. If one of the variables inside the block is not a field identifier, it will not be mod-

ified by the WITH statement.

If WITH is followed by only one statement, there is of course no need for the

BEGIN-END block.

You can use the WITH statement to call a procedure to process the fields of a record,

for example:

WITH EmployeeRec DO

DisplayResults(Name, Rate);

This statement is equivalent to:

DisplayResults(EmployeeRec.Name, EmployeeRec.Rate);

The WITH statement takes the general form:

WITH record-identifier DO

statement;

The following example demonstrates the same logic as that used in Example 8-2, but

the program is divided into three subprograms: GetData, DisplayInfo, and DrawLine

(which you wrote before). The output of this program is displayed in the proper for-

mat, using a header for the record.

{--------------------------- Example 8-3 ---------------------------}

PROGRAM RecordExample2(OUTPUT);

TYPE

EmployeeRecord = RECORD

Name :STRING[25];

Address :STRING[40];

Phone :STRING[12];

Rate :REAL;

MaritalStatus :CHAR;

END;

VAR

EmployeeRec :EmployeeRecord;

{ ------------ Procedure Drawline ------------ }

PROCEDURE DrawLine(LineLength, TabLength :INTEGER);

CONST

Dash = '-';

VAR

Counter :INTEGER;

BEGIN

FOR Counter := 1 TO TabLength DO

WRITE(' ');

FOR Counter := 1 TO LineLength DO

WRITE(Dash);

WRITELN

END;

164 � Chapter 8

{ ------------- Procedure GetData ------------- }

PROCEDURE GetData(VAR Employee :EmployeeRecord);

{ Assign values to fields }

BEGIN

WITH Employee DO

BEGIN

Name := 'Diane J. Bedford';

Address := '20 Carmen Avenue, New Orleans, LA 70112';

Phone := '504-666-5043';

Rate := 28.5;

MaritalStatus := 'S'

END

END;

{ ------- Procedure DisplayInfo -------- }

PROCEDURE DisplayInfo(Employee :EmployeeRecord);

{ Display record information }

CONST

Header ='Record of ';

VAR

Len, Tab, Counter :INTEGER;

HeaderText, Status :STRING;

BEGIN

WITH Employee DO

BEGIN

HeaderText := CONCAT(Header, Name);

Len := LENGTH(HeaderText);

Tab := (80- Len) DIV 2;

DrawLine(Len, Tab);

FOR Counter := 1 TO Tab DO

WRITE(' ');

WRITELN(HeaderText);

DrawLine(Len, Tab);

WRITELN('Address: ', Address);

WRITELN('Telephone #: ', Phone);

WRITELN('Hourly Rate: $', Rate:0:2);

IF MaritalStatus = 'M' THEN

Status := 'Married'

ELSE

Status := 'Single';

WRITELN('Marital Status: ', Status)

END

END;

{ ----------------------- Main Program ----------------------- }

BEGIN

GetData(EmployeeRec);

DisplayInfo(EmployeeRec)

END.

{ -- }

Sets and Records � 165

Output:

Record of Diane J. Bedford

Address: 20 Carmen Avenue, New Orleans, LA 70112

Telephone #: 504-666-5043

Hourly Rate: $28.50

Marital Status: Single

The points which are worthy of your attention in the program are the use of the WITH

statement and the passing of the record as a parameter to the subprograms. Notice

also that the record is passed once as a variable parameter (using VAR), when it was

to return values of the fields, and once as a value parameter, when it was only a

receiver.

The actual value of such a program comes when it reads the employee information

from a data file, which will be discussed shortly.

8-7 Nesting Records

In Example 8-2 you may split the field address information into street address, city,

state, and zip code. This means that the address field becomes a record nested in the

EmployeeRecord. The new record will look as follows:

TYPE

AddressRecord = RECORD

Street :STRING[18];

City :STRING[15];

State :STRING[2];

Zip :String[5];

END;

EmployeeRecord = RECORD

Name :STRING[25];

AddressRec :AddressRecord;

Phone :STRING[12];

Rate :REAL;

MaritalStatus :CHAR;

END;

VAR

EmployeeRec :EmployeeRecord;

In this declaration, you have two record types: AddressRecord and EmployeeRecord.

The field AddressRec in the employee record is of the type AddressRecord which was

defined before. To deal with any fielded variables in the AddressRec you have to attach

both names of the two records EmployeeRec (which is the grandparent) and

AddressRec (which is the parent). Here are some sample assignments:

166 � Chapter 8

EmployeeRec.AddressRec.Street := '15 Darell Street';

EmployeeRec.AddressRec.Zip := '60108';

When you display any of these fields you use the same method:

WRITELN(EmployeeRec.AddressRec.Street);

WRITELN(EmployeeRec.AddressRec.City);

Here is the complete program:

{ --------------------------- Example 8-4 ------------------------- }

PROGRAM NestedRecord(OUTPUT);

TYPE

AddressRecord = RECORD

Street :STRING[18];

City :STRING[15];

State :STRING[2];

Zip :String[5];

END;

EmployeeRecord = RECORD

Name :STRING[25];

AddressRec :AddressRecord;

Phone :STRING[12];

Rate :REAL;

MaritalStatus :CHAR;

END;

VAR

EmployeeRec :EmployeeRecord;

BEGIN

EmployeeRec.Name := 'Jean L. Krauss';

EmployeeRec.AddressRec.Street := '15 Darell Street';

EmployeeRec.AddressRec.City := 'Bloomingdale';

EmployeeRec.AddressRec.State := 'IL';

EmployeeRec.AddressRec.Zip := '60108';

EmployeeRec.Phone := '312-987-5432';

EmployeeRec.Rate := 27.5;

EmployeeRec.MaritalStatus := 'M';

WRITELN('Employee Name: ', EmployeeRec.Name);

WRITELN('Address: ', EmployeeRec.AddressRec.Street);

WRITELN(' ', EmployeeRec.AddressRec.City);

WRITE(' ', EmployeeRec.AddressRec.State);

WRITELN(' ', EmployeeRec.AddressRec.Zip);

WRITELN('Telephone #: ', EmployeeRec.Phone);

WRITELN('Hourly Rate: $', EmployeeRec.Rate:0:2);

WRITELN('Marital Status: ', EmployeeRec.MaritalStatus)

END.

{ --- }

Sets and Records � 167

Output:

Employee Name: Jean L. Krauss

Address: 15 Darell Street

Bloomingdale

IL 60108

Telephone #: 312-987-5432

Hourly Rate: $27.50

Marital Status: M

If you would like to use the WITH statement with such a nested record you need two

nested WITH blocks, thus:

WITH EmployeeRec DO

WITH AddressRec DO

BEGIN

Name := 'Tammy M. Ockman';

Street := '344 Temple Dr.';

...

END;

If any field identifier belongs to the AddressRec, it will be modified by both

AddressRec and EmployeeRec, but if it belongs to the EmployeeRec directly, it will be

modified by EmployeeRec only. If it is a regular variable, it will not be modified at all.

Drill 8-3

Write the complete program that initializes and displays the employee record using

the WITH statement with the nested address record shown above.

Summary

In this chapter you have met two structured data types, the set and the record, and are

now familiar with their features.

1. You now know how to declare a set of a specific base type using the form:

type-identifier = SET OF base-type;

2. You also know the standard set operators (union (+), intersection (*), and difference

(–)) and the set relational operators (= >= <= <>), and learned how to use these

operators to process sets.

3. You are familiar with restrictions on sets, as well as their main uses in programming.

168 � Chapter 8

TE
AM
FL
Y

Team-Fly®

4. You declare record types using the form:

RECORD

field-list

END;

5. You can access fields using either fielded variables or the WITH statement, which takes

the form:

WITH record-identifier DO

statement;

Exercises

1. Determine whether each of the following statements is true or false:

a. For sets to be passed as parameters, they must be declared in the TYPE section.

b. You can read and write sets by using input/output statements.

c. You can declare an array whose elements are sets.

d. The main difference between arrays and sets is that sets may contain unordered

items (members).

e. The main difference between arrays and records is that records may contain items

(fields) of different data types.

f. A record can contain fields of any data type except the type RECORD.

g. Elements of sets and arrays can be accessed by their relative position in the set or

the array.

2. Given the following declarations and assignments:

{Declarations:}

V1, V2 :SET OF CHAR;

A, B, C, D, E, F :BOOLEAN;

{Assignments:}

V1 := ['A', 'B'];

V2 := ['C', 'D', 'E'];

evaluate the following expressions:

A := V1*V2 <= V1;

B := V1*V2 <= V2;

C := V1+V2 >= V1;

D := V1+V2 >= V2;

E := V1-V2 <= V1+V2;

F := V1-V2 >= V1+V2;

Sets and Records � 169

3. Given the following declarations and assignments:

{Declarations:}

S1, S2, S3, S4 :SET OF 1..99;

A, B, C, D, E, F, G :BOOLEAN;

{Assignments:}

S1 := [2,4,6,8];

S2 := [1,3,5,7,9];

S3 := [1..9,11,13];

S4 := [2..8,10,12];

evaluate the following expressions:

a. S1 + S2

b. S1 * S2

c. S1 – S2

d. S4 – S1

e. S1 + S2 * S3

f. (S1 + S2) * S3

g. S2 + [5]

4. Write a record declaration using the appropriate data types for each of the following

items:

� Inventory item, which includes Name, Shelf #, Stock #, Available Amount, and

Price.

� Employee, which includes Name, ID, Network Domain, E-mail Alias, and Office #.

� Employee, which contains the same fields as in the previous Employee record, in

addition to the Address record. The Address record should contain: Street

Address, City, State, and Zip Code.

� Newly born baby, which includes Name, Family Name, Father’s Name, Mother’s

Name, Weight, Place of Birth, and Date of Birth.

Answers

1. a. True b. False c. True d. True

e. True f. False g. False.

2. a. True b. True c. True d. True

e. True f. False.

3. a. [1..9] b. [] c. S1; d. [3,5,7,10,12]

e. S1 + S2 f. S1 + S2 g. S2;

170 � Chapter 8

Chapter 9

Data Files

Chapter Topics:

� The FILE data type

� TEXT files

� Non-TEXT files

� Reading, displaying, and processing

data files

� Creating data files and storing them on

the hard disk

� Appending and updating data files

� Miscellaneous applications

9-1 The FILE Type

In the previous chapters you have used different data structures in which to store data

items and you know how to organize your data for optimum processing efficiency. If

you do not store data to the disk, however, every data item you entered into a program

will evaporate when the program exits. Using disks to store your data in files will

enable you to save your data permanently and retrieve them later for either reviewing

or further processing.

171

A FILE (which is a structured type) is generally defined as a collection of related

items stored on disk or any other external storage medium and arranged in sequence

as shown in the following figure.

A file item (also called a file component or file element) may be of any simple or struc-

tured type except the type FILE.

Files may be accessed to perform either one of the following operations:

� Reading from a file (input)

� Writing to a file (output)

Files can be organized as either sequential access files or random (direct) access files.

In the first method no item in the file can be reached unless all the preceding items

are read. One example of a sequential access file is a purchase list which has to be

read from the top down to access a specific item. The random access file is organized

like a set of post office boxes, which are identified by numbers and accessed directly

without the need to go through them all.

While standard Pascal allows only sequential access files, many implementations of

Pascal (including Turbo and UCSD) provide random access files as well. The files dis-

cussed in this chapter are all sequential access files.

9-2 TEXT Files

Standard Pascal provides two types of files, TEXT files and non-TEXT files (also

called binary or typed files).

A TEXT file is the simpler file structure as its elements are all characters (of the type

CHAR). You have already used the standard INPUT file (the keyboard) and the stan-

dard OUTPUT file (the screen), which are classified as TEXT files. A TEXT file con-

sists of successive lines of characters separated by end-of-line marks and ends with

the end-of-file mark, as in this example:

This is a text file. (EOLN)

Each line is composed of successive characters. (EOLN)

Lines are separated by end-of-line marks. (EOLN)

The file is terminated by an end-of-file mark. (EOLN)

(EOF)

172 � Chapter 9

item-1 item-2 item-3 item-4 ... EOF

The file on the disk looks exactly the same as the file you type onto the screen from

the keyboard. The characters in a TEXT file are stored in the ASCII format (or

EBCDIC in some systems), which means that if the file contains a number like 1234 it

will be stored in four bytes, each byte representing the ASCII code of a digit. This is

not the case if the number is treated as an INTEGER, in which case it is stored in the

internal binary format (0000010011010010) in two bytes.

9-3 Reading TEXT Files

In Chapter 8 you used the program Example 8-1 to read a TEXT file from the key-

board character by character and categorize each character in the file. In this section,

the same logic will be used to read and analyze a previously stored text file on the

disk. You need to make a few changes in Example 8-1 to make it read a disk file. As we

discuss these changes, you will learn the protocols necessary to retrieve information

from a TEXT file.

The File Variable

In order to use a disk TEXT file, you have to declare a file variable of the type TEXT.

If you choose a name like DiskFile for this purpose, the declaration will be:

VAR

DiskFile :TEXT;

File Parameters

To use a file in standard Pascal, you must include the file variable (DiskFile in our

example) among the other file parameters in the program header (this is not neces-

sary in other implementations).

PROGRAM TextAnalyzer2(OUTPUT, DiskFile);

Here, the parameter INPUT is not needed as long as no data are to be read from the

keyboard. The parameter OUTPUT, however, is necessary for displaying the output.

Opening a File for Input: RESET

To read a text file, it must be opened using the standard procedure RESET as follows:

RESET(DiskFile);

The parameter of the procedure is the file variable.

In Turbo Pascal another procedure, ASSIGN, must also be used to link the actual data

file on the disk to the file variable. If the text file to be read is the file C:\CONFIG.SYS

Data Files � 173

(which already exists in the root directory of the hard disk C:), then the following

statement must be used before opening the file:

ASSIGN(DiskFile, 'C:\CONFIG.SYS');

You may replace the file CONFIG.SYS with any other existing file, or you can write a

new text file with any text editor (such as EDIT or EDLIN). In any case, if the file is

not in the current directory or on the current disk, you have to include the complete

PATHNAME of the file as shown in the statement above (for more details on

PATHNAME refer to your DOS manual).

Because Turbo Pascal was used to compile the programs in this book, the following

two statements were used to open the file:

ASSIGN(DiskFile, 'CONFIG.SYS');

RESET(DiskFile);

Now the file CONFIG.SYS is ready for input, and the file pointer is pointing to the first

item (character) in the file.

Some implementations (such as UCSD) link the file variable and the file name with

the RESET procedure, thus making the ASSIGN procedure unnecessary:

RESET(file-variable, file-name);

Closing the File: CLOSE

The last step after you are finished with reading or writing to a disk file is to close it

using the CLOSE procedure, or else data will be lost. This procedure is neither avail-

able nor necessary in standard Pascal, where punched cards and magnetic tape files

were used.

To close a file, the procedure CLOSE is used as in:

CLOSE(DiskFile);

Some versions use more parameters for the CLOSE procedure. For example, in UCSD

the file must be closed after writing to it using the form:

CLOSE(file-variable, action);

where action is replaced by either the keyword LOCK if the file will be retained, or

PURGE if the file will be deleted.

To summarize, these are the general formulas for preparing a text file for input:

� Program header:

PROGRAM Program-name(file-list);

(The file-list is optional in most versions.)

174 � Chapter 9

� File variable declaration:

file-variable :TEXT;

� Linking file variable to file name (Turbo only):

ASSIGN(file-variable, file-name);

� Opening a file for input:

RESET(file-variable);

� Closing a file (for versions other than standard Pascal):

CLOSE(file-variable);

CLOSE(file-variable, action); (UCSD)

File Input Procedures: READ, READLN

The input/output statements you have used before are actually special cases of the

general form. The complete form of the READLN (or READ) procedure is:

READLN(file-variable, input-list);

READ(file-variable, input-list);

If no file-variable is used, the form is reduced to the one you have been using:

READLN(input-list);

This is the same as using the name of the standard INPUT file:

READLN(INPUT, input-list);

Now, in our example we are going to use the file-variable DiskFile. The input state-

ment will be:

READ(DiskFile,Ch);

where Ch is the character variable to be read.

The EOF and EOLN Functions

The general form of the EOLN function includes the file variable as follows:

EOLN(file-variable)

If the file-variable and parentheses are omitted, the standard INPUT file (the key-

board) is assumed.

The same thing goes for the EOF function:

EOF(file-variable)

Data Files � 175

Note: In this chapter, you will use a number of text files as you go
through the examples and drills. Some examples create data files,
while other examples read them. Therefore, it is best to go through the
examples in sequence. However, if you would like to jump to any of the
examples randomly, make sure the required text files exist in the
current directory. For your convenience, we put all the data files in the
examples’ directories, in addition to a fresh copy of all the data files in
the directory \TextFiles on the companion CD. In case you accidentally
overwrite one of the files, you can copy it from this directory. When you
run the examples, make sure the example and the data files it uses are
all in the current directory.

Application: Disk-File Text Analyzer

Now that you have all the tools for reading a file you can examine the following pro-

gram, which will give you a complete report on the file CONFIG.SYS, provided on the

companion CD in the same directory as the program. If you want to read the

CONFIG.SYS file from the root directory of your hard disk, replace the statement:

ASSIGN(DiskFile, 'CONFIG.SYS')

with the statement:

ASSIGN(DiskFile, 'C:\CONFIG.SYS')

Do not expect to get the same result as the one obtained from this sample run,

because different computers may have different configuration files.

Following the program, the CONFIG.SYS file is listed to check the validity of the

report.

{ --------------------------- Example 9-1 -------------------------- }

PROGRAM TextAnalyzer2(OUTPUT,DiskFile);

{ Reading from a disk text file one character at a time }

TYPE

LowerCase = SET OF 'a'..'z';

UpperCase = SET OF 'A'..'Z';

Digits = SET OF '0'..'9';

Characters = SET OF CHAR;

VAR

DiskFile :TEXT; { declare a text file variable }

Capital :UpperCase;

Small :LowerCase;

Numerals :Digits;

Alphabet, Punctuation, Others :Characters;

A, C, S, N, P, O, Counter :INTEGER;

Ch :CHAR;

BEGIN

{ Link the file variable to the file 'CONFIG.SYS' in the current directory }

176 � Chapter 9

ASSIGN(DiskFile, 'CONFIG.SYS');

{ Open the file for input }

RESET(DiskFile);

{ The program logic }

Counter := 0; { counter of all characters }

A := 0; { counter of alphabetic characters }

C := 0; { counter of capital letters }

S := 0; { counter of small letters }

N := 0; { counter of numeric characters }

P := 0; { counter of punctuation characters }

O := 0; { counter of other characters }

Small := ['a'..'z'];

Capital := ['A'..'Z'];

Alphabet := Small + Capital;

Numerals := ['0'..'9'];

Punctuation := [',',';','-','''','.','!','?',')','(','"',':','_'];

{ Check for the end of the disk file }

WHILE NOT EOF(DiskFile) DO

BEGIN

{ Check for the end of line in the disk file }

WHILE NOT EOLN(DiskFile) DO

BEGIN

{ Read one character from the disk file }

READ(DiskFile,Ch);

Counter := Counter + 1;

IF Ch IN Alphabet THEN

BEGIN

A := A + 1;

IF Ch IN Small THEN

S := S + 1

ELSE IF Ch IN Capital THEN

C := C + 1

END

ELSE IF Ch IN Numerals THEN

N := N + 1

ELSE IF Ch IN Punctuation THEN

P := P + 1

ELSE

O := O + 1

END;

{ Advance the pointer to the next line }

READLN(DiskFile)

END;

{ End of the file is reached }

{ Close the file }

CLOSE(DiskFile);

{ Display the report }

WRITELN;

WRITELN('Total number of characters = ', Counter);

WRITELN('Number of alphabetic characters = ', A);

Data Files � 177

WRITELN(' .Number of lowercase letters: ', S);

WRITELN(' .Number of uppercase letters: ', C);

WRITELN('Number of numeric characters = ', N);

WRITELN('Number of punctuation characters = ', P);

WRITELN('Number of other characters = ', O);

WRITELN('Press ENTER to continue..');

READLN

END.

{ --- }

Listing of the file CONFIG.SYS:

DEVICE=C:\SCSI\ASPI2DOS.SYS /D /Z /P140

DEVICE=C:\SCSI\ASPICD.SYS /D:ASPICD0

device=C:\WINDOWS\himem.sys

[common]

DEVICE=C:\CDROM\AOATAPI.SYS /D:IDECD000

Output:

Total number of characters = 149

Number of alphabetic characters = 107

.Number of lowercase letters: 20

.Number of uppercase letters: 87

Number of numeric characters = 8

Number of punctuation characters = 10

Number of other characters = 24

Press ENTER to continue..

9-4 Displaying TEXT Files

You can display the contents of any text file by using the same logic as in the previous

program, but adding a WRITE statement after each read:

READLN(DiskFile,Ch);

WRITE(Ch);

You also need to advance one line on the screen using a WRITELN statement when-

ever the EOLN is detected, or else the separate lines will be joined together.

Here is the program, which reads the same file (CONFIG.SYS). The name of the file is

declared as a constant, and you may replace it with any file name. It is also possible to

use the program source file itself (its name is 9-02.PAS on the companion CD), in

which case the program reads itself.

{ ------------------------- Example 9-2 --------------------------- }

PROGRAM ReadTextFile(INPUT,OUTPUT,DiskFile);

{ Reading a text file stored on the disk }

CONST

{ You may replace the following constant by any existing file name }

178 � Chapter 9

TE
AM
FL
Y

Team-Fly®

FileName = 'C:\CONFIG.SYS';

VAR

DiskFile :TEXT;

Ch :CHAR;

BEGIN

ASSIGN(DiskFile, FileName);

RESET(DiskFile);

WHILE NOT EOF(DiskFile) DO

BEGIN

WHILE NOT EOLN(DiskFile) DO

BEGIN

{ Read and display one character from the text file }

READ(DiskFile,Ch);

WRITE(Ch)

END;

{ Advance the pointer to the next line }

READLN(DiskFile);

{ Advance one line on the screen }

WRITELN

END;

CLOSE(DiskFile);

WRITELN('Press ENTER to continue..');

READLN

END.

{ --- }

Output:

The output may look something like this:

DEVICE=C:\SCSI\ASPI2DOS.SYS /D /Z /P140

DEVICE=C:\SCSI\ASPICD.SYS /D:ASPICD0

device=C:\WINDOWS\himem.sys

[common]

DEVICE=C:\CDROM\AOATAPI.SYS /D:IDECD000

Press ENTER to continue..

Reading a TEXT File as a Set of Strings

If your version of Pascal supports the STRING type, you may read a TEXT file one

line at a time.

The following program deals with the file as if it is made of strings rather than charac-

ters. Each string has a maximum length of 80 characters, which is the expected line

length. After each line is read the file pointer moves to the next line. If any line con-

tains less than 80 characters, the dynamic length of the string will be set to the actual

number of characters in the line. If, on the other hand, a line contains more than 80

characters, the rest are ignored. When you run the program it asks you to enter the

name of the file to be displayed, so this program acts like the DOS command TYPE.

Data Files � 179

{ --------------------------- Example 9-3 -------------------------- }

PROGRAM DisplayTextFile(OUTPUT,MyFile);

{ Reading a text file stored on the disk one line at a time }

VAR

MyFile :TEXT;

OneLine, FileName :STRING[80];

BEGIN

WRITE('Please enter the file name to be displayed: ');

READLN(FileName);

WRITELN;

WRITELN('The contents of the file ',FileName,' are: ');

ASSIGN(MyFile, FileName);

RESET(MyFile);

{ Check for the end of the text file }

WHILE NOT EOF(MyFile) DO

BEGIN

{ Read and display the text file one line at a time }

READLN(MyFile,OneLine);

WRITELN(OneLine);

END;

CLOSE(MyFile);

WRITELN('Press ENTER to continue..');

READLN

END.

{ --- }

If the file does not exist or its name is written incorrectly, the program gives an error

message like this:

Please enter the file name to be displayed: CNFIG.SYS

The contents of the file CNFIG.SYS are:

Runtime error 002 at 0000:00F2.

Notice that a READLN statement was used to read each string. If you used a READ

statement you would still have to use another READLN to skip over the end-of-line

mark at the end of each line and move the file pointer to the beginning of the next line.

This is because when you use the READ statement, it will read the string characters

until the end-of-line mark (or a CR) is detected, then stop. It also does not move the

pointer.

In this program you may check the EOLN after each read as you did when you read

characters, but you do not need to.

Reading Multiple Strings

It is possible to read more than one string with only one READLN (or READ), but this

is sometimes iffy. To understand the possible pitfalls, take a look at this example which

reads three strings, each of them declared as STRING[5], from a text file named

TEST.TXT. This file contains the following line:

180 � Chapter 9

This is a test text file.

{ ------------------------- Example 9-4 --------------------------- }

PROGRAM ReadMultipleStrings1(OUTPUT,F);

VAR

F :TEXT;

Str1,Str2,Str3 :STRING[5];

BEGIN

ASSIGN(F,'test.txt');

RESET(F);

READLN(F,Str1,Str2,Str3);

WRITELN('Str1= ', Str1);

WRITELN('Str2= ', Str2);

WRITELN('Str3= ', Str3);

CLOSE(F);

WRITELN('Press ENTER to continue..');

READLN

END.

{ --- }

Output:

Str1= This

Str2= is a

Str3= test

As you can see in the output, each string variable is assigned five characters (including

the blank spaces). Now replace the declaration of the string variables with the follow-

ing:

Str1,Str2,Str3 :STRING;

If you run the program using this declaration, the length of each string will default to

the maximum length supported by the language, and you will get the result:

Str1= This is a test text file.

Str2=

Str3=

What happened here was the first variable was assigned the whole line (up to the

end-of-line mark) and nothing was left for the other two. In short, you can only read

multiple strings safely if you know the length of each one.

9-5 Creating a File: REWRITE

To create a file you have to open the file to receive output. The procedure REWRITE

(which is the counterpart of RESET) is used for this purpose. It takes the form:

REWRITE(file-variable);

Data Files � 181

In Turbo Pascal you have to link the file variable to the actual file name on the disk

using ASSIGN as you did with input.

Some implementations (such as UCSD) instead use a modified formula of the proce-

dure REWRITE, where both the file variable and the file name are used:

REWRITE(file-variable, file-name); { UCSD }

The rules of inventing a file name (which is the actual name of the disk file) depend on

the operating system. In DOS the name can be made of up to eight characters and an

optional extension of up to three characters (such as EMPLOYEE.DAT). After this

statement an empty file is open and ready for writing.

Note: If you open an existing file for output, the data in this file will
be lost and overwritten by the new data.

The Output Procedures: WRITE, WRITELN

To write one or more items to a file use the general form of the WRITELN (or

WRITE) procedure:

WRITELN(file-variable, output-list);

or

WRITE(file-variable, output-list);

If the file variable is omitted from these formulas, the standard OUTPUT file (the

screen) is assumed and the form is reduced to the one you have been using:

WRITELN(output-list);

which is equivalent to:

WRITELN(OUTPUT, output-list);

After you are finished writing to a disk file you must close it with the CLOSE proce-

dure as mentioned before.

In the following example, a file HELLO.TXT is created, then the constant Hello Pascal

is written to this file.

{ --------------------------- Example 9-5 -------------------------- }

PROGRAM CreateFile(F);

CONST

TestSentence = 'Hello Pascal';

VAR

F :TEXT;

BEGIN

ASSIGN(F, 'HELLO.TXT'); { Turbo only }

REWRITE(F); { open the file for output }

182 � Chapter 9

WRITELN(F, TestSentence);

CLOSE(F)

END.

{ -- }

When this program is executed a new file, HELLO.TXT, is added to your current

directory. In order to be sure that the file was written properly, you can display it using

either the DOS command TYPE or Example 9-3 (which replaces it). In either case you

will see the two words Hello Pascal on the screen.

As mentioned earlier, a text file can be created and written to with any text editor, but

the importance of creating a file with a Pascal program comes when the information in

the new file is based on data processed from other files.

Drill 9-1

Write a program to accept from the keyboard the name and/or ID number and the

hours worked per month for each employee and write the data to a file called

TIMSHEET.TXT. The program should process the data for any number of employees.

Application: Employee File

In Chapter 8 you created an employee record to contain information about the name,

address, wages, etc., of each employee. In the following program, you are going to

write the employee record information to a disk file EMPFILE.TXT using the nested

record structure. Take a look at the program first:

{ --------------------------- Example 9-6 -------------------------- }

PROGRAM CreateEmpFile(INPUT,OUTPUT,F);

TYPE

AddressRecord = RECORD

Street :STRING[18];

City :STRING[15];

State :STRING[2];

Zip :String[5];

END;

EmployeeRecord = RECORD

ID :INTEGER;

Name :STRING[20];

AddressRec :AddressRecord;

Phone :STRING[12];

Rate :REAL;

MaritalStatus :CHAR;

END;

VAR

F :TEXT; { The file variable }

Data Files � 183

EmployeeRec :EmployeeRecord;

BEGIN

ASSIGN(F, 'EMPFILE.TXT');

REWRITE(F);

WITH EmployeeRec DO

WITH AddressRec DO

BEGIN

WRITE('Please enter Employee ID: '); READLN(ID);

WRITE('Employee Name: '); READLN(Name);

WRITE('Address: Street: '); READLN(Street);

WRITE(' City: '); READLN(City);

WRITE(' State: '); READLN(State);

WRITE(' Zip code: '); READLN(Zip);

WRITE('Phone Number: '); READLN(Phone);

WRITE('Hourly Rate: '); READLN(Rate);

WRITE('Marital Status (S/M): '); READLN(MaritalStatus);

{ Store the information to the file }

WRITELN(F, ID);

WRITELN(F, Name);

WRITELN(F, Street);

WRITELN(F, City);

WRITELN(F, State);

WRITELN(F, Zip);

WRITELN(F, Phone);

WRITELN(F, Rate:0:2);

WRITELN(F, MaritalStatus)

END;

CLOSE(F)

END.

{ -- }

Sample Run:

Please enter Employee ID: 122

Employee Name: Tammy M. Ockman

Address: Street: 322 Temple Dr.

City: New Orleans

State: LA

Zip code: 70112

Phone Number: 504-285-3434

Hourly Rate: 22.45

Marital Status (S/M): S

The following is a display of the file contents:

122

Tammy M. Ockman

322 Temple Dr.

New Orleans

LA

70112

504-285-3434

184 � Chapter 9

22.45

S

Notice that a numeric field ID has been added to the record, which is otherwise as

before (in Chapter 8). Again, if your compiler does not support the STRING type

(which is not likely), you can use the numeric and character fields only.

The resulting file contains as many lines as the number of fields in the record.

Actually, you can write all of the fields in one line if you so wish by replacing the

WRITELNs by WRITEs.

Drill 9-2

Modify the last program so that it can store more than one employee record. You may

wish to rebuild it as a procedure which can be called for each data entry of one

employee.

Application: Payroll

The file you have just created contains a good deal of information about employees and

can be used for more than one purpose. You can use some or all of the information in

this file to create different reports or other data files. In the following application, the

file EMPFILE.TXT is read but only three fields from each record are used: ID, Name,

and HourlyRate. The program first displays an employee’s information on the screen,

then the user is prompted to enter HoursWorked for this employee. The Wages are

then calculated by multiplying HourlyRate and HoursWorked. After processing each

record the ID, Name, and Wages are stored in a new file PAYFILE.TXT. The new file

is used to produce a payroll report for this pay period.

The program consists of three procedures:

� GetInfo to read one record of the file EMPFILE.TXT and display only the selected

fields. Notice that you have to read all of the record fields even if you do not need

them all.

� CalcWages to carry out the calculations.

� FilePayRoll to write the record PayRec to the file PAYFILE.TXT.

{ -------------------------- Example 9-7 --------------------------- }

PROGRAM PayRoll(INPUT,OUTPUT,MasterFile,PayFile);

{ This program reads the file EMPFILE.TXT, calculates the wages, and

stores the information to the file PAYFILE.TXT }

TYPE

AddressRecord = RECORD

Street :STRING[18];

City :STRING[15];

State :STRING[2];

Data Files � 185

Zip :String[5];

END;

EmployeeRecord = RECORD

ID :INTEGER;

Name :STRING[20];

AddressRec :AddressRecord;

Phone :STRING[12];

Rate :REAL;

MaritalStatus :CHAR;

END;

PayRecord = RECORD

ID :INTEGER;

Name :STRING[20];

Wages :REAL;

END;

VAR

MasterFile, PayFile :TEXT;

EmployeeRec :EmployeeRecord;

PayRec :PayRecord;

HoursWorked, Wages :REAL;

{ --------------- Procedure GetInfo ---------------- }

{ This procedure reads the employee file EMPFILE.TXT

and displays the ID, Name, and Hourly Rate. }

PROCEDURE GetInfo(VAR F:TEXT);

BEGIN

WITH EmployeeRec DO

WITH AddressRec DO

BEGIN

READLN(F,ID); WRITELN('ID: ',ID);

READLN(F,Name); WRITELN('Name: ',Name);

READLN(F,Street);

READLN(F,City);

READLN(F,State);

READLN(F,Zip);

READLN(F,Phone);

READLN(F,Rate); WRITELN('Hourly rate: $', Rate:0:2);

READLN(F,MaritalStatus);

END;

END;

{ -------------- Procedure CalcWages -------------- }

{ This procedure is used to calculate wages.

The result is returned to the main program }

PROCEDURE CalcWages(HoursWorked:REAL; VAR Wages:REAL);

BEGIN

WITH EmployeeRec DO

Wages := Hoursworked * Rate;

Wages := ROUND(100 * Wages) / 100 { rounding cents }

END;

186 � Chapter 9

{ ------------- Procedure FilePayRoll ------------- }

{ This procedure is used to write one record to

the output file PAYFILE.TXT }

PROCEDURE FilePayRoll(VAR P :TEXT; Wages :REAL);

BEGIN

WITH EmployeeRec DO

BEGIN

PayRec.ID := ID;

PayRec.Name := Name;

Payrec.Wages := Wages

END;

WITH PayRec DO

WRITELN(P, ID:3, Name:20, Wages:10:2)

END;

{ ----------------- Main Program ----------------- }

BEGIN

ASSIGN(MasterFile, 'EMPFILE.TXT'); RESET(MasterFile);

ASSIGN(Payfile, 'PAYFILE.TXT'); REWRITE(PayFile);

WHILE NOT EOF(MasterFile) DO

BEGIN

GetInfo(MasterFile);

WRITE('Please enter hours worked for this pay period: ');

READLN(HoursWorked);

CalcWages(HoursWorked, Wages);

FilePayRoll(PayFile, Wages)

END;

CLOSE(MasterFile);

CLOSE(PayFile)

END.

{ --- }

Sample Run:

Assume that the file EMPFILE.TXT contains three records. The program will use

these records as follows:

ID: 122 � Information from file

Name: Tammy M. Ockman � Information from file

Hourly rate: $22.45 � Information from file

Please enter hours worked for this pay period: 160 � Entered by user

ID: 123

Name: Tara S. Strahan

Hourly rate: $15.24

Please enter hours worked for this pay period: 160

ID: 125

Name: John G. Trainer

Hourly rate: $28.55

Please enter hours worked for this pay period: 140.5

The program creates the file PAYFILE.TXT containing the following records:

Data Files � 187

122 Tammy M. Ockman 3592.00

123 Tara S. Strahan 2438.40

125 John G. Trainer 4011.28

� When file variables (such as MasterFile and PayFile) are passed to subprograms,

they must be passed as variable parameters (using VAR). The type TEXT is used

with such parameters:

PROCEDURE FilePayRoll(VAR P :TEXT; Wages :REAL);

� Some identifiers (such as Name and ID) are used in both EmployeeRec and

PayRec. This does not cause any problem because they are all fielded variables;

remember that the scope of a fielded variable is limited to its own record. Also, the

identifier Wages was declared both as a global variable and as a fielded variable (in

the record PayRec) and was also used as a local variable in the procedure

FilePayroll.

� Take a look at these assignment statements in the procedure FilePayRoll:

WITH EmployeeRec DO

BEGIN

PayRec.ID := ID;

PayRec.Name := Name;

PayRec.Wages := Wages

The first two statements copy the values of the fields ID and Name from

EmployeeRec to the corresponding fields in PayRec. The WITH statement modi-

fies only the variables which belong to the record EmployeeRec (ID and Name). A

variable such as PayRec.ID is not affected by the WITH statement because it is

explicitly modified by PayRec. In the last statement, no variables at all are affected

by the WITH statement.

Drill 9-3

Add a procedure to the last program to display a Payroll Summary report as shown:

-------- PayRoll Summary ----------

ID --------- Name -------- Salary

122 Tammy M. Ockman $3592.00

123 Tara S. Strahan $2438.40

125 John G. Trainer $4011.28

The program may also be modified in such a way as to read the HoursWorked from the

file TIMSHEET.TXT which you created in Drill 9-1.

188 � Chapter 9

TE
AM
FL
Y

Team-Fly®

9-6 Files of Other Types: FILE OF

The TEXT file is a special predefined type of file, but as mentioned earlier the general

definition of a file allows the file components to be of any type other than the type

FILE. You can declare a file of any predefined or user-defined type using the form:

type-identifier = FILE OF component-type;

The component type can be a simple type (like INTEGER), a structured type (like an

array), or a user-defined type (like a record).

The following is an example of a file declaration whose components are records (a sim-

plified form of EmployeeRecord is used to make the program shorter):

TYPE

EmployeeRecord = RECORD

ID :INTEGER;

Name :STRING[20];

Rate :REAL;

END;

EmpFileRec = FILE OF EmployeeRecord;

VAR

F :EmpFileRec; { The file variable }

EmployeeRec :EmployeeRecord; { The record variable }

The main properties of non-TEXT files are:

� Data are represented in the internal binary format, which means that you cannot

display the contents of a file using the DOS command TYPE. This also speeds up

the transfer of data to and from the file.

� The main advantage of non-TEXT files comes when using structured types such as

arrays or records, because then you do not need to read or write the record field by

field. For example, after the previous declarations you may read or write the whole

record using these statements:

READ(F, EmployeeRec);

WRITE(F, EmployeeRec);

� Because non-TEXT files are not made up of lines as TEXT files are, the

procedures READLN and WRITELN may not be used with these files.

Application: Payroll System

This is the same payroll program but in a better shape. The program is divided into

two separate modules (programs). The first module (Example 9-8) reads the employ-

ees’ records from the keyboard and stores them in a non-TEXT file EMPFILE.BIN. In

the second module (Example 9-9) the HoursWorked are entered from the keyboard

and wages are calculated and written to the file PAYFILE.TXT, which is a TEXT file.

Data Files � 189

The first program may be used only once to create the employee file, but the second

program is used every pay period to create the PayFile.

The First Module:

{ --------------------------- Example 9-8 -------------------------- }

PROGRAM EmpPayInfo(INPUT,OUTPUT,F);

{ This program is used to create a user-defined file "EMPFILE.BIN"

whose components are records. }

TYPE

EmployeeRecord = RECORD

ID :INTEGER;

Name :STRING[20];

Rate :REAL;

END;

EmpFileRec = FILE OF EmployeeRecord;

VAR

F :EmpFileRec; { The file variable }

EmployeeRec :EmployeeRecord;

{ ------------ Procedure WriteRecord ------------ }

PROCEDURE WriteRecord;

BEGIN

{ Store one record in the file }

WRITE(F, EmployeeRec)

END;

{ ------------ Procedure GetData ------------ }

PROCEDURE getdata;

VAR

Counter :INTEGER;

BEGIN

Counter := 0;

WITH EmployeeRec DO

BEGIN

WRITE('Please enter Employee ID (or 0 to end):'); READLN(ID);

WHILE ID <> 0 DO

BEGIN

Counter := Counter + 1;

WRITE('Employee Name: '); READLN(Name);

WRITE('Hourly Rate: '); READLN(Rate);

WriteRecord;

WRITE('Please enter Employee ID (or 0 to end):'); READLN(ID)

END

END;

WRITELN(Counter, ' Employee records have been filed.')

END;

{ --------------- Main Program --------------- }

{ Main Program }

BEGIN

ASSIGN(F, 'EMPFILE.BIN'); REWRITE(F);

GetData;

190 � Chapter 9

CLOSE(F);

WRITELN('Press ENTER to continue..');

READLN

END.

{ --- }

The second module (PayRoll2) is made up of four procedures:

� GetInfo to read a record from the file EMPFILE.BIN.

� CalcWages to carry out the calculations.

� FilePayRoll to write a record to the file PAYFILE.TXT.

� ReadPayRoll to read the file PAYFILE.TXT and display the payroll at the end of

the process.

The Second Module:

{ -------------------------- Example 9-9 -------------------------- }

PROGRAM PayRoll2(INPUT,OUTPUT,MasterFile,PayFile);

{ This program reads the file EMPFILE.BIN one record at a time,

then calculates wages and stores the output in the text file

PAYFILE.TXT }

TYPE

EmployeeRecord = RECORD

ID :INTEGER;

Name :STRING[20];

Rate :REAL;

END;

PayRecord = RECORD

ID :INTEGER;

Name :STRING[20];

Wages :REAL;

END;

EmployeeFile = FILE OF EmployeeRecord;

VAR

MasterFile :EmployeeFile;

PayFile :TEXT;

EmployeeRec :EmployeeRecord;

PayRec :PayRecord;

HoursWorked, Wages :REAL;

{ --------------- Procedure GetInfo --------------- }

{ This Procedure reads and displays a record from

the file EMPFILE.BIN }

PROCEDURE GetInfo(VAR F :EmployeeFile);

BEGIN

READ(F,EmployeeRec);

WITH EmployeeRec DO

BEGIN

WRITELN('ID: ',ID);

WRITELN('Name: ',Name);

WRITELN('Hourly rate: $', Rate:0:2);

Data Files � 191

END;

END;

{ -------------- Procedure CalcWages -------------- }

PROCEDURE CalcWages(HoursWorked :REAL; VAR Wages :REAL);

BEGIN

WITH EmployeeRec DO

Wages := Hoursworked * Rate;

Wages := ROUND(100 * Wages) / 100 { rounding cents }

END;

{ ------------- Procedure FilePayRoll ------------- }

{ This procedure writes a record to PAYFILE.TXT }

PROCEDURE FilePayRoll(VAR P :TEXT; Wages :REAL);

BEGIN

WITH EmployeeRec DO

BEGIN

PayRec.ID := ID;

PayRec.Name := Name;

Payrec.Wages := Wages

END;

WITH PayRec DO

BEGIN

WRITELN(P, ID);

WRITELN(P, Name);

WRITELN(P, Wages);

end;

END;

{ -------------- Procedure ReadPayRoll --------------- }

{ This procedure reads and displays PAYFILE.TXT }

PROCEDURE ReadPayRoll(VAR P:TEXT);

VAR

I :INTEGER;

BEGIN

WITH PayRec DO

BEGIN

READLN(P, ID);

READLN(P, Name);

READLN(P, Wages);

WRITE(ID:3,' ');

WRITE(Name);

{ Fill the rest of the 20 places with blanks }

FOR I := 1 TO 20-LENGTH(Name) DO

WRITE(' ');

WRITELN(' $',Wages:0:2)

END;

END;

{ ------------------- Main Program ---------------------- }

BEGIN

ASSIGN(MasterFile, 'EMPFILE.BIN'); RESET(MasterFile);

ASSIGN(Payfile, 'PAYFILE.TXT'); REWRITE(PayFile);

WHILE NOT EOF(MasterFile) DO

192 � Chapter 9

BEGIN

GetInfo(MasterFile);

WRITE('Please enter hours worked for this pay period: ');

READLN(HoursWorked);

CalcWages(HoursWorked, Wages);

FilePayRoll(PayFile, Wages)

END;

CLOSE(MasterFile);

CLOSE(PayFile);

RESET(PayFile);

WRITELN('---------- PayRoll Summary ----------- ');

WRITELN('ID # ------- Name -------- Salary');

WHILE NOT EOF(PayFile) DO

ReadPayroll(PayFile);

WRITELN('-------------------------------- ');

CLOSE(PayFile);

WRITELN('Press ENTER to continue..');

READLN

END.

{ --- }

Appending a File

If you would like to add the information for a new employee to the file EMPFILE.BIN,

you cannot run Example 9-8 again because it will erase the whole file. There is

another way to do this.

Adding data to an existing file is called appending, as the new data are written to the

end of a sequential file. In some implementations (including Turbo) the file can be

opened for appending using the procedure APPEND, which takes the form:

APPEND(file-variable);

While the REWRITE procedure positions the file pointer at the beginning of the file,

APPEND positions the file pointer at the end of the file, so any new data will be writ-

ten there. If your implementation does not have the procedure APPEND you need to

use the following technique to add new items to the file:

� Open the file EMPFILE.BIN for reading using RESET.

� Open a scratch file (e.g., NEWFILE.TMP) for writing using REWRITE.

� Copy each item from EMPFILE.BIN to NEWFILE.TMP, then accept the new data

from the keyboard and write them to NEWFILE.TMP.

� Open NEWFILE.TMP for reading and EMPFILE.BIN for writing, then copy the

contents of NEWFILE.TMP back to EMPFILE.BIN.

� Erase the scratch file NEWFILE.TMP.

Data Files � 193

In standard Pascal, if the file variable is not included in the program header, the file is

considered a temporary file and will be erased right after the program execution. You

get the same result in UCSD if you close the file using the keyword PURGE.

In Turbo you can erase a file after closing it by using the procedure ERASE, which

takes the form:

ERASE(file-variable);

If the information in the file needs to be changed (as in the case of a salary increase for

employees), you can use a similar algorithm to update a sequential file as demon-

strated later in the following chapters.

Drill 9-4

Write a program that puts all the file tools you have learned together in one menu,

using the payroll application. The menu should contain the following options:

� Display the employee file.

� Display an employee record.

� Add a new employee.

The following Menu procedure may be used in this program:

{ --------------- Procedure Menu ----------------- }

PROCEDURE Menu;

VAR

Option :INTEGER;

BEGIN

WRITELN(Header);

WRITELN;

WRITELN('1. Display employee file.');

WRITELN('2. Display an employee record.');

WRITELN('3. Add a new employee.');

WRITELN('4. Exit.');

WRITELN(Separator);

WRITE('Make a choice and press a number: ');

READLN(Option);

CASE Option OF

1 : Readit(DbFile);

2 : ReadRec(DbFile, EmployeeRec);

3 : AddRec(NewFile, DbFile, EmployeeRec);

4 : Exit

END;

Menu

END;

194 � Chapter 9

Drill 9-4 (Cont.)

As you can see in the Menu procedure, the options 1 to 3 correspond to the proce-

dures you have to design. For the fourth option you may use the Turbo Pascal proce-

dure (EXIT), a GOTO, or any suitable statement in your compiler that lets you exit

from the repeated menu. Notice also that in this example a scratch file NewFile was

used for adding a new employee to the file (option #3), but if you have the procedure

APPEND in your compiler, you should use it instead, as it will save you a lot of effort.

This program is the nucleus of a database and can be modified to include more fea-

tures, such as updating employees’ information and removing unwanted records from

the database.

9-7 Using the File Buffer Variable: GET and PUT

In standard Pascal, when you declare a file, a file window or a file buffer variable is cre-

ated automatically. This buffer helps to compensate for the disk I/O transfers, which

take a long time compared to memory transfers. The file window, a location in mem-

ory, is used to store the file items and transfer them to the external storage (the disk)

while the other program statements are being executed. Today, however, with modern

hardware, you may not encounter this problem.

If, for example, you declare a file variable DiskFile, the following file buffer variable is

created:

DiskFile^

To use this buffer, you must use the predefined procedures GET for reading from the

file, and PUT for writing to the file. These procedures are used instead of READ and

WRITE. For example, consider the following declaration:

VAR

DiskFile: TEXT;

Ch: CHAR;

The statement WRITE(DiskFile, Ch), which is used to write data to the file, is equiva-

lent to the following statements:

DiskFile^ := Ch;

PUT(DiskFile)

The first statement copies the data stored in Ch to the buffer, and the second state-

ment transfers data from the buffer to the file variable.

Similarly, the statement READ(DiskFile, Ch), which is used to read from the file, is

equivalent to the following statements:

Data Files � 195

Ch := DiskFile^;

GET(DiskFile)

The first statement copies the value of the buffer (which always contains the next file

component) to the variable Ch, while the second one reads the next file component

into the file variable.

You may try any of the previous examples using PUT and GET procedures. However,

keep in mind that some versions of Pascal, including Turbo Pascal, do not provide the

file buffer variable and, consequently, do not support GET or PUT.

Summary

In this chapter, you learned the main tools for handling data files:

1. You know that standard Pascal provided TEXT and non-TEXT sequential files, while

modern versions also provide random/direct access files.

2. During your tour of sequential files, you learned how to declare, create, write to, and

read from a file.

3. TEXT files are declared using the form:

file-variable :TEXT;

4. Files of other types are declared using the forms:

TYPE

type-identifier = FILE OF component-type;

VAR

file-variable :type-identifier;

In standard Pascal the file-variable must be included as one of the file parameters or

the file will be considered a temporary one and automatically deleted after the execu-

tion. In UCSD you must use the PURGE keyword to delete such a temporary file, and

in Turbo the ERASE procedure.

5. The procedures used to open a file for either input or output are:

RESET(file-variable); (for input)

REWRITE(file-variable); (for output)

With modern versions of Pascal (such as Turbo) you can also open a sequential file for

appending with the procedure APPEND, which has a similar form to those above.

6. With versions other than standard Pascal, the file-variable must be linked to the actual

file name on the disk. In Turbo, this is done by using the procedure ASSIGN; in UCSD

the actual file name comes as a second parameter of the RESET or REWRITE

procedures. In these implementations the file must be closed after processing using

the CLOSE procedure.

196 � Chapter 9

7. You learned the general form of the following input/output statements:

READLN(file-variable, input-list);

READ(file-variable, input-list);

WRITELN(file-variable, output-list);

WRITE(file-variable, output-list);

You also know that the READLN and WRITELN procedures may not be used with

non-TEXT files. You also learned the standard Pascal procedures GET and PUT, which

are used in conjunction with the file buffer variables to read from and write to data

files. These procedures are not included in some versions of Pascal.

8. You also learned the general form of EOF and EOLN functions:

EOF(file-variable)

EOLN(file-variable)

Finally, you have had enough practice to enable you to create and manipulate files for

different applications

Exercises

1. Modify Example 9-1 to count the number of vowels in the file CONFIG.SYS.

2. Write a program to open one of the Pascal files, and copy the contents of the file into a

new text file. Add line numbers to each line in the new file. The input and output file

names are provided at run time. In the following output, the example file 9-04.PAS was

used as an input file:

1: { ----------------------- Example 9-4 ------------------------ }

2: PROGRAM ReadMultipleStrings1(OUTPUT,F);

3: VAR

4: F :TEXT;

5: Str1,Str2,Str3 :STRING[5];

6: BEGIN

7: ASSIGN(F,'test.txt');

8: RESET(F);

9: READLN(F,Str1,Str2,Str3);

10: WRITELN('Str1= ', Str1);

11: WRITELN('Str2= ', Str2);

12: WRITELN('Str3= ', Str3);

13: CLOSE(F);

14: WRITELN('Press ENTER to continue..');

15: READLN

16: END.

3. When reading a long program, sometimes you need to highlight the headers of

procedures and functions to make the printed text scanable. Write a program to read a

Pascal program file that contains some procedures and write the headers of those

procedures into a separate file, along with their line numbers. The output from

processing the file 9-09.PAS will look like this:

Data Files � 197

27: PROCEDURE GetInfo(VAR F :EmployeeFile);

38: PROCEDURE CalcWages(HoursWorked :REAL; VAR Wages :REAL);

46: PROCEDURE FilePayRoll(VAR P :TEXT; Wages :REAL);

63: PROCEDURE ReadPayRoll(VAR P:TEXT);

4. Modify Drill 9-3 to mark the records of the employees who received more than

$1000.00 in this payroll period. Do this by adding * to the end of the record. The

following is an example of the output file (PAYFILE.TXT):

122 Tammy M. Ockman 1234.75*

123 Tara S. Strahan 609.60

125 John G. Trainer 1427.50*

5. A publishing firm receives text from different writers, sometimes written in different

styles. Some writers leave two spaces after the end of each sentence; other writers

leave only one space. Write a program to scan a text file and convert any two spaces

that follow a sentence to a single space.

Answers

1. Declare a SET variable, Vowels, to store the set of vowels, and add a counter to count

the number of vowels.

Assign the following set to the Vowels variable:

Vowels := ['a','e','i','o','u','A','E','I','O','U'];

Modify the IF statement to include counting the vowels as shown in this code seg-

ment:

IF Ch IN Alphabet THEN

BEGIN

A := A + 1;

IF Ch IN Vowels THEN

V := V + 1; { Vowel counter }

IF Ch IN Small THEN

S := S + 1;

IF Ch IN Capital THEN

C := C + 1;

END

...

2. You can use the following code segment to copy MyFile to NewFile and add the line

numbers to it. You may also open and display NewFile after the copying is finished.

ASSIGN(MyFile, ReadFileName);

RESET(MyFile);

ASSIGN(NewFile, WriteFileName);

REWRITE(NewFile);

WHILE NOT EOF(MyFile) DO

BEGIN

READLN(MyFile,OneLine);

Counter := Counter +1;

198 � Chapter 9

TE
AM
FL
Y

Team-Fly®

WRITELN(NewFile, Counter:3,': ', OneLine);

END;

CLOSE(MyFile);

CLOSE(NewFile);

3. The following is the main algorithm that reads the Pascal file and copies the procedure

lines (assuming that the word procedure is either uppercase or initial capped; you may

add other casing possibilities).

WHILE NOT EOF(MyFile) DO

BEGIN

READLN(MyFile,OneLine);

Counter := Counter +1;

IF (COPY(OneLine,1,9) = 'PROCEDURE')

OR

(COPY(OneLine,1,9) = 'Procedure') THEN

WRITELN(NewFile, Counter:3,': ', OneLine);

END;

4. The following is the required modification in the program DRL9-3:

WITH PayRec DO

IF Wages >= 1000.0 THEN

WRITELN(P, ID:3, Name:20, Wages:10:2, '*')

ELSE

WRITELN(P, ID:3, Name:20, Wages:10:2);

Data Files � 199

Chapter 10

Using Variant
Records

Chapter Topics:

� Declaring variant records

� Reading records from files

� Storing records into files

� Deleting records

� Updating records

10-1 Variant Records

In real-life applications, employees in the same company may fall into different catego-

ries. Some employees are salaried, some are paid on an hourly basis, and others are

paid by commission. The payroll for each of these categories uses different calcula-

tions. This is an example of a record for a salaried employee,

SalariedEmployee = RECORD

ID :STRING[5];

Name :STRING[20];

Position :STRING[20];

SSN :STRING[11];

MonthlySalary :REAL

END;

while the following is an example of the record of an hourly employee,

201

HourlyEmployee = RECORD

ID :STRING[5];

Name :STRING[20];

Position :STRING[20];

SSN :STRING[11];

HourlyRate :REAL

END;

and this is an example of the record of a salesperson paid by commission:

CommissionEmployee = RECORD

ID :STRING[5];

Name :STRING[20];

Position :STRING[20]

SSN :STRING[11];

Commission :REAL;

BasicSalary :REAL;

Area :STRING[20]

END;

It is not a good idea to use three different records in the same program to represent

the employee record. In Pascal the variant record allows the programmer to store dif-

ferent types of data in the same memory location. The variant record, in this example,

will have a fixed part which contains the fields that do not change from one employee

to the other (such as ID, Name, and SSN), and a variant part which differs from one

category to another (such as the payroll details). In order to differentiate between dif-

ferent types of records, the variant record must be declared using a CASE structure

with one of the fields as the case expression. This field is called the tag field.

An example of the tag field that you can add to the record is a character variable that

may contain the values '1', '2', or '3' to represent the following categories:

'1' = salaried employees

'2' = hourly paid employees

'3' = employees paid by commission

Here is the employee variant record:

SalariedEmployee = RECORD

ID :STRING[5];

Name, Position :STRING[20];

SSN :STRING[11];

CASE Category :CHAR OF

'1' :(MonthlySalary :REAL);

'2' :(HourlyRate :REAL);

'3' :(Commission,

BasicSalary :REAL;

Area :STRING[20])

END;

202 � Chapter 10

The tag field here is Category. If the value of the tag field is '1,' it will transfer the con-

trol to the salaried employee and the variable MonthlySalary comes into effect. If it is

'2,' the control is transferred to the hourly paid employee and the variable HourlyRate

is in effect. If it is '3,' the three variables Commission, BasicSalary, and Area are all

brought into action.

The variant record may contain a fixed part followed by a variant part, or may contain a

variant part only. The declaration takes the following general form:

type-name = RECORD

fixed field-list

variant field-list

END;

The variant field list takes the following form:

CASE tag-field : type-definition OF

label-1 : (field-list : type-definition);

label-2 : (field-list : type-definition);

...

label-n : (field-list : type-definition);

Notice that the field list for each case is enclosed in parentheses, and the CASE struc-

ture does not contain an END statement.

10-2 Application: Enhanced Payroll System

In this program, you are going to read the records of different employees from a pay-

roll file. The required record is retrieved using the Social Security Number which you

enter from the keyboard. Before using this program, you have to create the text file

PAYROLL.TXT which contains the employee records. You may use any text editor to

create this file. The records in the file must be written sequentially without any gaps,

and must be consistent with the record description. After the file is created (even with

one record), you can use the program to append new records to it. For the purpose of

testing the program, you may use the file PAYROLL.TXT on the companion CD.

Here are the contents of the file:

1MGT5

Tammy M. Ockman

Business Manager

232-65-1567

1 � The tag field

3333.33

2STF1

Tara S. Strahan

Secretary II

Using Variant Records � 203

404-38-1132

2 � The tag field

8.24

3SAL4

John G. Trainer

Sales Representative

334-88-1234

3 � The tag field

0.25 � Notice additional fields

500.0 in category 3

Baton Rouge, LA

1MGT4

Sally A. Abolrous

Technical Editor

434-65-6052

4343.88

1MGT1

James A. Abolrous

President

434-55-6666

1 � The tag field

4343.88

Before we move to the discussion, let us take a look at the following program:

{ ----------------------- Example 10-1 --------------------------- }

PROGRAM EmployeeDataBase2(INPUT, OUTPUT, PayrollFile, NewFile);

CONST

FileName = 'payroll.txt';

TempFile = 'temp.txt';

Header = '-------------- Main Menu --------------';

Header1 = '---------- Employee DataBase ---------';

Header2 = '--------- Employee Record ------------';

Separator = '------------------------------------';

TYPE

EmployeeRecord = RECORD

ID :STRING[5];

Name, Position :STRING[20];

SSN :STRING[11];

CASE Category :CHAR OF

'1' :(MonthlySalary :REAL);

'2' :(HourlyRate :REAL);

'3' :(Commission,

BasicSalary :REAL;

Area :STRING[20])

END;

VAR

NewFile, PayrollFile :TEXT;

EmployeeRec :EmployeeRecord;

Title :ARRAY [1..9] OF STRING[20];

204 � Chapter 10

OneLine :STRING[80];

{ ----------------------- Procedure ReadRec ----------------------- }

PROCEDURE ReadRec(VAR PayrollFile :TEXT; Employee :EmployeeRecord);

VAR

SSNumber :STRING[11];

Found :INTEGER;

BEGIN

Found := 0; {Reset the flag}

ASSIGN(PayrollFile, FileName);

RESET(PayrollFile);

WRITELN;

WRITE('Please enter the SSN of the employee: ');

READLN(SSNumber);

WHILE NOT EOF(PayrollFile) DO

BEGIN

WITH Employee DO

BEGIN

READLN(PayrollFile, ID);

READLN(PayrollFile, Name);

READLN(PayrollFile, Position);

READLN(PayrollFile, SSN);

READLN(PayrollFile, Category);

CASE Category OF

'1' : READLN(PayrollFile, MonthlySalary);

'2' : READLN(PayrollFile, HourlyRate);

'3' : BEGIN

READLN(PayrollFile, Commission);

READLN(PayrollFile, BasicSalary);

READLN(PayrollFile, Area)

END

END; { End of CASE structure }

IF SSNumber = SSN THEN

BEGIN

WRITELN(Header2);

WRITELN(Title[1], ID);

WRITELN(Title[2], Name);

WRITELN(Title[3], Position);

WRITELN(Title[4], SSN);

CASE Category OF

'1' : WRITELN(Title[5], MonthlySalary:0:2);

'2' : WRITELN(Title[6], HourlyRate:0:2);

'3' : BEGIN

WRITELN(Title[7], Commission:0:2);

WRITELN(Title[8], BasicSalary:0:2);

WRITELN(Title[9], Area)

END

END; { End of CASE structure }

Found := 1

END

Using Variant Records � 205

END { End of WITH block }

END;

CLOSE(PayrollFile);

IF Found <> 1 THEN

BEGIN

WRITELN('SSN not found in file.');

WRITELN('Please try again.');

WRITELN

END

END;

{ ----------------------- Procedure AddRec ------------------------ }

PROCEDURE AddRec(VAR NewFile, PayrollFile :TEXT;

Employee: EmployeeRecord);

BEGIN

ASSIGN(PayrollFile, FileName);

RESET(PayrollFile);

ASSIGN(NewFile, TempFile);

REWRITE(NewFile);

{ Check for the end of the text file }

WHILE NOT EOF(PayrollFile) DO

BEGIN

{ Copy each record from PayrollFile to the NewFile }

READLN(PayrollFile, OneLine);

WRITELN(NewFile, OneLine)

END;

{ Accept a new record from the keyboard }

WITH Employee DO

BEGIN

WRITE('Please enter Employee ID: ');

READLN(ID);

WRITE('Name: '); READLN(Name);

WRITE('Position: '); READLN(Position);

WRITE('SSN (xxx-xx-xxxx): '); READLN(SSN);

WRITE('Payroll category: '); READLN(Category);

CASE Category OF

'1' : BEGIN

WRITE('Monthly Salary: ');

READLN(MonthlySalary);

END;

'2' : BEGIN

WRITE('Rate: ');

READLN(HourlyRate);

END;

'3' : BEGIN

WRITE('Commission: ');

READLN(Commission);

WRITE('Basic salary: ');

READLN(BasicSalary);

WRITE('Area: ');

206 � Chapter 10

READLN(Area)

END

END;

{ Store the information in NewFile }

WRITELN(NewFile, ID);

WRITELN(NewFile, Name);

WRITELN(NewFile, Position);

WRITELN(NewFile, SSN);

WRITELN(NewFile, Category);

CASE Category OF

'1' : WRITELN(NewFile, MonthlySalary:0:2);

'2' : WRITELN(NewFile, HourlyRate:0:2);

'3' : BEGIN

WRITELN(NewFile, Commission:0:2);

WRITELN(NewFile, BasicSalary:0:2);

WRITELN(NewFile, Area)

END

END

END;

CLOSE(NewFile);

CLOSE(PayrollFile);

{ Copy NewFile back to Payroll File }

ASSIGN(PayrollFile, FileName);

REWRITE(PayrollFile);

ASSIGN(NewFile, TempFile);

RESET(NewFile);

WHILE NOT EOF(NewFile) DO

BEGIN

READLN(NewFile, OneLine);

WRITELN(PayrollFile, OneLine)

END;

CLOSE(NewFile);

ERASE(NewFile); { Erase the temporary file }

CLOSE(PayrollFile)

END;

{ ------------------------ Procedure Menu ------------------------- }

PROCEDURE Menu;

VAR

Option :INTEGER;

BEGIN

WRITELN(Header);

WRITELN;

WRITELN('1. Display an employee record.');

WRITELN('2. Add a new employee.');

WRITELN('3. Exit.');

WRITELN(Separator);

WRITE('Make a choice and press a number: ');

READLN(Option);

CASE Option OF

Using Variant Records � 207

1 : ReadRec(PayrollFile, EmployeeRec);

2 : AddRec(NewFile, PayrollFile, EmployeeRec);

3 : Exit

END;

Menu

END;

{ -------------------------- Main Program ------------------------- }

BEGIN

{ Assign titles }

Title[1] := 'ID: ';

Title[2] := 'Name: ';

Title[3] := 'Position: ';

Title[4] := 'SSN: ';

Title[5] := 'Salary: ';

Title[6] := 'Rate: ';

Title[7] := 'Commission: ';

Title[8] := 'Basic Salary: ';

Title[9] := 'Area: ';

Menu

END.

{ --- }

Sample Runs:

(1) Reading records from the file: In this sample run, three records for three different

categories of employees are read from the file. In the fourth attempt to read a record,

we entered a Social Security Number which is not in the file, and the message “SSN

not found in file” was received. Notice that the data entered from the keyboard are

bolded for clarity.

--------------- Main Menu ---------------

1. Display an employee record.

2. Add a new employee.

3. Exit.

Make a choice and press a number: 1

Please enter the SSN of the employee: 434-55-6666

------------ Employee Record ------------

ID: 1MGT1

Name: James A. Abolrous

Position: President

SSN: 434-55-6666

Salary: 4343.88

--------------- Main Menu ---------------

1. Display an employee record.

2. Add a new employee.

3. Exit.

208 � Chapter 10

TE
AM
FL
Y

Team-Fly®

Make a choice and press a number: 1

Please enter the SSN of the employee: 404-38-1132

------------ Employee Record ------------

ID: 2STF1

Name: Tara S. Strahan

Position: Secretary II

SSN: 404-38-1132

Rate: 8.24

--------------- Main Menu ---------------

1. Display an employee record.

2. Add a new employee.

3. Exit.

Make a choice and press a number: 1

Please enter the SSN of the employee: 334-88-1234

----------- Employee Record ------------

ID: 3SAL4

Name: John G. Trainer

Position: Sales Representative

SSN: 334-88-1234

Commission: 0.25

Basic Salary: 500.00

Area: Baton Rouge, LA

--------------- Main Menu ---------------

1. Display an employee record.

2. Add a new employee.

3. Exit.

Make a choice and press a number: 1

Please enter the SSN of the employee: 555-55-5555

SSN not found in file.

Please try again.

--------------- Main Menu ---------------

1. Display an employee record.

2. Add a new employee.

3. Exit.

Make a choice and press a number: 3

(2) Appending records to the file: In the following run, a new record is appended to the

payroll file:

--------------- Main Menu ---------------

1. Display an employee record.

2. Add a new employee.

Using Variant Records � 209

3. Exit.

Make a choice and press a number: 2

Please enter Employee ID: 3SAL6

Name: Barbara Ortiz

Position: Sales Representative

SSN (xxx-xx-xxxx): 347-12-3456

Payroll category: 3

Commission: .15

Basic salary: 450.0

Area: New Orleans, LA

-------------- Main Menu ----------------

1. Display an employee record.

2. Add a new employee.

3. Exit.

Make a choice and press a number: 3

At this point, the new record of Barbara Ortiz has been appended to the payroll file and

may be displayed using option 1. Needless to say, you can also add a record at the end

of the file using any text editor.

Remarks

There are some important points in the program:

1. This program is divided into three procedures:

Menu: to display and accept the menu options.

ReadRec: to read the file.

AddRec: to append records to the file.

2. When dealing with a variant record, either by reading or writing, you must use the

CASE structure.

3. The flag Found is used in the ReadRec procedure to check the existence of the

required record in the file, and to issue the proper message in each case. Notice that

the flag is reset at the beginning of the procedure (Found := 0). When the required

record is found, the flag is assigned the value 1; otherwise, it retains the value 0 and

the message “SSN not found in file” is issued after the end-of-file has been reached.

Drill 10-1

Write a program to create the payroll file used in the previous example. You under-

stand that this program may be used only once, because each time you run it, a new

file is created. You may refer to the program on the companion CD under the name

DRL10-1.PAS. The program is designed to create a file with the name PR.TXT in

order to avoid rewriting the file PAYROLL.TXT.

210 � Chapter 10

10-3 Deleting Records from the File

The algorithm to delete an employee record from the payroll file is as follows:

1. Enter the Social Security Number of the employee to be removed.

2. Open the payroll file for reading and a temporary file for writing.

3. Read the payroll file up to the end-of-file. For each record, check the SSN field against

the Social Security Number.

4. Copy each record, except the one that matches, to the temporary file.

5. Copy the temporary file into the original payroll file.

6. Delete the temporary file.

To do that you need to add the following procedure to the previous program. (The

source code of this procedure is on the companion CD under the name

DEL-PROC.PAS).

{ ----------------------- Procedure DelRec ----------------------- }

PROCEDURE DelRec(VAR NewFile, PayrollFile :TEXT;

Employee :EmployeeRecord);

VAR

SSNumber :STRING[11];

BEGIN

ASSIGN(PayrollFile, FileName);

RESET(PayrollFile);

ASSIGN(NewFile, TempFile);

REWRITE(NewFile);

WRITE('Please enter the SSN of the employee to be deleted: ');

READLN(SSNumber);

WHILE NOT EOF(PayrollFile) DO

BEGIN

WITH Employee DO

BEGIN

READLN(PayrollFile, ID);

READLN(PayrollFile, Name);

READLN(PayrollFile, Position);

READLN(PayrollFile, SSN);

READLN(PayrollFile, Category);

CASE Category OF

'1' : READLN(PayrollFile, MonthlySalary);

'2' : READLN(PayrollFile, HourlyRate);

'3' : BEGIN

READLN(PayrollFile, Commission);

READLN(PayrollFile, BasicSalary);

READLN(PayrollFile, Area)

END

END; { End of CASE structure }

IF SSNumber <> SSN THEN

BEGIN

Using Variant Records � 211

WRITELN(NewFile, ID);

WRITELN(NewFile, Name);

WRITELN(NewFile, Position);

WRITELN(NewFile, SSN);

WRITELN(NewFile, Category);

CASE Category OF

'1' : WRITELN(NewFile, MonthlySalary:0:2);

'2' : WRITELN(NewFile, HourlyRate:0:2);

'3' : BEGIN

WRITELN(NewFile, Commission:0:2);

WRITELN(NewFile, BasicSalary:0:2);

WRITELN(NewFile, Area)

END

END; { End of CASE structure }

END

END { End of WITH block }

END;

CLOSE(NewFile);

CLOSE(PayrollFile);

{ Copy NewFile back to Payroll File }

ASSIGN(PayrollFile, FileName);

REWRITE(PayrollFile);

ASSIGN(NewFile, TempFile);

RESET(NewFile);

WHILE NOT EOF(NewFile) DO

BEGIN

READLN(NewFile, OneLine);

WRITELN(PayrollFile, OneLine)

END;

CLOSE(NewFile);

ERASE(NewFile); { Erase the temporary file }

CLOSE(PayrollFile);

WRITELN('The employee ', SSNumber, ' is removed from file.')

END;

{ --- }

In order to have the Delete Record option as one of the menu items, you need to mod-

ify the Menu procedure. It may look similar to the procedure below (this procedure is

on the companion CD under the name MNU-PROC.PAS).

{ ----------------------- Procedure Menu -------------------------- }

PROCEDURE Menu;

VAR

Option :INTEGER;

BEGIN

WRITELN(Header);

WRITELN;

WRITELN('1. Display an employee record.');

WRITELN('2. Add a new employee.');

WRITELN('3. Delete an employee.');

212 � Chapter 10

WRITELN('4. Exit.');

WRITELN(Separator);

WRITE('Make a choice and press a number: ');

READLN(Option);

CASE Option OF

1 : ReadRec(PayrollFile, EmployeeRec);

2 : AddRec(NewFile, PayrollFile, EmployeeRec);

3 : DelRec(NewFile, PayrollFile, EmployeeRec);

4 : Exit

END;

Menu

END;

{ --- }

Here are all the modules of the program brought together:

{ ----------------------- Example 10-2 --------------------------- }

PROGRAM EmployeeDataBase2(INPUT, OUTPUT, PayrollFile, NewFile);

CONST

FileName = 'payroll.txt';

TempFile = 'temp.txt';

Header = '-------------- Main Menu --------------';

Header1 = '--------- Employee DataBase ----------';

Header2 = '---------- Employee Record -----------';

Separator = '------------------------------------';

TYPE

EmployeeRecord = RECORD

ID :STRING[5];

Name, Position :STRING[20];

SSN :STRING[11];

CASE Category :CHAR OF

'1' :(MonthlySalary :REAL);

'2' :(HourlyRate :REAL);

'3' :(Commission,

BasicSalary :REAL;

Area :STRING[20])

END;

VAR

NewFile, PayrollFile :TEXT;

EmployeeRec :EmployeeRecord;

Title :ARRAY [1..9] OF STRING[20];

OneLine :STRING[80];

{ ------------------------ Procedure ReadRec ----------------------- }

PROCEDURE ReadRec(VAR PayrollFile :TEXT; Employee :EmployeeRecord);

VAR

SSNumber :STRING[11];

Found :INTEGER;

BEGIN

Found := 0; {Reset the flag}

Using Variant Records � 213

ASSIGN(PayrollFile, FileName);

RESET(PayrollFile);

WRITELN;

WRITE('Please enter the SSN of the employee: ');

READLN(SSNumber);

WHILE NOT EOF(PayrollFile) DO

BEGIN

WITH Employee DO

BEGIN

READLN(PayrollFile, ID);

READLN(PayrollFile, Name);

READLN(PayrollFile, Position);

READLN(PayrollFile, SSN);

READLN(PayrollFile, Category);

CASE Category OF

'1' : READLN(PayrollFile, MonthlySalary);

'2' : READLN(PayrollFile, HourlyRate);

'3' : BEGIN

READLN(PayrollFile, Commission);

READLN(PayrollFile, BasicSalary);

READLN(PayrollFile, Area)

END

END; { End of CASE structure }

IF SSNumber = SSN THEN

BEGIN

WRITELN(Header2);

WRITELN(Title[1], ID);

WRITELN(Title[2], Name);

WRITELN(Title[3], Position);

WRITELN(Title[4], SSN);

CASE Category OF

'1' : WRITELN(Title[5], MonthlySalary:0:2);

'2' : WRITELN(Title[6], HourlyRate:0:2);

'3' : BEGIN

WRITELN(Title[7], Commission:0:2);

WRITELN(Title[8], BasicSalary:0:2);

WRITELN(Title[9], Area)

END

END; { End of CASE structure }

Found := 1

END

END { End of WITH block }

END;

CLOSE(PayrollFile);

IF Found <> 1 THEN

BEGIN

WRITELN('SSN not found in file.');

WRITELN('Please try again.');

WRITELN

END

214 � Chapter 10

END;

{ ------------------------ Procedure AddRec ------------------------ }

PROCEDURE AddRec(VAR NewFile, PayrollFile :TEXT;

Employee: EmployeeRecord);

BEGIN

ASSIGN(PayrollFile, FileName);

RESET(PayrollFile);

ASSIGN(NewFile, TempFile);

REWRITE(NewFile);

{ Check for the end of the text file }

WHILE NOT EOF(PayrollFile) DO

BEGIN

{ Copy each record from PayrollFile to the NewFile }

READLN(PayrollFile, OneLine);

WRITELN(NewFile, OneLine)

END;

{ Accept a new record from the keyboard }

WITH Employee DO

BEGIN

WRITE('Please enter Employee ID: ');

READLN(ID);

WRITE('Name: '); READLN(Name);

WRITE('Position: '); READLN(Position);

WRITE('SSN (xxx-xx-xxxx): '); READLN(SSN);

WRITE('Payroll category: '); READLN(Category);

CASE Category OF

'1' : BEGIN

WRITE('Monthly Salary: ');

READLN(MonthlySalary);

END;

'2' : BEGIN

WRITE('Rate: ');

READLN(HourlyRate);

END;

'3' : BEGIN

WRITE('Commission: ');

READLN(Commission);

WRITE('Basic salary: ');

READLN(BasicSalary);

WRITE('Area: ');

READLN(Area)

END

END;

{ Store the information in NewFile }

WRITELN(NewFile, ID);

WRITELN(NewFile, Name);

WRITELN(NewFile, Position);

WRITELN(NewFile, SSN);

WRITELN(NewFile, Category);

Using Variant Records � 215

CASE Category OF

'1' : WRITELN(NewFile, MonthlySalary:0:2);

'2' : WRITELN(NewFile, HourlyRate:0:2);

'3' : BEGIN

WRITELN(NewFile, Commission:0:2);

WRITELN(NewFile, BasicSalary:0:2);

WRITELN(NewFile, Area)

END

END

END;

CLOSE(NewFile);

CLOSE(PayrollFile);

{ Copy NewFile back to Payroll File }

ASSIGN(PayrollFile, FileName);

REWRITE(PayrollFile);

ASSIGN(NewFile, TempFile);

RESET(NewFile);

WHILE NOT EOF(NewFile) DO

BEGIN

READLN(NewFile, OneLine);

WRITELN(PayrollFile, OneLine)

END;

CLOSE(NewFile);

ERASE(NewFile); { Erase the temporary file }

CLOSE(PayrollFile)

END;

{ ------------------------ Procedure DelRec ------------------------ }

PROCEDURE DelRec(VAR NewFile, PayrollFile :TEXT;

Employee :EmployeeRecord);

VAR

SSNumber :STRING[11];

BEGIN

ASSIGN(PayrollFile, FileName);

RESET(PayrollFile);

ASSIGN(NewFile, TempFile);

REWRITE(NewFile);

WRITE('Please enter the SSN of the employee to be deleted: ');

READLN(SSNumber);

WHILE NOT EOF(PayrollFile) DO

BEGIN

WITH Employee DO

BEGIN

READLN(PayrollFile, ID);

READLN(PayrollFile, Name);

READLN(PayrollFile, Position);

READLN(PayrollFile, SSN);

READLN(PayrollFile, Category);

216 � Chapter 10

CASE Category OF

'1' : READLN(PayrollFile, MonthlySalary);

'2' : READLN(PayrollFile, HourlyRate);

'3' : BEGIN

READLN(PayrollFile, Commission);

READLN(PayrollFile, BasicSalary);

READLN(PayrollFile, Area)

END

END; { End of CASE structure }

IF SSNumber <> SSN THEN

BEGIN

WRITELN(NewFile,ID);

WRITELN(NewFile,Name);

WRITELN(NewFile,Position);

WRITELN(NewFile,SSN);

WRITELN(NewFile,Category);

CASE Category OF

'1' : WRITELN(NewFile,MonthlySalary:0:2);

'2' : WRITELN(NewFile,HourlyRate:0:2);

'3' : BEGIN

WRITELN(NewFile,Commission:0:2);

WRITELN(NewFile,BasicSalary:0:2);

WRITELN(NewFile,Area)

END

END; { End of CASE structure }

END

END { End of WITH block }

END;

CLOSE(NewFile);

CLOSE(PayrollFile);

{ Copy NewFile back to Payroll File }

ASSIGN(PayrollFile, FileName);

REWRITE(PayrollFile);

ASSIGN(NewFile, TempFile);

RESET(NewFile);

WHILE NOT EOF(NewFile) DO

BEGIN

READLN(NewFile,OneLine);

WRITELN(PayrollFile,OneLine)

END;

CLOSE(NewFile);

ERASE(NewFile); { Erase the temporary file }

CLOSE(PayrollFile);

WRITELN('The employee ', SSNumber, ' is removed from file.')

END;

{ ------------------------- Procedure Menu ------------------------- }

PROCEDURE Menu;

VAR

Using Variant Records � 217

Option :INTEGER;

BEGIN

WRITELN(Header);

WRITELN;

WRITELN('1. Display an employee record.');

WRITELN('2. Add a new employee.');

WRITELN('3. Delete an employee.');

WRITELN('4. Exit.');

WRITELN(Separator);

WRITE('Make a choice and press a number: ');

READLN(Option);

CASE Option OF

1 : ReadRec(PayrollFile, EmployeeRec);

2 : AddRec(NewFile, PayrollFile, EmployeeRec);

3 : DelRec(NewFile, PayrollFile, EmployeeRec);

4 : Exit

END;

Menu

END;

{ -------------------------- Main Program -------------------------- }

BEGIN

{ Assign titles }

Title[1] := 'ID: ';

Title[2] := 'Name: ';

Title[3] := 'Position: ';

Title[4] := 'SSN: ';

Title[5] := 'Salary: ';

Title[6] := 'Rate: ';

Title[7] := 'Commission: ';

Title[8] := 'Basic Salary: ';

Title[9] := 'Area: ';

Menu

END.

{ --- }

Sample Run:

The following is a sample run to delete the record of the employee whose SSN is

347-12-3456. The user input is bolded for clarity.

-------------- Main Menu --------------

1. Display an employee record.

2. Add a new employee.

3. Delete an employee.

4. Exit.

Make a choice and press a number: 3

Please enter the SSN of the employee to be deleted: 347-12-3456

The employee 347-12-3456 is removed from file.

218 � Chapter 10

TE
AM
FL
Y

Team-Fly®

-------------- Main Menu --------------

1. Display an employee record.

2. Add a new employee.

3. Delete an employee.

4. Exit.

Make a choice and press a number: 4

Drill 10-2

The previous program will send the message “The employee ... is removed from file,”

whether or not the SSN is in the file.

Add the necessary code to make the program send the proper message in each case.

10-4 Updating Records

The algorithm to update records in the file is as follows:

1. Enter the Social Security Number of the employee whose record is to be updated.

2. Open the payroll file for reading and a temporary file for writing.

3. Read the payroll file up to the end-of-file. For each record, check the SSN field against

the Social Security Number.

4. Copy each record to the temporary file until you reach the record to be updated.

5. For the record to be updated, read the new data from the keyboard and write them to

the temporary file.

6. Copy the rest of the records into the temporary file.

7. Copy the temporary file into the original payroll file.

8. Delete the temporary file.

You may add the following procedure to the program (this procedure is on the compan-

ion CD under the name UPD-PROC.PAS).

{ -------------------- Procedure UpdateRec ------------------------ }

PROCEDURE UpdateRec(VAR NewFile, PayrollFile :TEXT;

Employee :EmployeeRecord);

VAR

SSNumber :STRING[11];

Found :INTEGER;

BEGIN

Found := 0;

ASSIGN(PayrollFile, FileName);

RESET(PayrollFile);

ASSIGN(NewFile, TempFile);

Using Variant Records � 219

REWRITE(NewFile);

WRITE('Please enter the SSN of the employee to be updated: ');

READLN(SSNumber);

WHILE NOT EOF(PayrollFile) DO

BEGIN

WITH Employee DO

BEGIN

READLN(PayrollFile, ID);

READLN(PayrollFile, Name);

READLN(PayrollFile, Position);

READLN(PayrollFile, SSN);

READLN(PayrollFile, Category);

CASE Category OF

'1' : READLN(PayrollFile, MonthlySalary);

'2' : READLN(PayrollFile, HourlyRate);

'3' : BEGIN

READLN(PayrollFile, Commission);

READLN(PayrollFile, BasicSalary);

READLN(PayrollFile, Area)

END

END; { End of CASE structure }

IF SSNumber <> SSN THEN

BEGIN

WRITELN(NewFile, ID);

WRITELN(NewFile, Name);

WRITELN(NewFile, Position);

WRITELN(NewFile, SSN);

WRITELN(NewFile, Category);

CASE Category OF

'1' : WRITELN(NewFile, MonthlySalary:0:2);

'2' : WRITELN(NewFile, HourlyRate:0:2);

'3' : BEGIN

WRITELN(NewFile, Commission:0:2);

WRITELN(NewFile, BasicSalary:0:2);

WRITELN(NewFile, Area);

END

END; { End of CASE structure }

END

ELSE

BEGIN

Found := 1;

WRITELN('Please enter the updated information:');

WRITE('ID: '); READLN(ID);

WRITELN(NewFile, ID);

WRITE('Name: '); READLN(Name);

WRITELN(NewFile, Name);

WRITE('Position: '); READLN(Position);

WRITELN(NewFile, Position);

WRITELN(NewFile, SSN);

WRITE('Category: '); READLN(Category);

220 � Chapter 10

WRITELN(NewFile, Category);

CASE Category OF

'1' : BEGIN

WRITE('Salary: ');

READLN(MonthlySalary);

WRITELN(NewFile, MonthlySalary:0:2)

END;

'2' : BEGIN

WRITE('Hourly Rate: ');

READLN(HourlyRate);

WRITELN(NewFile, HourlyRate:0:2)

END;

'3' : BEGIN

WRITE('Commission: ');

READLN(Commission);

WRITELN(NewFile, Commission:0:2);

WRITE('Basic Salary: ');

READLN(BasicSalary);

WRITELN(NewFile, BasicSalary:0:2);

WRITE('Area: ');

READLN(Area);

WRITELN(NewFile, Area)

END

END; { End of CASE structure }

END

END { End of WITH block }

END;

CLOSE(NewFile);

CLOSE(PayrollFile);

{ Copy NewFile back to Payroll File }

ASSIGN(PayrollFile, FileName);

REWRITE(PayrollFile);

ASSIGN(NewFile, TempFile);

RESET(NewFile);

WHILE NOT EOF(NewFile) DO

BEGIN

READLN(NewFile, OneLine);

WRITELN(PayrollFile, OneLine)

END;

CLOSE(NewFile);

ERASE(NewFile); { Erase the temporary file }

CLOSE(PayrollFile);

{ User Messages }

IF Found =1 THEN

WRITELN('The employee ', SSNumber, ' is updated.')

ELSE

BEGIN

WRITELN('The SSN ', SSNumber, ' is not found.');

WRITELN('Check the number and try again.');

WRITELN

Using Variant Records � 221

END

END;

{ -- }

The Found flag is of the INTEGER type. However, you may use any other type such

as BOOLEAN which makes your program more readable. With a Boolean flag, you

may use statements like IF Found and IF NOT Found.

You also need to modify the menu procedure in order to incorporate the update option,

as follows (this procedure is on the companion CD under the name MNU-PRO2.PAS).

{ ------------------------ Procedure Menu -------------------------- }

PROCEDURE Menu;

VAR

Option :INTEGER;

BEGIN

WRITELN(Header);

WRITELN;

WRITELN('1. Display an employee record.');

WRITELN('2. Add a new employee.');

WRITELN('3. Delete an employee.');

WRITELN('4. Update an employee record.');

WRITELN('5. Exit.');

WRITELN(Separator);

WRITE('Make a choice and press a number: ');

READLN(Option);

CASE Option OF

1 : ReadRec(PayrollFile, EmployeeRec);

2 : AddRec(NewFile, PayrollFile, EmployeeRec);

3 : DelRec(NewFile, PayrollFile, EmployeeRec);

4 : UpdateRec(NewFile, PayrollFile, EmployeeRec);

5 : Exit

END;

Menu

END;

{ -- }

Drill 10-3

Bring procedures together in order to build a complete program containing the capabil-

ities to display, add, delete, and update an employee record.

10-5 Enhance the Program Modularity

Now that you’ve added more procedures to your program, you may need to take a sec-

ond look at the modularity of the program. One disadvantage of the program is that the

flag Found is used in three procedures to check the existence of the required record.

222 � Chapter 10

Another disadvantage is that the PAYROLL.TXT file is being copied into the tempo-

rary file whether or not the required record exists. This redundancy could be avoided

by building a new procedure to search the file and set (or reset) the Found flag. Thus,

when any of the other procedures is entered, the procedure knows in advance whether

or not the record exists. Therefore, all the steps can be included inside an IF block as

shown below:

READLN(SSNumber);

SearchRec(PayrollFile, EmployeeRec, SSNumber, Found);

IF Found =1 THEN

BEGIN

...

{ open files and carry out the required chores }

...

END

ELSE

{ send the proper message }

END;

The new procedure SearchRec is invoked after the value of the SSNumber is entered

from the keyboard. The procedure opens the file, searches for the required employee,

and returns the proper value of the flag Found. If the record is found, the regular

chores (updating, deleting, or reading) are carried on by the other procedures; other-

wise, the proper message is sent and no files have to be reopened.

The following are some important points of the SearchRec procedure:

� The SSNumber and the flag are both passed as parameters to the procedure.

� Because the value of the flag is expected to be modified by the procedure, it has to

be passed using the VAR keyword.

� In order to pass the string variable (SSNumber), the parameter has to be TYPEd;

for this reason, a new type is declared in the TYPE section as follows:

SSNstring = STRING[11];

This is the program in its final shape:

{ -------------------------- Example 10-3 -------------------------- }

PROGRAM EmployeeDataBase2(INPUT, OUTPUT, PayrollFile, NewFile);

CONST

FileName = 'payroll.txt';

TempFile = 'temp.txt';

Header = '--------------- Main Menu ---------------';

Header1 = '----------- Employee DataBase -----------';

Header2 = '------------ Employee Record ------------';

Separator = '--';

TYPE

EmployeeRecord = RECORD

ID :STRING[5];

Using Variant Records � 223

Name, Position :STRING[20];

SSN :STRING[11];

CASE Category :CHAR OF

'1' :(MonthlySalary :REAL);

'2' :(HourlyRate :REAL);

'3' :(Commission,

BasicSalary :REAL;

Area :STRING[20])

END;

SSNstring = STRING[11];

VAR

NewFile, PayrollFile :TEXT;

EmployeeRec :EmployeeRecord;

Title :ARRAY [1..9] OF STRING[20];

OneLine :STRING[80];

{ ------------------------ Procedure SearchRec --------------------- }

PROCEDURE SearchRec(VAR PayrollFile :TEXT;

Employee :EmployeeRecord;

SSNumber :SSNstring;

VAR Found :INTEGER);

BEGIN

Found := 0;

ASSIGN(PayrollFile, FileName);

RESET(PayrollFile);

WHILE NOT EOF(PayrollFile) DO

BEGIN

WITH Employee DO

BEGIN

READLN(PayrollFile, ID);

READLN(PayrollFile, Name);

READLN(PayrollFile, Position);

READLN(PayrollFile, SSN);

READLN(PayrollFile, Category);

CASE Category OF

'1' : READLN(PayrollFile, MonthlySalary);

'2' : READLN(PayrollFile, HourlyRate);

'3' : BEGIN

READLN(PayrollFile, Commission);

READLN(PayrollFile, BasicSalary);

READLN(PayrollFile, Area)

END

END; { End of CASE structure }

IF SSNumber = SSN THEN

Found := 1;

END { End of WITH block }

END;

CLOSE(PayrollFile);

END;

224 � Chapter 10

{ ----------------------- Procedure ReadRec ------------------------ }

PROCEDURE ReadRec(VAR PayrollFile :TEXT;

Employee :EmployeeRecord);

VAR

SSNumber :STRING[11];

Found :INTEGER;

BEGIN

WRITELN;

WRITE('Please enter the SSN of the employee: ');

READLN(SSNumber);

SearchRec(PayrollFile, EmployeeRec, SSNumber, Found);

IF Found =1 THEN

BEGIN

ASSIGN(PayrollFile, FileName);

RESET(PayrollFile);

WHILE NOT EOF(PayrollFile) DO

BEGIN

WITH Employee DO

BEGIN

READLN(PayrollFile, ID);

READLN(PayrollFile, Name);

READLN(PayrollFile, Position);

READLN(PayrollFile, SSN);

READLN(PayrollFile, Category);

CASE Category OF

'1' : READLN(PayrollFile, MonthlySalary);

'2' : READLN(PayrollFile, HourlyRate);

'3' : BEGIN

READLN(PayrollFile, Commission);

READLN(PayrollFile, BasicSalary);

READLN(PayrollFile, Area)

END

END; { End of CASE structure }

IF SSNumber = SSN THEN

BEGIN

WRITELN(Header2);

WRITELN(Title[1],ID);

WRITELN(Title[2],Name);

WRITELN(Title[3],Position);

WRITELN(Title[4], SSN);

CASE Category OF

'1' : WRITELN(Title[5], MonthlySalary:0:2);

'2' : WRITELN(Title[6], HourlyRate:0:2);

'3' : BEGIN

WRITELN(Title[7], Commission:0:2);

WRITELN(Title[8], BasicSalary:0:2);

WRITELN(Title[9], Area)

END

END; { End of CASE structure }

END

Using Variant Records � 225

END { End of WITH block }

END;

CLOSE(PayrollFile)

END

ELSE { If not found }

BEGIN

WRITELN('SSN not found in file.');

WRITELN('Please try again.');

WRITELN

END

END;

{ ----------------------- Procedure DelRec ------------------------- }

PROCEDURE DelRec(VAR NewFile, PayrollFile :TEXT;

Employee :EmployeeRecord);

VAR

SSNumber :STRING[11];

Found :INTEGER;

BEGIN

WRITE('Please enter the SSN of the employee to be deleted: ');

READLN(SSNumber);

SearchRec(PayrollFile, EmployeeRec, SSNumber, Found);

IF Found =1 THEN

BEGIN

ASSIGN(NewFile, TempFile);

REWRITE(NewFile);

ASSIGN(PayrollFile, FileName);

RESET(PayrollFile);

WHILE NOT EOF(PayrollFile) DO

BEGIN

WITH Employee DO

BEGIN

READLN(PayrollFile, ID);

READLN(PayrollFile, Name);

READLN(PayrollFile, Position);

READLN(PayrollFile, SSN);

READLN(PayrollFile, Category);

CASE Category OF

'1' : READLN(PayrollFile, MonthlySalary);

'2' : READLN(PayrollFile, HourlyRate);

'3' : BEGIN

READLN(PayrollFile, Commission);

READLN(PayrollFile, BasicSalary);

READLN(PayrollFile, Area)

END

END; { End of CASE structure }

IF SSNumber <> SSN THEN

BEGIN

WRITELN(NewFile, ID);

WRITELN(NewFile, Name);

226 � Chapter 10

WRITELN(NewFile, Position);

WRITELN(NewFile, SSN);

WRITELN(NewFile, Category);

CASE Category OF

'1' : WRITELN(NewFile, MonthlySalary:0:2);

'2' : WRITELN(NewFile, HourlyRate:0:2);

'3' : BEGIN

WRITELN(NewFile, Commission:0:2);

WRITELN(NewFile, BasicSalary:0:2);

WRITELN(NewFile, Area)

END

END; { End of CASE structure }

END;

END { End of WITH block }

END; {End of DO }

CLOSE(NewFile);

CLOSE(PayrollFile);

{ Copy NewFile back to Payroll File }

ASSIGN(PayrollFile, FileName);

REWRITE(PayrollFile);

ASSIGN(NewFile, TempFile);

RESET(NewFile);

WHILE NOT EOF(NewFile) DO

BEGIN

READLN(NewFile, OneLine);

WRITELN(PayrollFile, OneLine)

END;

CLOSE(NewFile);

ERASE(NewFile); { Erase the temporary file }

CLOSE(PayrollFile);

{ User Messages }

WRITELN('The employee ', SSNumber,

' is removed from file.')

END { End of the "IF Found.." block }

ELSE { IF not found }

BEGIN

WRITELN('The SSN ', SSNumber, ' is not found.');

WRITELN('Check the number and try again.');

WRITELN

END

END;

{ ------------------------ Procedure AddRec ------------------------ }

PROCEDURE AddRec(VAR NewFile, PayrollFile :TEXT;

Employee: EmployeeRecord);

BEGIN

ASSIGN(PayrollFile, FileName);

RESET(PayrollFile);

ASSIGN(NewFile, TempFile);

REWRITE(NewFile);

Using Variant Records � 227

WHILE NOT EOF(PayrollFile) DO

BEGIN

{ Copy each record from PayrollFile to the NewFile }

READLN(PayrollFile, OneLine);

WRITELN(NewFile, OneLine)

END;

{ Accept a new record from the keyboard }

WITH Employee DO

BEGIN

WRITE('Please enter Employee ID: ');

READLN(ID);

WRITE('Name: '); READLN(Name);

WRITE('Position: '); READLN(Position);

WRITE('SSN (xxx-xx-xxxx): '); READLN(SSN);

WRITE('Payroll category: '); READLN(Category);

CASE Category OF

'1' : BEGIN

WRITE('Monthly Salary: ');

READLN(MonthlySalary)

END;

'2' : BEGIN

WRITE('Rate: ');

READLN(HourlyRate)

END;

'3' : BEGIN

WRITE('Commission: ');

READLN(Commission);

WRITE('Basic salary: ');

READLN(BasicSalary);

WRITE('Area: ');

READLN(Area)

END

END;

{ Store the information in NewFile }

WRITELN(NewFile, ID);

WRITELN(NewFile, Name);

WRITELN(NewFile, Position);

WRITELN(NewFile, SSN);

WRITELN(NewFile, Category);

CASE Category OF

'1' : WRITELN(NewFile, MonthlySalary:0:2);

'2' : WRITELN(NewFile, HourlyRate:0:2);

'3' : BEGIN

WRITELN(NewFile, Commission:0:2);

WRITELN(NewFile, BasicSalary:0:2);

WRITELN(NewFile, Area)

END

END

END;

CLOSE(NewFile);

228 � Chapter 10

TE
AM
FL
Y

Team-Fly®

CLOSE(PayrollFile);

{ Copy NewFile back to Payroll File }

ASSIGN(PayrollFile, FileName);

REWRITE(PayrollFile);

ASSIGN(NewFile, TempFile);

RESET(NewFile);

WHILE NOT EOF(NewFile) DO

BEGIN

READLN(NewFile, OneLine);

WRITELN(PayrollFile, OneLine)

END;

CLOSE(NewFile);

ERASE(NewFile); { Erase the temporary file }

CLOSE(PayrollFile)

END;

{ -------------------- Procedure UpdateRec ------------------------ }

PROCEDURE UpdateRec(VAR NewFile, PayrollFile :TEXT;

Employee :EmployeeRecord);

VAR

SSNumber :STRING[11];

Found :INTEGER;

BEGIN

WRITE('Please enter the SSN of the employee to be updated: ');

READLN(SSNumber);

SearchRec(PayrollFile, EmployeeRec, SSNumber, Found);

IF Found =1 THEN

BEGIN

ASSIGN(PayrollFile, FileName);

RESET(PayrollFile);

ASSIGN(NewFile, TempFile);

REWRITE(NewFile);

WHILE NOT EOF(PayrollFile) DO

BEGIN

WITH Employee DO

BEGIN

READLN(PayrollFile, ID);

READLN(PayrollFile, Name);

READLN(PayrollFile, Position);

READLN(PayrollFile, SSN);

READLN(PayrollFile, Category);

CASE Category OF

'1' : READLN(PayrollFile, MonthlySalary);

'2' : READLN(PayrollFile, HourlyRate);

'3' : BEGIN

READLN(PayrollFile, Commission);

READLN(PayrollFile, BasicSalary);

READLN(PayrollFile, Area)

END

END; { End of CASE structure }

Using Variant Records � 229

IF SSNumber <> SSN THEN

BEGIN

WRITELN(NewFile, ID);

WRITELN(NewFile, Name);

WRITELN(NewFile, Position);

WRITELN(NewFile, SSN);

WRITELN(NewFile, Category);

CASE Category OF

'1' : WRITELN(NewFile, MonthlySalary:0:2);

'2' : WRITELN(NewFile, HourlyRate:0:2);

'3' : BEGIN

WRITELN(NewFile, Commission:0:2);

WRITELN(NewFile, BasicSalary:0:2);

WRITELN(NewFile, Area)

END

END { End of CASE structure }

END { End of IF block }

ELSE

BEGIN

WRITELN('Please enter the updated information:');

WRITE('ID: '); READLN(ID);

WRITELN(NewFile, ID);

WRITE('Name: '); READLN(Name);

WRITELN(NewFile, Name);

WRITE('Position: '); READLN(Position);

WRITELN(NewFile, Position);

WRITELN(NewFile, SSN);

WRITE('Category: '); READLN(Category);

WRITELN(NewFile, Category);

CASE Category OF

'1' : BEGIN

WRITE('Salary: ');

READLN(MonthlySalary);

WRITELN(NewFile, MonthlySalary:0:2)

END;

'2' : BEGIN

WRITE('Hourly Rate: ');

READLN(HourlyRate);

WRITELN(NewFile, HourlyRate:0:2)

END;

'3' : BEGIN

WRITE('Commission: ');

READLN(Commission);

WRITELN(NewFile, Commission:0:2);

WRITE('Basic Salary: ');

READLN(BasicSalary);

WRITELN(NewFile, BasicSalary:0:2);

WRITE('Area: ');

READLN(Area);

WRITELN(NewFile, Area)

230 � Chapter 10

END

END { End of CASE structure }

END { End of ELSE block }

END { End of WITH block }

END; { End of DO }

CLOSE(NewFile);

CLOSE(PayrollFile);

{ Copy NewFile back to Payroll File }

ASSIGN(PayrollFile, FileName);

REWRITE(PayrollFile);

ASSIGN(NewFile, TempFile);

RESET(NewFile);

WHILE NOT EOF(NewFile) DO

BEGIN

READLN(NewFile, OneLine);

WRITELN(PayrollFile, OneLine)

END;

CLOSE(NewFile);

ERASE(NewFile); { Erase the temporary file }

CLOSE(PayrollFile);

{ User Messages }

WRITELN('The employee ', SSNumber, ' is updated.')

END { End of IF block }

ELSE

BEGIN

WRITELN('The SSN ', SSNumber, ' is not found.');

WRITELN('Check the number and try again.');

WRITELN

END

END;

{ ----------------------- Procedure Menu ------------------------- }

PROCEDURE Menu;

VAR

Option :INTEGER;

BEGIN

WRITELN(Header);

WRITELN;

WRITELN('1. Display an employee record.');

WRITELN('2. Add a new employee.');

WRITELN('3. Delete an employee.');

WRITELN('4. Update an employee record.');

WRITELN('5. Exit.');

WRITELN(Separator);

WRITE('Make a choice and press a number: ');

READLN(Option);

CASE Option OF

1 : ReadRec(PayrollFile, EmployeeRec);

2 : AddRec(NewFile, PayrollFile, EmployeeRec);

3 : DelRec(NewFile, PayrollFile, EmployeeRec);

Using Variant Records � 231

4 : UpdateRec(NewFile, PayrollFile, EmployeeRec);

5 : Exit

END;

Menu

END;

{ ------------------------- Main Program -------------------------- }

BEGIN

{ Assign titles }

Title[1] := 'ID: ';

Title[2] := 'Name: ';

Title[3] := 'Position: ';

Title[4] := 'SSN: ';

Title[5] := 'Salary: ';

Title[6] := 'Rate: ';

Title[7] := 'Commission: ';

Title[8] := 'Basic Salary: ';

Title[9] := 'Area: ';

Menu

END.

{ --- }

Suggestions

In order to make the program more reliable, you may add the following features:

1. When you enter the SSN for a new employee, the program does not check the data

format, which means a wrong number such as 12345-678 will be accepted. You can add

the necessary statements to check for the exact number of digits as well as the

hyphens.

2. If you enter a value other than 1, 2, or 3, it will be accepted as a Category.

Consequently, the salary will not be processed by the CASE structure. You can add the

necessary steps to check the valid values of the Category variable.

3. If you added the same employee to the file twice, this program would not know that the

record already exists. Therefore, you need to check the SSN before you add a new

record.

4. If you are using Turbo Pascal, you use units. With units you can put each procedure in a

separate file called a unit. The units you build could be usable by more than one

program.

These enhancements are left for you as a drill.

232 � Chapter 10

Summary

1. In this chapter you learned how to use variant records to store your data into an

efficient data structure.

2. You can declare a variant record type using the following format:

type-name = RECORD

fixed field-list

variant field-list

END;

The variant field list takes the following form:

CASE tag-field : type-definition OF

label-1 : (field-list : type-definition);

label-2 : (field-list : type-definition);

...

label-n : (field-list : type-definition);

3. The variant record may contain a fixed part followed by a variant part, or a variant part

only.

4. You learned how to read, write, update, and delete variant records stored in files, using

the CASE structure.

Exercises

1. Write a variant record declaration for a person that includes the following information:

� ID

� Name

� SSN

� Marital status includes three cases:

� Married: Required information is spouse name and number of kids.

� Single: No additional information required.

� Divorced: The required information is the name of former spouse, divorce

date, and the number of kids living with the person.

2. Write a variant record declaration for a geometric shape that can be used to calculate

the area and/or the volume of the following shapes:

� Circle: The required information is the radius.

� Cylinder: The required information is the radius and the height.

� Sphere: The required information is the radius.

� Cube: The required information is the side.

Using Variant Records � 233

Answers

1. Person = RECORD

ID :STRING[5];

Name :STRING[20];

SSN :STRING[11];

CASE Status : CHAR OF

'M': (SpouseName : STRING[20];

NumberOfKids : INTEGER);

'S' : ();

'D': (FormerSpouseName : STRING[20];

DivorceDate : STRING[10];

CustKids : INTEGER)

END;

2. FigureName = (Circle, Cylinder, Sphere, Cube);

ShapeInformation = RECORD

CASE Figure : FigureName OF

Circle :(Radius : REAL);

Cylinder :(CylRadius: REAL;

Height: REAL);

Sphere :(SphRadius: REAL);

Cube :(Side: REAL)

END;

234 � Chapter 10

Chapter 11

Pointers and
Linked Lists

Chapter Topics:

� Declaring and using pointers

� Passing pointers as parameters to

subprograms

� Building linked lists

� Storing lists in files

� Reading lists from files

� Searching lists

� Adding and deleting nodes

� Ordered linked lists

� Linked list applications

11-1 Dynamic Memory Allocation

The variables already used so far are called static variables. The relationship between

the static variable and the memory location to which it refers is established compila-

tion time and does not change during the program execution. A dynamic variable, on

the contrary, is created or disposed during the execution. In other words, the neces-

sary memory location for a dynamic variable is allocated while the program is running,

235

and may be released and allocated to another variable. In Pascal, you may create a sim-

ple dynamic variable or a complex dynamic data structure such as a linked list. A linked

list may be needed in some situations when you cannot predict your memory require-

ments. As opposed to the linked list, the array is an example of static data structures.

The memory locations associated with the array elements are allocated at the time of

compilation. The disadvantage of using arrays, in such situations, is the need to allo-

cate enough space for the maximum possible number of elements. Defining a huge

array which may exceed your needs is a waste of memory; and using a small array will

limit your program to a specific number of elements. The problem occurs when you

need to insert a new element in the array. Dynamic data structures may expand or

shrink during the program execution, and so does the associated memory. Dynamic

memory allocation is accomplished by using pointers. In the following sections you

learn how to declare and use pointers.

11-2 Pointers

A pointer is a special type of variable that does not hold data; instead, it holds the

address of a data location. Therefore, it is said that it points to a data location. In your

program, it is possible to redirect the pointer to make it point to another memory loca-

tion, or to no memory location. It is also possible to release the memory associated

with a specific pointer and make it available to other variables. Pointers can point to

any type of data, from CHARs and INTEGERs to complex data structures such as

records and linked lists.

A pointer to an integer is declared as follows:

VAR

PtrVariable : ^INTEGER;

In order to use the pointer, you must allocate memory using the procedure NEW:

NEW(PtrVariable);

This assigns a memory address to the pointer variable PtrVariable (e.g., 709Ch). The

value stored in this address is the actual data. To refer to the location pointed to by the

pointer PtrVariable, use the variable name:

PtrVariable^

which is treated like a regular variable. For example, you may assign it a numeric

value:

PtrVariable^ := 500;

or assign it to another static variable:

AnotherVariable := PtrVariable^ ;

236 � Chapter 11

This is demonstrated in the following diagram:

The memory allocated to the pointer may be released using the procedure DISPOSE:

DISPOSE(PtrVariable);

Once a pointer is disposed it becomes undefined.

In the following program, these features are demonstrated. An integer variable

(MyInteger), and an integer pointer (MyIntegerPointer) are declared. The contents of

the allocated location MyIntegerPointer^ are assigned to the variable MyInteger.

Both, when printed, should give the same value (500).

{ ------------------------- Example 11-1 --------------------------- }

PROGRAM PointerExample(OUTPUT);

VAR

MyIntegerPointer :^INTEGER;

MyInteger :INTEGER;

BEGIN

MyInteger := 50;

NEW(MyIntegerPointer);

MyIntegerPointer^ := 500;

MyInteger := MyIntegerPointer^;

WRITELN('The value of MyInteger is: ', MyInteger);

WRITELN('The value pointed to by MyIntegerPointer is: '

, MyIntegerPointer^);

DISPOSE(MyIntegerPointer);

WRITELN('Press any key to continue...');

READLN

END.

{ --- }

Pointers and Linked Lists � 237

Memory

PtrVariable

PtrVariable^

709C

500
709C

Notice that the procedure DISPOSE is not necessary in this program, because the

memory is deallocated automatically when the program ends. It is used only for dem-

onstration.

In the same way, you can declare pointers to other types, for example:

VAR

MyCharPointer :^CHAR;

MyStringPointer :^STRING;

MyRealPointer :^REAL;

Before you try to use any of these pointers, remember to use the procedure NEW to

allocate memory for each one:

NEW(MyCharPointer);

NEW(MyStringPointer);

NEW(MyRealPointer);

When you are finished, you may use DISPOSE to deallocate memory associated with

each of them:

DISPOSE(MyCharPointer);

DISPOSE(MyStringPointer);

DISPOSE(MyRealPointer);

11-3 Pointer Operations

The operations performed on pointers are limited to assignment and comparison.

Assignment

If two pointers ptr1 and ptr2 are of the same type, then the following statement is

valid:

ptr1 := ptr2;

The effect of this statement is to redirect the pointer ptr1 to make it point to the same

location pointed to by ptr2. The location which was pointed to by ptr1, before the

assignment, is now inaccessible (unless it was pointed to by another pointer).

When you dispose of these pointers, you need to dispose only one of them, because

they point to the same location. A second DISPOSE statement will result in an error

message.

Obviously, the previous assignment is totally different from the following assignment:

ptr1^ := ptr2^;

238 � Chapter 11

TE
AM
FL
Y

Team-Fly®

which means copying the contents of the location pointed to by ptr2 into the location

pointed to by ptr1. The two pointers, however, may still be pointing to the same origi-

nal locations.

Comparison

You may use the Boolean operators = or <> to compare two pointers:

IF ptr1 = ptr2 THEN ..

The Boolean expression ptr1 = ptr2 is true if the two pointers are pointing to the

same memory location.

These features are demonstrated in the following program.

{ ------------------------- Example 11-2 --------------------------- }

PROGRAM PointerExample2(OUTPUT);

TYPE

intptr = ^INTEGER;

realptr = ^REAL;

VAR

MyIntegerPointer, AnotherIntPointer :intptr;

MyRealPointer :realptr;

BEGIN

NEW(MyIntegerPointer);

NEW(MyRealPointer);

NEW(AnotherIntPointer);

MyRealPointer^ := 2.25;

MyIntegerPointer^ := 500;

AnotherIntPointer^ := 400;

{ Copy contents of locations:}

MyRealPointer^ := MyIntegerPointer^;

{ Redirect MyIntegerPointer:}

MyIntegerPointer := AnotherIntPointer;

{ Display results }

WRITELN('MyRealPointer is pointing to: ', MyRealPointer^:2:2);

WRITELN;

{Check if the two pointers point to the same location:}

IF (MyIntegerPointer = AnotherIntPointer) THEN

WRITELN('Yes, The two integer pointers are pointing to the same location.');

WRITELN('MyIntegerPointer is pointing to: ', MyIntegerPointer^);

WRITELN('AnotherIntPointer is pointing to: ', AnotherIntPointer^);

Pointers and Linked Lists � 239

WRITELN;

{ Note: The DISPOSE procedure is not necessary for any pointer in

this program. }

DISPOSE(MyIntegerPointer);

DISPOSE(MyRealPointer);

{DISPOSE(AnotherIntPointer);} {illegal now..}

WRITELN('Press any key to continue...');

READLN

END.

When you run this program, it will display the following messages:

MyRealPointer is pointing to: 500.00

Yes, The two integer pointers are pointing to the same location.

MyIntegerPointer is pointing to: 400

AnotherIntPointer is pointing to: 400

Press any key to continue...

Remarks:

The following are the operations that took place in the program (also refer to the dia-

gram below):

� The variable MyRealPointer^ is assigned the value 2.25.

� The variable MyIntegerPointer^ is assigned the value 500.

� The variable AnotherIntPointer^ is assigned the value 400.

� The contents of MyIntegerPointer^ are copied into MyRealPointer^; therefore,

its stored value becomes 500.00.

� The pointer MyIntegerPointer is redirected to point to the same location pointed

to by AnotherIntPointer, which contains the value 400.

240 � Chapter 11

MyRealPointer 2.25

500

500

500

500.00

400

400

400

500.00MyRealPointer

MyRealPointer

MyIntegerPointer

MyIntegerPointer

MyIntegerPointer

AnotherIntPointer

AnotherIntPointer

AnotherIntPointer

Note: You cannot read a pointer value. You can only read the
contents pointed to by the pointer.

11-4 Pointers to Records

You can declare a pointer to a record in the same way you do with other types of data.

It is preferred to define the pointer type in the TYPE section:

TYPE

emprec = RECORD

ID :INTEGER;

Wage : REAL;

END;

empptr = ^emprec;

then declare the pointer variables in the VAR section:

VAR

ptr1, ptr2 :empptr;

With records, you may use all pointer operations in the same way you do with other

pointer types. But there are some restrictions:

1. When you create a pointer to a record, the pointer is bound to this specific record type

and may not be used with another record type.

2. The relational expression

ptr1^ = ptr2^

is invalid, as records cannot be compared using relational expressions. You may, how-

ever, compare the two pointers to check if they are pointing to the same record.

ptr1 = ptr2, or

ptr1 <> ptr2

3. The field contents are accessed using fielded variables:

ptr1^.ID

ptr1^.Wage

ptr2^.ID

ptr2^.Wage

or using a WITH statement:

WITH ptr1^ DO

ID := 123;

Wage := 22.5;

...

Pointers and Linked Lists � 241

In the following program, the two record pointers, ptr1 and ptr2, are used to access

the record fields; then, one of the pointers is redirected to point to the same record as

the other one does.

{ -------------------------- Example 11-3 -------------------------- }

PROGRAM PointersToRecords(OUTPUT);

TYPE

emprec = RECORD

ID : INTEGER;

Wage : REAL;

END;

empptr = ^emprec;

VAR

ptr1, ptr2 : empptr;

BEGIN

NEW(ptr1);

NEW(ptr2);

{ Assign values to the fields }

ptr1^.ID := 123;

ptr1^.Wage := 25.5;

ptr2^.ID := 456;

ptr2^.Wage := 33.25;

{Print contents:}

WRITELN('Before redirection of ptr1:');

WRITELN('Ptr1 points to ID: ', ptr1^.ID,

', and Wage: $', ptr1^.Wage:2:2);

WRITELN('Ptr2 points to ID: ', ptr2^.ID,

', and Wage: $', ptr2^.Wage:2:2);

{Redirect ptr1:}

ptr1 := ptr2;

{Print contents:}

WRITELN;

WRITELN('After redirection of ptr1:');

WRITELN('Ptr1 points to ID: ', ptr1^.ID,

', and Wage: $', ptr1^.Wage:2:2);

WRITELN('Ptr2 points to ID: ', ptr2^.ID,

', and Wage: $', ptr2^.Wage:2:2);

WRITELN('Press any key to continue...');

READLN

END.

{ --- }

Output:

Before redirection of ptr1:

Ptr1 points to ID: 123, and Wage: $25.50

242 � Chapter 11

Ptr2 points to ID: 456, and Wage: $33.25

After redirection of ptr1:

Ptr1 points to ID: 456, and Wage: $33.25

Ptr2 points to ID: 456, and Wage: $33.25

Press any key to continue...

Drill 11-1

Write a program to create the payroll file used in Chapter 10, using a pointer to the

employee record. You may modify the file DRL10-1.PAS on the companion CD.

11-5 Passing Pointers as Parameters

You may pass pointers as parameters to functions and procedures, in the same way

you do with static variables. You can pass pointers either as value or variable parame-

ters. Remember that both actual and formal parameters must be of the same type; in

case of record pointers, they must point to the same record type.

Drill 11-2

Make the necessary modifications to the program 10-02.PAS on the companion CD, in

order to apply pointer parameters to the procedures.

11-6 Basics of Linked Lists

A linked list is a collection of data items called nodes. Each node contains a pointer to

the next one. The linked list may be used to store any data type, but is usually used to

hold records. In the following diagram a linked list is demonstrated.

Pointers and Linked Lists � 243

Data1 Pointer Pointer PointerData2 Data3

Node1 Node2 Node3

NIL

As you can see in the diagram, each node in the linked list contains two items, the data

and a pointer to the next node. The pointer in the last node points to the constant NIL,

which indicates the end of the list.

List Declaration

The following is a declaration of a linked list that contains an integer data field:

TYPE

ListPointer = ^ListRecord;

ListRecord = RECORD

DataField :INTEGER;

NextField :ListPointer;

END;

Each node in the linked list (ListRecord) has the structure of a record. It contains a

data field (DataField), which holds the actual data, and a pointer field (NextField), also

referred to as a link field, which keeps track of the order of the list. Notice that the

pointer definition (ListPointer) precedes the record definition (ListRecord). This is

actually the only situation in which you can use an identifier before it is defined. You

can declare a linked list in which to store records in the same way; however, it is best

to start with simple ones.

Building a List

To build a linked list, you need to declare two pointers: one to point to the first node

(e.g., FirstPointer), and another to use temporarily in the construction process (e.g.,

ToolPointer). Both pointers are obviously of the type ListPointer.

VAR

FirstPointer, ToolPointer :ListPointer;

These are the steps to build the list:

1. Initialize an empty list by assigning the FirstPointer the NIL value:

FirstPointer := NIL;

2. Create a node using the temporary pointer:

NEW(ToolPointer);

3. Read the integer from the keyboard (or any other medium) and store it into the data

field of this node:

READLN(ToolPointer^.DataField);

244 � Chapter 11

4. Add the node to the list by setting the pointer field so that it points to the same location

as the FirstPointer:

ToolPointer^.NextField := FirstPointer;

5. Redirect the FirstPointer to the new node (which is the beginning of the list):

FirstPointer := ToolPointer;

Repeat the preceding steps until all the data are read. The last data item you read will

be in the first node of the linked list.

The same procedure, except for the first step, is used to add new nodes to an existing

list (as you do not need to create an empty list).

The following is the procedure segment that creates the list:

FirstPointer := NIL;

WHILE { Boolean Expression } DO

Pointers and Linked Lists � 245

ToolPointer New Data

The new node

FirstPointer Data1 Pointer PointerData2

The original list

NIL

ToolPointer New Data

The new node

FirstPointer Data1 Pointer

Pointer

PointerData2

The original list

NIL

ToolPointer New Data

The new node

FirstPointer
Data1 Pointer

Pointer

PointerData2

The original list

NIL

BEGIN

NEW(ToolPointer);

READLN(ToolPointer^.DataField);

ToolPointer^.NextField := FirstPointer;

FirstPointer := ToolPointer;

END;

Reading a List

To read a linked list, you need two pointers: the FirstPointer, which points to the first

node on the list, and the CurrentPointer, which moves from one node to the other

across the entire list.

The following are the steps to read and display the contents of a list:

1. Make the CurrentPointer point to the first node by assigning it the same direction as

the FirstPointer:

CurrentPointer := FirstPointer;

2. Use the CurrentPointer to access and display the contents of the data field:

WRITELN(CurrentPointer^.DataField);

3. Move the CurrentPointer to the next node by assigning it the direction of the pointer

field (NextField) of the same node:

CurrentPointer := CurrentPointer^.NextField;

246 � Chapter 11

CurrentPointer

F
ir

st
P

o
in

te
r

Data3

Data1 Pointer

Pointer

PointerData2

NIL

4. Repeat steps 2 and 3 until you get to the last node. This occurs when the following

condition is TRUE:

CurrentPointer = NIL

The following is a program segment to read a list:

VAR

CurrentPointer :ListPointer;

BEGIN

CurrentPointer := FirstPointer;

WHILE CurrentPointer <> NIL DO

BEGIN

WRITELN(CurrentPointer^.DataField);

CurrentPointer := CurrentPointer^.NextField

END;

WRITELN

END

Pointers and Linked Lists � 247

CurrentPointer
F

ir
st

P
o

in
te

r

Data3

Data1 Pointer

Pointer

PointerData2

NIL

C
u

rre
n

tP
o

in
te

r
F

ir
st

P
o

in
te

r

Data3

Data1 Pointer

Pointer

PointerData2

NIL

Application: A Linked List Demo

In the following program, you are going to build a linked list which stores names of

people, then read the list and display its contents. The program contains the following

procedures:

� Menu to display and accept user options.

� GetData to accept data from the keyboard.

� BuildList to create and add nodes to the list.

� ReadList to read the contents of the list.

� DisplayInfo to display the list on the screen.

{ ------------------------- Example 11-4 --------------------------- }

PROGRAM LinkedListDemo(INPUT, OUTPUT);

CONST

Header = '-------------- Main Menu --------------';

Separator = '---';

TYPE

DataString = STRING[30];

ListPointer = ^ListRecord;

ListRecord = RECORD

DataField :DataString;

NextField :ListPointer

END;

VAR

FirstPointer :ListPointer;

{ ---------------------- Procedure BuildList ----------------------- }

PROCEDURE BuildList(VAR FirstPointer :ListPointer;

DataItem :DataString);

{Note: The FirstPointer is passed using the VAR keyword because it will be

updated by this procedure.}

VAR

ToolPointer :ListPointer;

BEGIN

NEW(ToolPointer);

ToolPointer^.DataField := DataItem;

ToolPointer^.NextField := FirstPointer;

FirstPointer := ToolPointer

END;

{ ---------------------- Procedure ReadList ------------------------ }

PROCEDURE ReadList(FirstPointer :ListPointer);

VAR

248 � Chapter 11

TE
AM
FL
Y

Team-Fly®

CurrentPointer :ListPointer;

BEGIN

CurrentPointer := FirstPointer;

WHILE CurrentPointer <> NIL DO

BEGIN

WRITELN(CurrentPointer^.DataField);

CurrentPointer := CurrentPointer^.NextField

END;

WRITELN

END;

{ ----------------------- Procedure GetData ------------------------ }

PROCEDURE GetData(VAR FirstPointer :ListPointer);

{Note: The FirstPointer is passed using the VAR keyword because it will be

updated when passed to BuildList procedure.}

VAR

Name :DataString;

BEGIN

WRITELN('Enter the names to be added to the list,',

' when finished hit ENTER.');

{ Read the first data item }

READLN(Name);

{ Check for end-of-data }

WHILE LENGTH(Name) <> 0 DO

BEGIN

BuildList(FirstPointer, Name);

READLN(Name)

END

END;

{ --------------------- Procedure DisplayInfo ---------------------- }

PROCEDURE DisplayInfo(FirstPointer :ListPointer);

BEGIN

WRITELN(Separator);

WRITELN('The contents of the list: ');

ReadList(FirstPointer);

WRITE('Hit any key to continue...');

READLN

END;

{ ------------------------ Procedure Menu -------------------------- }

PROCEDURE Menu;

VAR

Option :INTEGER;

BEGIN

WRITELN(Header);

WRITELN('1. Store data in a list.');

Pointers and Linked Lists � 249

WRITELN('2. Display the list.');

WRITELN('3. Exit.');

WRITELN(Separator);

WRITE('Make a choice and press a number: ');

READLN(Option);

CASE Option OF

1 : GetData(FirstPointer);

2 : DisplayInfo(FirstPointer);

3 : Exit

END;

Menu

END;

{ ------------------------ Main Program --------------------------- }

BEGIN

{ Initialize an empty list }

FirstPointer := NIL;

menu

END.

{ --- }

Sample Run:

When you run this program and choose to store data in a list (option 1), you will be

asked to enter some names; when you are finished just hit Enter (without writing any

text). At this point, the name list is built into memory and may be displayed. Notice

that the last name you entered from the keyboard will appear first on the screen,

because you always insert nodes at the beginning of the list. In this sample run, the

data entered by the user are bolded for clarity.

-------------- Main Menu --------------

1. Store data in a list.

2. Display the list.

3. Exit.

Make a choice and press a number: 1

Enter the names to be added to the list, when finished hit ENTER.

John Smith <ENTER> � Names entered from the keyboard

Jean Murdock <ENTER> �

Sally Bedford <ENTER> �

Deanna Loerwold <ENTER> �

<ENTER>

-------------- Main Menu --------------

1. Store data in a list.

2. Display the list.

3. Exit.

Make a choice and press a number: 2

The contents of the list:

Deanna Loerwold � Notice the sequence of names

250 � Chapter 11

Sally Bedford �

Jean Murdock �

John Smith �

Hit any key to continue...

-------------- Main Menu --------------

1. Store data in a list.

2. Display the list.

3. Exit.

Make a choice and press a number: 3

Notice the following in the program:

1. The VAR keyword is used in the procedure BuildList as it updates the direction of the

FirstPointer with the statement:

FirstPointer := ToolPointer;

The procedure GetData does not update the FirstPointer explicitly, but passes it to the

procedure BuildList; therefore, the VAR keyword still has to be used.

2. Note that the empty list is initialized only once in the main program:

FirstPointer := NIL;

This means that you can keep adding items to the same list if you choose option 1

more than once. The list is reinitialized only if you exit and start over. If you like to ini-

tialize an empty list each time you choose option 1, then move the statement

FirstPointer := NIL to the GetData procedure.

3. Although three pointers were used in the program, the procedure NEW is used only

with the ToolPointer. This procedure is only needed to allocate memory when nodes

are created.

11-7 Storing Lists in Files

To store a linked list in a file, follow these steps:

1. Open the file for writing.

2. Make the CurrentPointer point to the first node:

CurrentPointer := FirstPointer;

3. Read the data field (CurrentPointer^.DataField), and write it to the file:

WRITE(MyListFile, CurrentPointer^.DataField);

4. Move the CurrentPointer to the next node by updating its direction to point to the

pointer field (NextField):

CurrentPointer := CurrentPointer^.NextField;

Pointers and Linked Lists � 251

5. Repeat steps 3 and 4 until you reach the end of the list. At this point, the

CurrentPointer will be NIL.

Close the file.

The following program segment summarizes the preceding steps:

VAR

CurrentPointer :ListPointer;

BEGIN

ASSIGN(MyListFile, FileName);

REWRITE(MyListFile);

CurrentPointer := FirstPointer;

WHILE CurrentPointer <> NIL DO

BEGIN

WRITE(MyListFile, CurrentPointer^.DataField);

CurrentPointer := CurrentPointer^.NextField

END;

CLOSE(MyListFile)

END;

11-8 Reading Lists from Files

When you store a linked list in a file, you only store the data. The list pointers are only

used in memory to control the list. Therefore, when the file is written to the disk, it

becomes a regular data file, and may be read using the regular procedures. After read-

ing the file, it is your preference to build the data as a linked list. To add the data read

from a file to a linked list, do the following:

1. Open the file for reading.

2. Read a data item from the file.

3. Add the item to the list using the procedure BuildList explained earlier.

In the following segment, the data item Name is read from the file MyListFile and

added to the list:

WHILE NOT EOF (MyListFile) DO

BEGIN

READ(MyListFile, Name);

BuildList(FirstPointer, Name);

END;

4. Repeat steps 2 and 3 until you reach end-of-file.

252 � Chapter 11

Drill 11-3

Modify Example 11-4 to add the two options:

� Save the list to a file.

� Add data from file.

For the type of data you are currently using, you may use either a TEXT or a

non-TEXT file.

Application: Building a List of Records

In this section, you are going to work with a more practical linked list, a list of

employee records. Look at these types:

TYPE

{Declaration of data type }

SSNstring = STRING[11];

DataRecord = RECORD

ID :STRING[5];

Name, Position :STRING[20];

SSN :SSNstring;

Rate :REAL

END;

{Declaration of the list }

ListPointer = ^ListRecord;

ListRecord = RECORD

DataField :DataRecord;

NextField :ListPointer

END;

EmpFile = FILE OF DataRecord;

These declarations are divided into two main parts:

1. The definition of the data type (the record), which is used as a data field in the linked

list.

2. The linked list definition.

Note in these declarations that the SSNstring type comes first, because it is used in

the definition of the employee record (DataRecord). Note also that the data field

(DataField) in the linked list is of the type DataRecord.

A file of DataRecords, in which you are going to store the list, is also defined. Using a

file of records makes the file handling much easier.

The global variables you are going to use are a list pointer, a file variable, and a record

variable:

VAR

FirstPointer :ListPointer;

Pointers and Linked Lists � 253

MyListFile :EmpFile;

EmpRecord :DataRecord;

When you deal with a list of records, use the same procedures used with simple lists,

because you are still dealing with nodes. Only remember to use fielded variables to

read the fields. For example, in a list of strings, refer to each string using the variable:

CurrentPointer^.DataField

In a list of records, refer to the SSN field (as an example) using the variable:

CurrentPointer^.DataField.SSN

or you may use a WITH statement to do the same thing:

WITH CurrentPointer^.DataField DO

BEGIN

WRITE(ID :7);

WRITE(Name :22); ...

11-9 Searching Lists

In real applications, displaying the whole list on the screen is not useful, because the

list may be too long. Instead, you need to display a specific record. To do this, you have

to search in the list for a unique field such as the Social Security Number SSN. These

are the steps to search a list:

1. Start from the first node by setting up the CurrentPointer so that it points to the first

node:

CurrentPointer := FirstPointer;

2. Match the Social Security Number entered from the keyboard (SSNumber) with the

SSN field in the node. If they match, set a flag such as Found:

IF CurrentPointer^.DataField.SSN = SSNumber THEN

Found := TRUE

The CurrentPointer, in this case, is just pointing to the required node, and may be

used to read the information.

3. If the required record is not found, move the CurrentPointer to the next node:

CurrentPointer := CurrentPointer^.NextField;

4. Repeat steps 2 and 3 until you either find the matching record (Found = TRUE), or you

reach the end of the list (CurrentPointer = NIL). Thus, your WHILE loop will be using

these two conditions:

WHILE (CurrentPointer <> NIL) AND (NOT Found) DO

....

254 � Chapter 11

The following is a program segment that includes the preceding steps:

CurrentPointer := FirstPointer;

WHILE (CurrentPointer <> NIL) AND (NOT Found) DO

IF CurrentPointer^.DataField.SSN = SSNumber THEN

Found := TRUE

ELSE

CurrentPointer := CurrentPointer^.NextField;

To display the information in the required node, you may use the following segment:

WITH CurrentPointer^.DataField DO

BEGIN

WRITELN('ID: ',ID);

WRITELN('Name: ',Name);

WRITELN('Position: ', Position);

WRITELN('Social Security Number: ',SSN);

WRITELN('Hourly Rate: ',Rate :2:2)

END;

The following program is the linked list version of the employee database. It includes

the options to search for and display a specific record, in addition to better file process-

ing. The program includes the following procedures:

� SearchList to search for a specific record.

� BuildList to add records to the list.

� ReadList to display the whole list.

� GetData to accept data from the keyboard.

� DisplayRec to display a specific record.

� DisplayItAll to display the headers of the fields and invoke ReadList.

� ReadFile to read records from the data file and invoke BuildList.

� SaveList to save the list to a file.

� Menu to display the user menu.

{ ----------------------- Example 11-5 ---------------------------- }

PROGRAM LinkedListDB(INPUT, OUTPUT, MyListFile);

{ This program processes an employee database as list of records. }

CONST

FileName = 'emplist.bin';

Header = '-------------- Main Menu --------------';

Separator = '---------------------------------------';

TYPE

{Declaration of data type }

SSNstring = STRING[11];

DataRecord = RECORD

Pointers and Linked Lists � 255

ID :STRING[5];

Name, Position :STRING[20];

SSN :SSNstring;

Rate :REAL

END;

{Declaration of the list }

ListPointer = ^ListRecord;

ListRecord = RECORD

DataField :DataRecord;

NextField :ListPointer

END;

EmpFile = FILE OF DataRecord;

VAR

FirstPointer :ListPointer;

MyListFile :EmpFile;

EmpRecord :DataRecord;

{ --------------------- Procedure SearchList ----------------------- }

PROCEDURE SearchList(FirstPointer :ListPointer;

VAR CurrentPointer :ListPointer;

SSNumber :SSNstring;

VAR Found :BOOLEAN);

{ This procedure searches the linked list for an employee's SSN. If found, the

value of the Boolean flag Found becomes TRUE, and the CurrentPointer points to

the required node. }

BEGIN

CurrentPointer := FirstPointer;

WHILE (CurrentPointer <> NIL) AND (NOT Found) DO

IF CurrentPointer^.DataField.SSN = SSNumber THEN

Found := TRUE

ELSE

CurrentPointer := CurrentPointer^.NextField;

END;

{ --------------------- Procedure BuildList ------------------------ }

PROCEDURE BuildList(VAR FirstPointer :ListPointer;

DataItem :DataRecord);

{ This procedure builds the linked list, or adds nodes to it.}

{Note: The FirstPointer is passed using the VAR keyword as it will be updated

by this procedure. }

VAR

ToolPointer :ListPointer;

BEGIN

NEW(ToolPointer);

ToolPointer^.DataField := DataItem;

ToolPointer^.NextField := FirstPointer;

FirstPointer := ToolPointer

256 � Chapter 11

END;

{ ---------------------- Procedure ReadList ----------------------- }

PROCEDURE ReadList(FirstPointer :ListPointer);

{ This procedure reads and displays the contents of the list. }

VAR

CurrentPointer :ListPointer;

BEGIN

CurrentPointer := FirstPointer;

WHILE CurrentPointer <> NIL DO

BEGIN

WITH CurrentPointer^.DataField DO

BEGIN

WRITE(ID :7);

WRITE(Name :22);

WRITE(Position :22);

WRITE(SSN :13);

WRITELN(' $' ,Rate :0:2)

END;

CurrentPointer := CurrentPointer^.NextField

END;

WRITELN

END;

{ ---------------------- Procedure GetData ------------------------- }

PROCEDURE GetData(VAR FirstPointer :ListPointer);

{ This procedure receives the employee data from the keyboard, and passes the

record information to the procedure BuildList to be added to the linked list. }

VAR

Item :DataRecord;

BEGIN

WRITELN('Please enter the record information,',

' when finished hit ENTER.');

{ Read the first data item }

WITH Item DO

BEGIN

WRITE('ID: '); READLN(ID);

WRITE('Name: '); READLN(Name);

WRITE('Position: '); READLN(Position);

WRITE('SSN: '); READLN(SSN);

WRITE('Rate: '); READLN(Rate);

WRITE(Separator)

END;

BuildList(FirstPointer, Item);

END;

{ ------------------- Procedure DisplayItAll ---------------------- }

PROCEDURE DisplayItAll(FirstPointer :ListPointer);

Pointers and Linked Lists � 257

{ This procedures displays the headers of the fields in the proper format and

calls the procedure ReadList to display the contents of the list. }

BEGIN

WRITELN(Separator);

WRITELN('The contents of the list: ');

WRITELN('ID' :7, 'Name' :22, 'Position' :22, 'SSN' :13,

'Rate' :7);

WRITELN;

ReadList(FirstPointer);

WRITE('Hit any key to continue...');

READLN

END;

{ --------------------- Procedure DisplayRec ----------------------- }

PROCEDURE DisplayRec(FirstPointer :ListPointer);

{ This procedure displays the information for a specific employee. It calls the

procedure SearchList to search the list using the Social Security Number of the

employee. If found, the information is displayed, otherwise a "not found" error

message is issued. }

VAR

CurrentPointer :ListPointer;

SSNumber :SSNstring;

Found :BOOLEAN;

BEGIN

Found := FALSE;

WRITELN(Separator);

WRITE('Enter the SSN for the employee:'); READLN(SSNumber);

SearchList(FirstPointer, CurrentPointer, SSNumber, Found);

IF NOT Found THEN

WRITELN('SSN: ', SSNumber, ' Not Found')

ELSE

WITH CurrentPointer^.DataField DO

BEGIN

WRITELN('ID: ',ID);

WRITELN('Name: ',Name);

WRITELN('Position: ', Position);

WRITELN('Social Security Number: ',SSN);

WRITELN('Hourly Rate: ',Rate :2:2)

END;

WRITE('Hit any key to continue...');

READLN

END;

{ ---------------------- Procedure SaveList ------------------------ }

PROCEDURE SaveList(FirstPointer :ListPointer;

VAR MyListFile: EmpFile);

258 � Chapter 11

TE
AM
FL
Y

Team-Fly®

{This procedure saves the data fields in the linked list to a file of the type

RECORD. }

VAR

CurrentPointer :ListPointer;

BEGIN

ASSIGN(MyListFile, FileName);

REWRITE(MyListFile);

CurrentPointer := FirstPointer;

WHILE CurrentPointer <> NIL DO

BEGIN

WRITE(MyListFile, CurrentPointer^.DataField);

CurrentPointer := CurrentPointer^.NextField

END;

CLOSE(MyListFile)

END;

{ ---------------------- Procedure ReadFile ----------------------- }

PROCEDURE ReadFile(VAR FirstPointer :ListPointer;

VAR MyListFile: EmpFile);

{This procedure reads data from the file EMPLIST.BIN and adds the data to the

linked list. }

VAR

Item :DataRecord;

BEGIN

ASSIGN(MyListFile, FileName);

RESET(MyListFile);

WHILE NOT EOF (MyListFile) DO

BEGIN

READ(MyListFile, Item);

BuildList(FirstPointer, Item);

END;

CLOSE(MyListFile)

END;

{ ------------------------- Procedure Menu ------------------------- }

PROCEDURE Menu;

VAR

Option :INTEGER;

BEGIN

WRITELN(Header);

WRITELN('1. Add records to the list.');

WRITELN('2. Display the whole list.');

WRITELN('3. Display an employee record.');

WRITELN('4. Add records from file.');

Pointers and Linked Lists � 259

WRITELN('5. Save the list to a file.');

WRITELN('6. Exit.');

WRITELN(Separator);

WRITE('Make a choice and press a number: ');

READLN(Option);

CASE Option OF

1 : GetData(FirstPointer);

2 : DisplayItAll(FirstPointer);

3 : DisplayRec(FirstPointer);

4 : ReadFile(FirstPointer, MyListFile);

5 : SaveList(FirstPointer, MyListFile);

6 : Exit

END;

Menu

END;

{ ------------------------- Main Program -------------------------- }

BEGIN

{ Initialize an empty list. }

FirstPointer := NIL;

menu

END.

{ --- }

Sample Run:

A sample of the file EMPLIST.BIN is included on the companion CD. When you run

the program, you may start with loading records from the file by choosing option 4,

then display the list using option 2. In the following sample run, the user input is

bolded for clarity.

-------------- Main Menu --------------

1. Add records to the list.

2. Display the whole list.

3. Display an employee record.

4. Add records from file.

5. Save the list to a file.

6. Exit.

Make a choice and press a number: 4 � At this point, the list is loaded into memory.

-------------- Main Menu --------------

1. Add records to the list.

2. Display the whole list.

3. Display an employee record.

4. Add records from file.

5. Save the list to a file.

6. Exit.

Make a choice and press a number: 2

260 � Chapter 11

The contents of the list:

ID Name Position SSN Rate

456 Mark Poche Staff Assistant 999-99-9999 $23.00

345 Deanna Bedford Secretary I 444-44-4444 $12.55

123 John Martin Smith Sales Manager 111-11-1111 $22.50

234 James Strahan Sales Representative 222-22-2222 $11.50

987 Charles Berlin President 333-33-3333 $60.50

Hit any key to continue...

For your convenience, the Social Security Numbers in the file are made easy to

remember when you search for a certain employee. Here is an example:

-------------- Main Menu --------------

1. Add records to the list.

2. Display the whole list.

3. Display an employee record.

4. Add records from file.

5. Save the list to a file.

6. Exit.

Make a choice and press a number: 3

Enter the SSN for the employee: 111-11-1111

ID: 123

Name: John Martin Smith

Position: Sales Manager

Social Security Number: 111-11-1111

Hourly Rate: 22.50

Hit any key to continue...

-------------- Main Menu --------------

1. Add records to the list.

2. Display the whole list.

3. Display an employee record.

4. Add records from file.

5. Save the list to a file.

6. Exit.

Make a choice and press a number: 6

Notice the following points in the search procedure:

1. The call to the search procedure takes the form:

SearchList(FirstPointer, CurrentPointer, SSNumber, Found);

where the SSNumber is the Social Security Number to be matched with the field SSN.

2. Both the CurrentPointer and the flag Found are passed using the keyword VAR,

because their values are expected to change after the search process:

Pointers and Linked Lists � 261

PROCEDURE SearchList(FirstPointer :ListPointer;

VAR CurrentPointer :ListPointer;

SSNumber :SSNstring;

VAR Found :BOOLEAN);

Drill 11-4

Add a procedure to the previous program to incorporate the Update record option in

your menu. To update a record, search for it, accept the new information from the key-

board, and write the record to the data field in the current node. Remember to update

the menu options as well, by adding the option Update a record.

11-10 Deleting Nodes from Lists

To delete a node from a linked list, you need to declare three pointers:

� FirstPointer which points to the first node.

� CurrentPointer which points to the current node.

� PreviousPointer which points to the previous node.

The algorithm to delete a node depends on its relative position in the link. There are

two cases to consider:

A. If the node is the first node in the list:

The procedure to delete the node in this case is simple, and requires only the two

pointers FirstPointer and CurrentPointer:

1. Set the CurrentPointer to point to the node to be deleted (the first node).

2. Set the FirstPointer to point to the second node in the list:

FirstPointer := FirstPointer^.NextField;

3. Dispose of the CurrentPointer:

DISPOSE(CurrentPointer);

262 � Chapter 11

FirstPointer
Data1

CurrentPointer

Pointer PointerData2

B. If the node has a predecessor:

This is the case in which you need the third pointer that points to the previous node.

The following is the algorithm to delete the node:

1. Set the CurrentPointer to point to the node to be deleted.

2. Set the PreviousPointer to point to the successor of the current node:

PreviousPointer^.NextField := CurrentPointer^.NextField;

3. Dispose of the CurrentPointer:

DISPOSE(CurrentPointer);

The previous steps imply that the algorithm of the search procedure must be changed

so that the PreviousPointer follows the CurrentPointer step by step through the list.

This is the new version of the procedure SearchList:

{ -------------------- Procedure SearchList ----------------------- }

PROCEDURE SearchList(FirstPointer :ListPointer;

VAR CurrentPointer :ListPointer;

VAR PreviousPointer :ListPointer;

SSNumber :SSNstring;

VAR Found :BOOLEAN);

BEGIN

PreviousPointer := NIL;

CurrentPointer := FirstPointer;

WHILE (CurrentPointer <> NIL) AND (NOT Found) DO

IF CurrentPointer^.DataField.SSN = SSNumber THEN

Found := TRUE

ELSE

BEGIN

PreviousPointer := CurrentPointer;

CurrentPointer := CurrentPointer^.NextField

END

Pointers and Linked Lists � 263

PreviousPointer

Data

Data

CurrentPointer

Pointer

Pointer

PointerData

END;

The procedure header is changed to:

PROCEDURE SearchList(FirstPointer :ListPointer;

VAR CurrentPointer :ListPointer;

VAR PreviousPointer :ListPointer;

SSNumber :SSNstring;

VAR Found :BOOLEAN);

Because the PreviousPointer follows the CurrentPointer and its value is expected to

change, it has to be preceded by the keyword VAR.

The following is the DelRecord Procedure:

{ --------------------- Procedure DelRecord ------------------------ }

PROCEDURE DelRecord(VAR FirstPointer :ListPointer);

VAR

CurrentPointer, PreviousPointer :ListPointer;

Found :BOOLEAN;

SSNumber: SSNstring;

BEGIN

Found := FALSE;

WRITELN(Separator);

WRITE('Enter the SSN of the employee to be removed:');

READLN(SSNumber);

SearchList(FirstPointer, CurrentPointer, PreviousPointer,

SSNumber, Found);

IF NOT Found THEN

WRITELN('SSN: ', SSNumber, ' Not Found')

ELSE

BEGIN

IF PreviousPointer = NIL THEN

{ The node to be deleted is the first node. }

FirstPointer := FirstPointer^.NextField

ELSE

{ The node to be deleted has a predecessor. }

PreviousPointer^.NextField := CurrentPointer^.NextField;

DISPOSE(CurrentPointer);

WRITELN('The record has been deleted from the list.')

END;

WRITE('Hit any key to continue...');

READLN

END;

{ --- }

The changes made on the SearchList procedure will affect other procedures. Any call

to the SearchList must include the new pointer parameter PreviousPointer as shown

in the following call:

264 � Chapter 11

SearchList(FirstPointer, CurrentPointer, PreviousPointer,

SSNumber, Found);

In the previous program (Example 11-5) the DisplayRec procedure calls SearchList

using two pointer parameters only. This is obvious because PreviousPointer is not

used in the DisplayRec procedure. In order to incorporate the new SearchList proce-

dure into the program, the calls to the SearchList must be modified. In the procedure

DisplayRec, you may declare a dummy pointer which has no work to do except being

passed as a parameter to the search procedure. This is an example of the new call:

SearchList(FirstPointer, CurrentPointer, DummyPointer,

SSNumber, Found);

In the following program, the employee database is almost completed. These are the

main features of the program:

1. A call to the SearchList procedure is made before entering the data of a new employer.

The Social Security Number is checked to see if it originally exists. If it does, no data

are entered, and the proper message is issued.

2. The DelRecord procedure is added.

3. The UpdateRec procedure is added.

4. The SearchList procedure is used to reject any operation (e.g., delete, update, or

display) if the SSN is not found.

{ ----------------------- Example 11-6 ---------------------------- }

PROGRAM LinkedListDB(INPUT, OUTPUT, MyListFile);

CONST

FileName = 'emplist.bin';

Header = '-------------- Main Menu --------------';

Separator = '--';

TYPE

{Declaration of data type }

SSNstring = STRING[11];

DataRecord = RECORD

ID :STRING[5];

Name, Position :STRING[20];

SSN :SSNstring;

Rate :REAL

END;

{Declaration of the list }

ListPointer = ^ListRecord;

ListRecord = RECORD

DataField :DataRecord;

NextField :ListPointer

END;

EmpFile = FILE OF DataRecord;

Pointers and Linked Lists � 265

VAR

FirstPointer :ListPointer;

MyListFile :EmpFile;

EmpRecord :DataRecord;

{ -------------------- Procedure SearchList ----------------------- }

PROCEDURE SearchList(FirstPointer :ListPointer;

VAR CurrentPointer :ListPointer;

VAR PreviousPointer :ListPointer;

SSNumber :SSNstring;

VAR Found :BOOLEAN);

{ This procedure searches the linked list for an employee's SSN. If found, the

value of the Boolean flag "Found" becomes TRUE. }

BEGIN

PreviousPointer := NIL;

CurrentPointer := FirstPointer;

WHILE (CurrentPointer <> NIL) AND (NOT Found) DO

IF CurrentPointer^.DataField.SSN = SSNumber THEN

Found := TRUE

ELSE

BEGIN

PreviousPointer := CurrentPointer;

CurrentPointer := CurrentPointer^.NextField

END

END;

{ ---------------------- Procedure BuildList ----------------------- }

PROCEDURE BuildList(VAR FirstPointer :ListPointer;

DataItem :DataRecord);

{ This procedure builds the linked list, or adds nodes to it.}

{Note: The FirstPointer is passed using the VAR keyword because it will be

updated by this procedure.}

VAR

ToolPointer :ListPointer;

BEGIN

NEW(ToolPointer);

ToolPointer^.DataField := DataItem;

ToolPointer^.NextField := FirstPointer;

FirstPointer := ToolPointer

END;

{ ---------------------- Procedure ReadList ------------------------ }

PROCEDURE ReadList(FirstPointer :ListPointer);

{ This procedure reads and displays the contents of the list }

VAR

CurrentPointer :ListPointer;

BEGIN

266 � Chapter 11

CurrentPointer := FirstPointer;

WHILE CurrentPointer <> NIL DO

BEGIN

WITH CurrentPointer^.DataField DO

BEGIN

WRITE(ID :7);

WRITE(Name :22);

WRITE(Position :22);

WRITE(SSN :13);

WRITELN(' $' ,Rate :0:2)

END;

CurrentPointer := CurrentPointer^.NextField

END;

WRITELN

END;

{ -------------------- Procedure DelRecord ------------------------ }

PROCEDURE DelRecord(VAR FirstPointer :ListPointer);

{ This procedure deletes a node from the list. If the node to be deleted is the

first node. The FirstPointer is moved to the next node; otherwise, the pointer

field of the previous node is updated to point to the next node. In both cases

the CurrentPointer is disposed. }

VAR

CurrentPointer, PreviousPointer :ListPointer;

Found :BOOLEAN;

SSNumber: SSNstring;

BEGIN

Found := FALSE;

WRITELN(Separator);

WRITE('Enter the SSN of the employee to be removed:');

READLN(SSNumber);

SearchList(FirstPointer, CurrentPointer, PreviousPointer,

SSNumber, Found);

IF NOT Found THEN

WRITELN('SSN: ', SSNumber, ' Not Found')

ELSE

BEGIN

IF PreviousPointer = NIL THEN

{ The node to be deleted is the first node. }

FirstPointer := FirstPointer^.NextField

ELSE

{ The node to be deleted has a predecessor. }

PreviousPointer^.NextField := CurrentPointer^.NextField;

DISPOSE(CurrentPointer);

WRITELN('The record has been deleted from the list.')

END;

WRITE('Hit any key to continue...');

READLN

END;

Pointers and Linked Lists � 267

{ ---------------------- Procedure GetData ------------------------ }

PROCEDURE GetData(VAR FirstPointer :ListPointer);

{ This procedure receives the employee data from the keyboard, and passes the

record information to the procedure BuildList to be added to the linked list. }

VAR

CurrentPointer, DummyPointer :ListPointer;

Item :DataRecord;

SSNumber: SSNstring;

Found :BOOLEAN;

BEGIN

Found := FALSE;

WRITE('Please enter the SSN of the employee: ');

READLN(SSNumber);

SearchList(FirstPointer, CurrentPointer, DummyPointer,

SSNumber, Found);

IF NOT Found THEN

BEGIN

WRITELN('Please enter the employee information:');

WITH Item DO

BEGIN

SSN := SSNumber;

WRITE('ID: '); READLN(ID);

WRITE('Name: '); READLN(Name);

WRITE('Position: '); READLN(Position);

WRITE('Rate: '); READLN(Rate);

WRITELN(Separator)

END;

BuildList(FirstPointer, Item);

WRITELN('The employee has been added to the list.')

END

ELSE

WRITELN('The SSN: ', SSNumber, ' is already in the list.');

WRITE('Hit any key to continue...');

READLN

END;

{ -------------------- Procedure DisplayItAll ---------------------- }

PROCEDURE DisplayItAll(FirstPointer :ListPointer);

{ This procedures displays the headers of the fields in the proper format and

calls the procedure ReadList to display the contents of the list. }

BEGIN

WRITELN(Separator);

WRITELN('The contents of the list: ');

WRITELN('ID' :7, 'Name' :22, 'Position' :22, 'SSN' :13,

'Rate' :7);

WRITELN;

ReadList(FirstPointer);

WRITE('Hit any key to continue...');

268 � Chapter 11

TE
AM
FL
Y

Team-Fly®

READLN

END;

{ --------------------- Procedure DisplayRec ----------------------- }

PROCEDURE DisplayRec(FirstPointer :ListPointer);

{ This procedure displays the information for a specific employee. It calls the

procedure SearchList to search the list using the Social Security Number of the

employee.}

VAR

CurrentPointer, DummyPointer :ListPointer;

SSNumber :SSNstring;

Found :BOOLEAN;

{ Note: The DummyPointer is used to call the SearchList

procedure (which takes three pointers as parameters), but this

pointer is not required in this procedure. }

BEGIN

Found := FALSE;

WRITELN(Separator);

WRITE('Enter the SSN of the employee:'); READLN(SSNumber);

SearchList(FirstPointer, CurrentPointer,

DummyPointer, SSNumber, Found);

IF NOT Found THEN

WRITELN('SSN: ', SSNumber, ' Not Found')

ELSE

WITH CurrentPointer^.DataField DO

BEGIN

WRITELN('ID: ',ID);

WRITELN('Name: ',Name);

WRITELN('Position: ', Position);

WRITELN('Social Security Number: ', SSN);

WRITELN('Hourly Rate: $', Rate :2:2)

END;

WRITE('Hit any key to continue...');

READLN

END;

{ --------------------- Procedure UpdateRec ----------------------- }

PROCEDURE UpdateRec(FirstPointer :ListPointer);

{ This procedure updates record information for a specific employee. It calls

the procedure SearchList to search the list using the Social Security Number of

the employee. The new information is accepted from the user, otherwise a "not

found" error message is issued. }

VAR

CurrentPointer, DummyPointer :ListPointer;

SSNumber :SSNstring;

Found :BOOLEAN;

Pointers and Linked Lists � 269

{ Note: The DummyPointer is used to call the SearchList

procedure (which takes three pointers as parameters), but this

pointer is not required in this procedure. }

BEGIN

Found := FALSE;

WRITELN(Separator);

WRITE('Enter the SSN of the employee:'); READLN(SSNumber);

SearchList(FirstPointer, CurrentPointer,

DummyPointer, SSNumber, Found);

IF NOT Found THEN

WRITELN('SSN: ', SSNumber, ' Not Found')

ELSE

WITH CurrentPointer^.DataField DO

BEGIN

WRITELN('Please enter the now information for',

' the employee (SSN: ', SSNumber,'):');

WRITE('ID: '); READLN(ID);

WRITE('Name: '); READLN(Name);

WRITE('Position: '); READLN(Position);

WRITE('Hourly Rate: '); READLN(Rate);

WRITELN('Record updated.')

END;

WRITE('Hit any key to continue...');

READLN

END;

{ ---------------------- Procedure SaveList ------------------------ }

PROCEDURE SaveList(FirstPointer :ListPointer;

VAR MyListFile: EmpFile);

{This procedure saves the data fields in the linked list to a file of the type

RECORD. }

VAR

CurrentPointer :ListPointer;

BEGIN

ASSIGN(MyListFile, FileName);

REWRITE(MyListFile);

CurrentPointer := FirstPointer;

WHILE CurrentPointer <> NIL DO

BEGIN

WRITE(MyListFile, CurrentPointer^.DataField);

CurrentPointer := CurrentPointer^.NextField

END;

CLOSE(MyListFile);

WRITELN('The list has been saved to the file.');

WRITE('Hit any key to continue...');

READLN

END;

270 � Chapter 11

{ --------------------- Procedure ReadFile ------------------------ }

PROCEDURE ReadFile(VAR FirstPointer :ListPointer;

VAR MyListFile: EmpFile);

{This procedure reads data from the file EMPLIST.BIN and adds the data to the

linked list. }

VAR

Item :DataRecord;

BEGIN

ASSIGN(MyListFile, FileName);

RESET(MyListFile);

WHILE NOT EOF (MyListFile) DO

BEGIN

READ(MyListFile, Item);

BuildList(FirstPointer, Item);

END;

CLOSE(MyListFile);

WRITELN('The employee list is ready in memory.');

WRITE('Hit any key to continue...');

READLN

END;

{ ------------------------ Procedure Menu ------------------------- }

PROCEDURE Menu;

VAR

Option :INTEGER;

BEGIN

WRITELN(Header);

WRITELN('1. Add records to the list.');

WRITELN('2. Display the whole list.');

WRITELN('3. Display an employee record.');

WRITELN('4. Add records from file.');

WRITELN('5. Save the list to a file.');

WRITELN('6. Delete a record.');

WRITELN('7. Update a record.');

WRITELN('8. Exit.');

WRITELN(Separator);

WRITE('Make a choice and press a number: ');

READLN(Option);

CASE Option OF

1 : GetData(FirstPointer);

2 : DisplayItAll(FirstPointer);

3 : DisplayRec(FirstPointer);

4 : ReadFile(FirstPointer, MyListFile);

5 : SaveList(FirstPointer, MyListFile);

6 : DelRecord(FirstPointer);

7 : UpdateRec(FirstPointer);

8 : Exit

Pointers and Linked Lists � 271

END;

Menu

END;

{ ------------------------ Main Program ---------------------------- }

BEGIN

{ Initialize an empty List }

FirstPointer := NIL;

menu

END.

{ -- }

Sample Run:

In the following run, option 1 was chosen in order to add a new employee (SSN:

222-22-2222). However, the program refused to add it because the SearchList proce-

dure found this SSN in the list. The user input is bolded for clarity.

-------------- Main Menu --------------

1. Add records to the list.

2. Display the whole list.

3. Display an employee record.

4. Add records from file.

5. Save the list to a file.

6. Delete a record.

7. Update a record.

8. Exit.

Make a choice and press a number: 4

The employee list is ready in memory.

Hit any key to continue...

-------------- Main Menu --------------

1. Add records to the list.

2. Display the whole list.

3. Display an employee record.

4. Add records from file.

5. Save the list to a file.

6. Delete a record.

7. Update a record.

8. Exit.

Make a choice and press a number: 1

Please enter the SSN of the employee: 222-22-2222

The SSN: 222-22-2222 is already in the list.

Hit any key to continue...

272 � Chapter 11

11-11 Arranging Nodes in Sequential Order

The linked list you have used so far is classified as an unordered linked list because

you have no control over the sequence of nodes in the list. When you insert a new

node, it goes directly to the beginning of the list. In an ordered linked list, items are

stored in an ascending or descending order. Therefore, if the items are records, the

ordering must be based on one of the data fields in the record such as the SSN or the

last name. This data field is known as the key field. In an ordered linked list, the logic

of insertion and searching procedures will be different from those used with unordered

lists. However, the deletion procedure is essentially the same. Adding a record to an

ordered list includes searching the list for the proper insertion point.

Inserting Nodes

To add a new item to an ordered list, use the following pointers:

� CurrentPointer A pointer to the current node.

� PreviousPointer A pointer to the predecessor node.

� NewItemPointer A pointer to the new node that will

contain the item.

Assume that the new node will be inserted between the two nodes pointed to by

PreviousPointer and CurrentPointer, as shown in the following figure:

To insert the new node, do the following:

� Assign the CurrentPointer to the link field (NextField) of the new node:

NewItemPointer^.NextField := CurrentPointer;

� Assign the NewItemPointer to the link field of the predecessor node:

PreviousPonter^.NextField := NewItemPointer;

The result is shown in the following diagram:

Pointers and Linked Lists � 273

CurrentPointer

New Data

The new node

PreviousPointer

NewItemPointer

Data1

Pointer

PointerPointer Data2

The original list

As you can see, inserting a new item is a straightforward task accomplished in two

steps. However, the important part in this task is to locate the two nodes between

which the new node will be inserted. This algorithm is explained in the next section.

Searching an Ordered List

The following terms are used in the search algorithm:

� ItemExists A flag indicating that the item already exists in the list.

� FoundInsertionPoint A flag indicating that a proper insertion point is found.

� FirstPointer The pointer to the first node.

� CurrentPointer The pointer to the current node.

� PreviousPointer The pointer to the predecessor node.

� SSNumber The Social Security Number in the record to be inserted.

� SSN The Social Security Number field in any data node.

Assuming that the list is sorted in an ascending order based on the Social Security

Number (SSN) key, the following steps indicate the algorithm for searching the list to

locate the proper insertion point.

1. Start from the first node by setting up the CurrentPointer so that it points to the first

node:

CurrentPointer := FirstPointer;

PreviousPointer := NIL;

2. Compare the Social Security Number in the record, which is to be inserted, to the SSN

field in the current node:

IF CurrentPointer^.DataField.SSN >= SSNumber THEN ..

3. If the condition is true, one of two cases will occur.

� If the equality condition (=) is met, there is no need to insert the item into the list

because it already exists. In this case, set the proper flag:

274 � Chapter 11

CurrentPointer

New Data

The new node

PreviousPointer

NewItemPointer

Data1

Pointer

Pointer

Pointer

Data2

ItemExists := TRUE;

� If the greater than condition (>) is met, then the CurrentPointer is pointing to the

item next to the correct insertion point. In this case, set the flag ItemExists to

FALSE, and set the FoundInsertionPoint flag to TRUE:

ItemExists := FALSE;

FoundInsertionPoint := TRUE;

4. If the >= condition is not met, move the CurrentPointer to the next node and continue

searching:

PreviousPointer := CurrentPointer;

CurrentPointer := CurrentPointer^.NextField;

5. Special cases:

� If you reach the end of the list (CurrentPointer = NIL) without meeting the >=

condition, the item has to be inserted at the end of the list.

� If the PreviousPointer is NIL, the item is inserted at the beginning of the list.

The following is the updated SearchList procedure that applies the preceding steps:

{ -------------------- Procedure SearchList ----------------------- }

PROCEDURE SearchList(FirstPointer :ListPointer;

VAR CurrentPointer :ListPointer;

VAR PreviousPointer :ListPointer;

SSNumber :SSNstring;

VAR ItemExists :BOOLEAN);

{ This procedure searches the ordered linked list for an employee's SSN. If

found, the value of the Boolean flag ItemExists becomes TRUE }

VAR

FoundInsertionPoint :BOOLEAN;

BEGIN

PreviousPointer := NIL;

CurrentPointer := FirstPointer;

ItemExists := FALSE;

FoundInsertionPoint := FALSE;

WHILE (CurrentPointer <> NIL) AND (NOT FoundInsertionPoint) DO

IF CurrentPointer^.DataField.SSN >= SSNumber THEN

BEGIN

FoundInsertionPoint := TRUE;

IF CurrentPointer^.DataField.SSN = SSNumber THEN

ItemExists := TRUE

END

ELSE

BEGIN

PreviousPointer := CurrentPointer;

CurrentPointer := CurrentPointer^.NextField

END

END;

{ --- }

Pointers and Linked Lists � 275

The following is the insertion procedure that applies the new algorithm. It replaces

the procedure BuildList in the previous version (Example 11-6):

{ -------------------- Procedure InsertInList --------------------- }

PROCEDURE InsertInList(VAR FirstPointer :ListPointer;

DataItem :DataRecord);

{ This procedure builds the linked list, or adds nodes to it.}

VAR

NewItemPointer, PreviousPointer, CurrentPointer :ListPointer;

ItemExists :BOOLEAN;

BEGIN

SearchList(FirstPointer, CurrentPointer, PreviousPointer,

DataItem.SSN, ItemExists);

IF ItemExists THEN

DuplicateMsg(DataItem.SSN)

ELSE

BEGIN

NEW(NewItemPointer);

NewItemPointer^.DataField := DataItem;

IF PreviousPointer = NIL THEN

{ No Predecessor }

BEGIN

NewItemPointer^.NextField := FirstPointer;

FirstPointer := NewItemPointer

END

ELSE

BEGIN

NewItemPointer^.NextField := CurrentPointer;

PreviousPointer^.NextField := NewItemPointer

END

END

END;

{ --- }

Application: The Final Linked List Database

The following program brings all the pieces together. One of the glitches in the previ-

ous version (Example 11-6) is that when you load the linked list from a file, the SSN is

not checked for duplication. Consequently, you can load the list from the file many

times without any warning. In this program, each record in the file is checked to

assure that it does not already exist. Also, the modularity of the program has been

enhanced in this version by adding the new procedure DuplicateMsg to display a

warning message about the duplicate record.

{ ------------------------ Example 11-7 --------------------------- }

PROGRAM OrderedLinkedListDB(INPUT, OUTPUT, MyListFile);

{ This program is used to process an ordered linked list, using the SSN as

276 � Chapter 11

the key field. }

CONST

FileName = 'emplist1.bin';

Header = '------------- Main Menu --------------';

Separator = '--------------------------------------';

Message = 'This record is already in the list.';

TYPE

{Declaration of data type }

SSNstring = STRING[11];

DataRecord = RECORD

ID :STRING[5];

Name, Position :STRING[20];

SSN :SSNstring;

Rate :REAL

END;

{Declaration of the list }

ListPointer = ^ListRecord;

ListRecord = RECORD

DataField :DataRecord;

NextField :ListPointer

END;

EmpFile = FILE OF DataRecord;

VAR

FirstPointer :ListPointer;

MyListFile :EmpFile;

EmpRecord :DataRecord;

{ -------------------- Procedure DuplicateMsg --------------------- }

PROCEDURE DuplicateMsg(SSNumber: SSNString);

{ This procedure prints an error message in case you attempt to insert the

same SSN twice }

BEGIN

WRITELN('SSN: ',SSNumber, '. ', Message);

WRITELN(Separator)

END;

{ -------------------- Procedure SearchList ----------------------- }

PROCEDURE SearchList(FirstPointer :ListPointer;

VAR CurrentPointer :ListPointer;

VAR PreviousPointer :ListPointer;

SSNumber :SSNstring;

VAR ItemExists :BOOLEAN);

{ This procedure searches the ordered linked list for an employee's SSN. If

found, the value of the Boolean flag ItemExists becomes TRUE.}

VAR

Pointers and Linked Lists � 277

FoundInsertionPoint :BOOLEAN;

BEGIN

PreviousPointer := NIL;

CurrentPointer := FirstPointer;

ItemExists := FALSE;

FoundInsertionPoint := FALSE;

WHILE (CurrentPointer <> NIL) AND (NOT FoundInsertionPoint) DO

IF CurrentPointer^.DataField.SSN >= SSNumber THEN

BEGIN

FoundInsertionPoint := TRUE;

IF CurrentPointer^.DataField.SSN = SSNumber THEN

ItemExists := TRUE

END

ELSE

BEGIN

PreviousPointer := CurrentPointer;

CurrentPointer := CurrentPointer^.NextField

END

END;

{ ------------------- Procedure InsertInList ---------------------- }

PROCEDURE InsertInList(VAR FirstPointer :ListPointer;

DataItem :DataRecord);

{ This procedure builds the linked list, or adds nodes to it.}

{ Note: The FirstPointer is passed using the VAR keyword as it will be

updated by this procedure. }

VAR

NewItemPointer, PreviousPointer, CurrentPointer :ListPointer;

ItemExists :BOOLEAN;

BEGIN

SearchList(FirstPointer, CurrentPointer, PreviousPointer,

DataItem.SSN, ItemExists);

IF ItemExists THEN

DuplicateMsg(DataItem.SSN)

ELSE

BEGIN

NEW(NewItemPointer);

NewItemPointer^.DataField := DataItem;

IF PreviousPointer = NIL THEN

{ No Predecessor }

BEGIN

NewItemPointer^.NextField := FirstPointer;

FirstPointer := NewItemPointer

END

ELSE

BEGIN

NewItemPointer^.NextField := CurrentPointer;

278 � Chapter 11

TE
AM
FL
Y

Team-Fly®

PreviousPointer^.NextField := NewItemPointer

END

END

END;

{ --------------------- Procedure ReadList ------------------------ }

PROCEDURE ReadList(FirstPointer :ListPointer);

{ This procedure reads and displays the contents of the list }

VAR

CurrentPointer :ListPointer;

BEGIN

CurrentPointer := FirstPointer;

WHILE CurrentPointer <> NIL DO

BEGIN

WITH CurrentPointer^.DataField DO

BEGIN

WRITE(ID :7);

WRITE(Name :22);

WRITE(Position :22);

WRITE(SSN :13);

WRITELN(' $' ,Rate :0:2)

END;

CurrentPointer := CurrentPointer^.NextField

END;

WRITELN

END;

{ -------------------- Procedure DelRecord ------------------------ }

PROCEDURE DelRecord(VAR FirstPointer :ListPointer);

{ This procedure deletes a node from the list. If the node to be deleted is

the first node, the FirstPointer is moved to the next node; otherwise, the

pointer field of the previous node is updated to point to the next node.

In both cases the CurrentPointer is disposed. }

VAR

CurrentPointer, PreviousPointer :ListPointer;

Found :BOOLEAN;

SSNumber: SSNstring;

BEGIN

Found := FALSE;

WRITELN(Separator);

WRITE('Enter the SSN of the employee to be removed:');

READLN(SSNumber);

SearchList(FirstPointer, CurrentPointer, PreviousPointer,

SSNumber, Found);

IF NOT Found THEN

WRITELN('SSN: ', SSNumber, ' Not Found')

ELSE

BEGIN

Pointers and Linked Lists � 279

IF PreviousPointer = NIL THEN

{ The node to be deleted is the first node. }

FirstPointer := FirstPointer^.NextField

ELSE

{ The node to be deleted has a predecessor. }

PreviousPointer^.NextField := CurrentPointer^.NextField;

DISPOSE(CurrentPointer);

WRITELN('The record has been deleted from the list.')

END

END;

{ ---------------------- Procedure GetData ------------------------ }

PROCEDURE GetData(VAR FirstPointer :ListPointer);

{ This procedure receives the employee data from the keyboard, and passes

the record information to the procedure InsertInList to be added to the

linked list. }

VAR

CurrentPointer, DummyPointer :ListPointer;

Item :DataRecord;

SSNumber: SSNstring;

Found :BOOLEAN;

BEGIN

Found := FALSE;

WRITE('Please enter the SSN of the employee: ');

READLN(SSNumber);

SearchList(FirstPointer, CurrentPointer, DummyPointer,

SSNumber, Found);

IF NOT Found THEN

BEGIN

WRITELN('Please enter the employee information:');

WITH Item DO

BEGIN

SSN := SSNumber;

WRITE('ID: '); READLN(ID);

WRITE('Name: '); READLN(Name);

WRITE('Position: '); READLN(Position);

WRITE('Rate: '); READLN(Rate);

WRITELN(Separator)

END;

InsertInList(FirstPointer, Item);

WRITELN('The employee has been added to the list.')

END

ELSE

DuplicateMsg(SSNumber)

END;

{ -------------------- Procedure DisplayItAll --------------------- }

PROCEDURE DisplayItAll(FirstPointer :ListPointer);

{ This procedure displays the headers of the fields in the proper format and

280 � Chapter 11

calls the procedure ReadList to display the contents of the list. }

BEGIN

WRITELN(Separator);

WRITELN('The contents of the list: ');

WRITELN('ID' :7, 'Name' :22, 'Position' :22, 'SSN' :13,

'Rate' :7);

WRITELN;

ReadList(FirstPointer)

END;

{ -------------------- Procedure DisplayRec ----------------------- }

PROCEDURE DisplayRec(FirstPointer :ListPointer);

{ This procedure displays the information for a specific employee. It calls

the SearchList procedure to search the list using the Social Security Number

of the employee. }

VAR

CurrentPointer, DummyPointer :ListPointer;

SSNumber :SSNstring;

Found :BOOLEAN;

{ Note: The DummyPointer is used to call the SearchList

procedure (which takes three pointers as parameters), but this

pointer is not required in this procedure. }

BEGIN

Found := FALSE;

WRITELN(Separator);

WRITE('Enter the SSN of the employee:'); READLN(SSNumber);

SearchList(FirstPointer, CurrentPointer,

DummyPointer, SSNumber, Found);

IF NOT Found THEN

WRITELN('SSN: ', SSNumber, ' Not Found')

ELSE

WITH CurrentPointer^.DataField DO

BEGIN

WRITELN('ID: ',ID);

WRITELN('Name: ',Name);

WRITELN('Position: ', Position);

WRITELN('Social Security Number: ',SSN);

WRITELN('Hourly Rate: $',Rate :2:2)

END

END;

{ --------------------- Procedure UpdateRec ----------------------- }

PROCEDURE UpdateRec(FirstPointer :ListPointer);

{ This procedure updates record information for a specific employee. It calls

the procedure SearchList to search the list using the Social Security Number

of the employee. The new information is accepted from the user; otherwise,

Pointers and Linked Lists � 281

a message not found is issued.}

VAR

CurrentPointer, DummyPointer :ListPointer;

SSNumber :SSNstring;

Found :BOOLEAN;

{ Note: The DummyPointer is used to call the SearchList procedure (which

takes three pointers as parameters), but this pointer is not required in

this procedure. }

BEGIN

Found := FALSE;

WRITELN(Separator);

WRITE('Enter the SSN of the employee:'); READLN(SSNumber);

SearchList(FirstPointer, CurrentPointer,

DummyPointer, SSNumber, Found);

IF NOT Found THEN

WRITELN('SSN: ', SSNumber, ' Not Found')

ELSE

WITH CurrentPointer^.DataField DO

BEGIN

WRITELN('Please enter the new information for',

' the employee (SSN: ', SSNumber,'):');

WRITE('ID: '); READLN(ID);

WRITE('Name: '); READLN(Name);

WRITE('Position: '); READLN(Position);

WRITE('Hourly Rate: '); READLN(Rate);

WRITELN('Record updated.')

END

END;

{ ---------------------- Procedure SaveList ----------------------- }

PROCEDURE SaveList(FirstPointer :ListPointer;

VAR MyListFile: EmpFile);

{ This procedure saves the data fields in the linked list to a file of the type

RECORD. }

VAR

CurrentPointer :ListPointer;

BEGIN

ASSIGN(MyListFile, FileName);

REWRITE(MyListFile);

CurrentPointer := FirstPointer;

WHILE CurrentPointer <> NIL DO

BEGIN

WRITE(MyListFile, CurrentPointer^.DataField);

CurrentPointer := CurrentPointer^.NextField

END;

CLOSE(MyListFile);

282 � Chapter 11

WRITELN('The list has been saved to the file.')

END;

{ ---------------------- Procedure ReadFile ----------------------- }

PROCEDURE ReadFile(VAR FirstPointer :ListPointer;

VAR MyListFile: EmpFile);

{ This procedure reads data from the file EMPLIST1.BIN and adds the data to the

linked list. }

VAR

Item :DataRecord;

ToolPointer :ListPointer;

BEGIN

ASSIGN(MyListFile, FileName);

RESET(MyListFile);

WHILE NOT EOF (MyListFile) DO

BEGIN

READ(MyListFile, Item);

InsertInList(FirstPointer, Item);

END;

CLOSE(MyListFile)

END;

{ ------------------------ Procedure Menu ------------------------- }

PROCEDURE Menu;

VAR

Option :INTEGER;

BEGIN

WRITELN(Header);

WRITELN('1. Add records to the list.');

WRITELN('2. Display the whole list.');

WRITELN('3. Display an employee record.');

WRITELN('4. Add records from file.');

WRITELN('5. Save the list to a file.');

WRITELN('6. Delete a record.');

WRITELN('7. Update a record.');

WRITELN('8. Exit.');

WRITELN(Separator);

WRITE('Make a choice and press a number: ');

READLN(Option);

CASE Option OF

1 : GetData(FirstPointer);

2 : DisplayItAll(FirstPointer);

3 : DisplayRec(FirstPointer);

4 : ReadFile(FirstPointer, MyListFile);

5 : SaveList(FirstPointer, MyListFile);

6 : DelRecord(FirstPointer);

7 : UpdateRec(FirstPointer);

Pointers and Linked Lists � 283

8 : Exit

END;

WRITELN('Hit any key to continue...');

READLN;

Menu

END;

{ -------------------------- Main Program ------------------------- }

BEGIN

{ Initialize an empty List }

FirstPointer := NIL;

menu

END.

{ --- }

Sample Run:

Notice that the user input is bolded for clarity.

------------- Main Menu --------------

1. Add records to the list.

2. Display the whole list.

3. Display an employee record.

4. Add records from file.

5. Save the list to a file.

6. Delete a record.

7. Update a record.

8. Exit.

Make a choice and press a number: 4 � the file Emplist1.bin is loaded

Hit any key to continue...

------------- Main Menu --------------

1. Add records to the list.

2. Display the whole list.

3. Display an employee record.

4. Add records from file.

5. Save the list to a file.

6. Delete a record.

7. Update a record.

8. Exit.

Make a choice and press a number: 2 � Display all

The contents of the list:

ID Name Position SSN Rate

123 John Martin Smith Sales Manager 111-11-1111 $22.50

234 James Strahan Sales Representative 222-22-2222 $11.50

987 Charles Berlin President 333-33-3333 $60.50

345 Deanna Bedford Secretary I 444-44-4444 $12.55

456 Mark Poche Staff Assistant 999-99-9999 $23.00

Hit any key to continue...

284 � Chapter 11

------------- Main Menu --------------

1. Add records to the list.

2. Display the whole list.

3. Display an employee record.

4. Add records from file.

5. Save the list to a file.

6. Delete a record.

7. Update a record.

8. Exit.

Make a choice and press a number: 1 � Add a new record

Please enter the SSN of the employee: 111-11-1111 � This SSN already exists

SSN: 111-11-1111. This record is already in the list. � Error message

Hit any key to continue...

------------- Main Menu --------------

1. Add records to the list.

2. Display the whole list.

3. Display an employee record.

4. Add records from file.

5. Save the list to a file.

6. Delete a record.

7. Update a record.

8. Exit.

Make a choice and press a number: 1 � Add a new record

Please enter the SSN of the employee: 111-22-2222

Please enter the employee information:

ID: 122

Name: Craig Combel

Position: Manager

Rate: 88

The employee has been added to the list.

Hit any key to continue...

------------- Main Menu --------------

1. Add records to the list.

2. Display the whole list.

3. Display an employee record.

4. Add records from file.

5. Save the list to a file.

6. Delete a record.

7. Update a record.

8. Exit.

Make a choice and press a number: 2 � Display all

The contents of the list:

ID Name Position SSN Rate

123 John Martin Smith Sales Manager 111-11-1111 $22.50

Pointers and Linked Lists � 285

122 Craig Combel Manager 111-22-2222 $88.00 � New

234 James Strahan Sales Representative 222-22-2222 $11.50

987 Charles Berlin President 333-33-3333 $60.50

345 Deanna Bedford Secretary I 444-44-4444 $12.55

456 Mark Poche Staff Assistant 999-99-9999 $23.00

Hit any key to continue...

------------- Main Menu --------------

1. Add records to the list.

2. Display the whole list.

3. Display an employee record.

4. Add records from file.

5. Save the list to a file.

6. Delete a record.

7. Update a record.

8. Exit.

Make a choice and press a number: 4 � Load the file again

SSN: 333-33-3333. This record is already in the list. � error

SSN: 222-22-2222. This record is already in the list. � error

SSN: 111-11-1111. This record is already in the list. � error

SSN: 444-44-4444. This record is already in the list. � error

SSN: 999-99-9999. This record is already in the list. � error

Hit any key to continue...

------------- Main Menu --------------

1. Add records to the list.

2. Display the whole list.

3. Display an employee record.

4. Add records from file.

5. Save the list to a file.

6. Delete a record.

7. Update a record.

8. Exit.

Make a choice and press a number: 8 � Exit

Summary

In this chapter you learned the following features of pointers:

1. A pointer may be used to point to any data type.

2. A pointer to a specific data type is bound to this type.

286 � Chapter 11

3. You cannot read or display the value of a pointer. You can only read or display the value

pointed to by the pointer.

4. The operations you may apply on pointers are assignment and comparison (= or <>).

The only values you may assign to a pointer are the constant NIL or the value of

another pointer bound to the same type.

5. To declare a pointer type use the general form:

TYPE

Pointer-Type = ^ type-definition;

where type-definition is a standard or user-defined type.

6. The procedure NEW is used to allocate memory for a pointer, while the procedure

DISPOSE is used to release the allocated memory. The following two procedures use

the pointer as a parameter:

NEW(PtrVariable);

DISPOSE(PtrVariable);

You also learned how to use linked lists as advanced data structures that expand or

shrink dynamically during the execution of the program. The following are the most

important features of linked lists:

1. In a linked list, data are stored in nodes. Each node contains a data-field and a

pointer-field. The pointer-field points to the second node.

2. The nodes in a linked list may store any type of data; however, they are used most

often to store records.

3. To declare a linked list use the general form:

TYPE

Data-Type = type-definition;

ListPointer = ^ListRecord;

ListRecord = RECORD

DataField : Data-Type;

NextField :ListPointer;

END;

4. Linked lists are constructed and manipulated using pointers.

5. You may add or delete nodes to or from a linked list. In unordered linked lists, nodes

can only be added at the beginning of the list. In ordered linked lists, the nodes are kept

in sequence, and a new node is inserted in the proper sequential position.

Exercises

1. Given the following type and variable declarations:

TYPE

PI = ^INTEGER;

Pointers and Linked Lists � 287

PR = ^REAL;

PS = ^STRING;

VAR

P1, P4 :PI;

P2 :PR;

P3 :PS;

I : INTEGER;

determine which of the following statements are valid and which are not:

{a} NEW(P1);

{b} NEW(P4);

{c} NEW (I);

{d} P3^ := 'Hello there!';

{e} WRITELN(P1^:4, P2^:4:00, P3^:15);

{f} WRITELN(P1, P2, P3);

{g} P1 := P4;

{h} P2^ := P1^;

{i} P4 := P1 + P4;

{j} WRITELN(P1=P4);

{k} WRITELN(P1^=P3^);

2. Given the following declarations:

TYPE

Employee = RECORD

ID:INTEGER;

Wage: REAL;

END;

Empptr = ^Employee;

Person = RECORD

Name :STRING[25];

SSN :STRING[11];

END;

Personptr = ^person;

VAR

Ptr1, Ptr2 : Empptr;

Ptr3 : Personptr;

determine which of these operations are valid and which are invalid:

{a} Ptr1 := Ptr2;

{b} WRITELN(Ptr1=Ptr2);

{c} Ptr1 := Ptr3;

{d} WRITELN(Ptr1=Ptr3);

3. Using the declarations in the preceding exercise, write statements to display the fields

of both Employee and Person records.

4. Write a type declaration for a linked list of inventory items to store Item Number, Item

Name, Quantity, and Invoice Price. Also declare the necessary variables to process the

list and store it into a file:

288 � Chapter 11

TE
AM
FL
Y

Team-Fly®

� Item Number: May contain letters and numbers.

� Item Name: May contain letters and numbers.

� Quantity: Integer number.

� Invoice Price: Real number.

Answers

1.
{a} Valid

{b} Valid

{c} Invalid - NEW is used with pointers only

{d} Valid

{e} Valid

{f} Invalid - cannot print pointers

{g} Valid

{h} Valid

{i} Invalid - cannot add pointers

{j} Valid

{k} Invalid - Type mismatch

2.
{a} Valid

{b} Valid

{c} Invalid - Type mismatch

{d} Invalid - Type mismatch

4. The following are the record and list declarations:

TYPE

InventoryItem = RECORD

ItemNo :STRING[10];

ItemName :STRING[20];

Quantity :INTEGER;

InvoicePrice :REAL

END;

{Declaration of the list: }

ListPointer = ^ListRecord;

ListRecord = RECORD

DataField :InventoryItem;

NextField :ListPointer

END;

{Declare a file of records: }

InventoryFile = FILE OF InventoryItem;

VAR

FirstPointer :ListPointer;

MyFile :InventoryFile;

MyRecord :InventoryItem;

Pointers and Linked Lists � 289

Chapter 12

Advanced
Programming
Algorithms

Chapter Topics:

� Searching algorithms

� Sorting algorithms

� Binary search trees

12-1 Sorting Algorithms

In Chapter 5, you learned how to sort an array using the bubble sort method, which

depends on comparing each element to the other elements, and swapping elements if

necessary. The bubble sort algorithm is efficient only for sorting arrays of small sizes

because the computing time increases with the array size. The fastest sorting algo-

rithm that can be used with large arrays is called quicksort. In this section, the bubble

sort algorithm is revisited and the quicksort is introduced.

291

12-2 Bubble Sort—Enhanced Version

The main feature of this version is that the program is divided into specialized proce-

dures as follows:

� The main program: reads and displays the array, in addition to calling the sort

procedure.

� The bubble sort (BubbleSort) procedure: performs the comparisons between the

array elements. The array is passed to this procedure as a parameter.

� The Swap procedure: swaps two elements of the array. This procedure is called

from the BubbleSort procedure.

You already know that using fewer global variables and relying on procedures and local

variables enhance the modularity of the program. In the examples and drills of this

chapter, you are going to use these modules (procedures) as building blocks of the pro-

grams. In this version of the bubble sort example, you can enter the number of ele-

ments at run time.

The Swap Procedure

The following code shows the Swap procedure used to exchange two integers X and Y.

For the swapping operation to be successful, the parameters X and Y have to be

passed by reference (using the VAR keyword); otherwise the operation will be per-

formed on local copies of the variables X and Y, leaving the original variables

untouched.

{ ------------------------ Procedure Swap ------------------------- }

PROCEDURE Swap(VAR X, Y: INTEGER);

{ This procedure swaps two integers }

VAR

Pot :INTEGER;

BEGIN

Pot := X;

X := Y;

Y := Pot

END;

{ --- }

The Bubble Sort Procedure

This procedure does the actual work to sort an array in an ascending order by compar-

ing each array element to the other elements and calling the Swap procedure if neces-

sary. In this procedure too, the array has to be passed by reference (VAR Arr) in order

to process the original array elements instead of processing a copy of the array. As

mentioned before, if you want to sort the array in a descending order, change the

greater than operator (>) to the less than operator (<).

292 � Chapter 12

{ --------------------- Procedure BubbleSort ---------------------- }

PROCEDURE BubbleSort(VAR Arr: NumbersArray);

{ Sort the array }

VAR

I, J :INTEGER;

BEGIN

FOR I := 1 TO ArraySize-1 DO

BEGIN

FOR J := I+1 TO ArraySize DO

IF Arr[I] > Arr[J] THEN

Swap(Arr[I], Arr[J])

END

END;

{ --- }

The Bubble Sort Program

The following is the complete program that reads an array of integers, sorts it, and

displays it. With minor changes, you can modify the program to sort any type of data.

{ -------------------------- Example 12-1 ------------------------- }

PROGRAM BubbleSortProgram(INPUT,OUTPUT);

CONST

MAXSIZE = 100;

TYPE

Range = 1..MAXSIZE;

NumbersArray = ARRAY[Range] OF INTEGER;

VAR

Arr :NumbersArray;

I, ArraySize :INTEGER;

{ ------------------------ Procedure Swap -------------------------- }

PROCEDURE Swap(VAR X, Y: INTEGER);

{ This procedure swaps two integers }

VAR

Pot :INTEGER;

BEGIN

Pot := X;

X := Y;

Y := Pot

END;

{ --------------------- Procedure BubbleSort ---------------------- }

PROCEDURE BubbleSort(VAR Arr: NumbersArray);

{ Sort the array }

VAR

I, J :INTEGER;

BEGIN

FOR I := 1 TO ArraySize-1 DO

BEGIN

FOR J := I+1 TO ArraySize DO

IF Arr[I] > Arr[J] THEN

Advanced Programming Algorithms � 293

Swap(Arr[I], Arr[J])

END

END;

{ ----------------------- Main Program ---------------------------- }

BEGIN

{ Read the array }

WRITE('Enter the number of elements in the list: ');

READLN(ArraySize);

FOR I := 1 TO ArraySize DO

BEGIN

WRITE('Enter element #', I,': ');

READLN(Arr[I])

END;

{ Sort the Array }

BubbleSort(Arr);

{ Display Results }

WRITELN;

WRITELN('The sorted array is:');

FOR I := 1 TO ArraySize DO

WRITELN(Arr[I]);

WRITELN('Press ENTER to continue..');

READLN

END.

{ --- }

Sample Run:

Enter the number of elements in the list: 6

Enter element #1: 21

Enter element #2: 4

Enter element #3: 56

Enter element #4: 7

Enter element #5: 34

Enter element #6: 26

The sorted array is:

4

7

21

26

34

56

Press ENTER to continue..

294 � Chapter 12

Drill 12-1

Write a bubble sort program capable of sorting names. The following is a sample run

of the required program:

Enter the number of names in the list: 4

Enter name #1: Sam Adams

Enter name #2: Sam Abolrous

Enter name #3: Clara Bui

Enter name #4: Shankar Pal

The sorted array is:

Clara Bui

Sam Abolrous

Sam Adams

Shankar Pal

Press ENTER to continue..

12-3 Quicksort Algorithm

The quicksort algorithm is based on two operations:

� Splitting the array into two sub-arrays by placing the first array element in a

middle position such that all the numbers to the right are greater than all numbers

to the left.

� Repeating the previous step recursively by dividing each sub-array into two

sub-arrays in the same manner until an empty sub-array is reached.

To demonstrate, consider the list 10, 2, 17, 7, 16, 3, 9. The following steps represent

the quicksort algorithm to sort this array (notice that the number being processed is

underlined):

� Place the first number in the middle such that all the numbers to the left are less

than 10, and all the numbers to the right are greater than 10, that is:

3, 9, 2, 7 10 16, 17

� Now, you have two sub-arrays, one to the left and one to the right. Split the left

one by using the same method:

2 3 9,7

� The left array cannot be split any further because it contains one number (2).

2 3 9,7

� Now, switch to the right sub-array:

7 9 blank

Advanced Programming Algorithms � 295

� The right sub-array is now empty, and cannot be split any more, and the left

sub-array concluded to one number (7):

7 9

� Look at the result that you got in the left list by reading the processed numbers

(the bold numbers):

2, 3, 7, 9 10 16, 17

� Now process the right sub-array in step 1, by spliting it, and positioning the first

number 16 in the middle of the list:

blank, 16 17

� This gives you two sub-arrays, one empty, to the left, and one that contains one

element (17) to the right:

16 17

� That means that this list cannot be processed any further and the sorting is

complete. Now look at the final result by writing all the underlined numbers in the

new sequence:

2, 3, 7, 9, 10, 16, 17

The following figure demonstrates the sorting process graphically. The sub-arrays are

shown inside boxes while the final numbers are shown as bolded text.

You can accomplish this process by using two procedures, one to split the array (let us

call it DivideAndConquer), and one to call this procedure in a recursive manner (let us

call it QuickSort) until an empty list is reached.

296 � Chapter 12

3 9 7 2

2

2

9

7

3

10

16

17

17

1716

7 9

9

The Divide and Conquer Procedure

The DivideAndConquer procedure is shown below. The array to be sorted is passed by

reference as a parameter Arr. The indexes of the array range from Arr[First] to

Arr[Last]. After dividing the array (or the sub-array) the first element takes the loca-

tion Mid.

{ ----------------- Procedure DivideAndConquer -------------------- }

PROCEDURE DivideAndConquer(VAR Arr:NumbersArray;

First, Last: INTEGER; VAR Mid: INTEGER);

{ This procedure rearranges the array passed as a parameter such that

Arr[First] is preceded by all the lower numbers and followed by the higher

numbers. The procedure returns the new position of the first number in the

variable Mid. This procedure is called from the QuickSort procedure. }

VAR

Left, Right: INTEGER;

BEGIN

Left := First; { Initialize Left by the first element index }

Right := Last; { initialize Right by the last element index }

{ Search the list until Left meets Right }

WHILE Left < Right DO

BEGIN

{ Search from the right side }

WHILE Arr[Right] > Arr[First] DO

Right := Right - 1; { Move to the left }

{ Search from the Left side }

WHILE (Left < Right) AND (Arr[Left] <= Arr[First]) DO

Left := Left + 1; { Move to the right }

{Swap values if the search is not met}

IF Left < Right THEN

Swap(Arr[Left], Arr[Right]);

END;

{ Place the selected item in the middle position Mid }

Mid := Right;

{ Swap the first and the middle elements }

Swap(Arr[Mid], Arr[First])

END;

{ --- }

Notice the following points in the DivideAndConquer procedure:

� Two search operations started together, one from the left, and one from the right.

� At the beginning of the search operations, the index Left is the same as First, and

the index Right is the same as Last. During the operation, Right moves to the left,

and Left moves to the right.

� The search operations continue as long as the two search operations do not meet.

This occurs when Right=Left. At this point, the WHILE loop ends and the first

element takes a new position stored in the index Mid.

Advanced Programming Algorithms � 297

� The DivideAndConquer procedure does the main process, which is arranging the

array passed to it. This procedure is called from the quicksort procedure

(QuickSort).

The QuickSort Procedure

This procedure calls the DivideAndConquer procedure to arrange one array. It also

calls itself twice to process the two halves of the array, the right sub-array and the left

sub-array.

{ --------------------- Procedure QuickSort ----------------------- }

PROCEDURE QuickSort(VAR Arr: NumbersArray; First, Last: INTEGER);

{ The QuickSort procedure calls the DivideAndConquer procedure, and calls

itself to repeat processing sub-arrays recursively }

VAR

Mid : INTEGER;

BEGIN

IF First < Last THEN { If the sub-array contains more than one item }

BEGIN

DivideAndConquer(Arr, First, Last, Mid);

QuickSort(Arr, First, Mid-1);

QuickSort(Arr, Mid+1, Last)

END

END;

{ --- }

Notice the following points of this procedure:

� The array being processed uses the range: Arr[First] .. Arr[Last].

� The element between the two sub-arrays uses the variable Mid.

� The left sub-array uses the range: Arr[First] .. Arr[Mid–1].

� The right sub-array uses the range: Arr[Mid+1].. Arr[Last].

The QuickSort Program

The following is the complete quicksort program, which includes the

DivideAndConquer, QuickSort, and Swap procedures.

{ ------------------------- Example 12-2 -------------------------- }

PROGRAM QuickSortProgram(INPUT,OUTPUT);

CONST

MAXSIZE = 100;

TYPE

Range = 1..MAXSIZE;

NumbersArray = ARRAY[Range] OF INTEGER;

VAR

Element :NumbersArray;

ArraySize, I :INTEGER;

298 � Chapter 12

TE
AM
FL
Y

Team-Fly®

{ ------------------------ Procedure Swap ------------------------- }

PROCEDURE Swap(VAR X, Y: INTEGER);

{ This procedure swaps two integers }

VAR

Pot :INTEGER;

BEGIN

Pot := X;

X := Y;

Y := Pot

END;

{ ----------------- Procedure DivideAndConquer -------------------- }

PROCEDURE DivideAndConquer(VAR Arr:NumbersArray;

First, Last: INTEGER; VAR Mid: INTEGER);

{ The procedure rearranges the array passed as a parameter such that Arr[First]

is preceded by all the lower numbers and proceeded by the

higher numbers. The procedure returns the new position of the first

number in the variable Mid. This procedure is called from the QuickSort

procedure. }

VAR

Left, Right: INTEGER;

BEGIN

Left := First; { Initialize Left by the first element index }

Right := Last; { initialize Right by the last element index }

{ Search the list until Left meets Right }

WHILE Left < Right DO

BEGIN

{ Search from the right side }

WHILE Arr[Right] > Arr[First] DO

Right := Right - 1; { Move to the left }

{ Search from the Left side }

WHILE (Left < Right) AND (Arr[Left] <= Arr[First]) DO

Left := Left + 1; { Move to the right }

{Swap values if the search is not met}

IF Left < Right THEN

Swap(Arr[Left], Arr[Right]);

END;

{ Place the selected item in the middle position Mid }

Mid := Right;

{ Swap the first and the middle elements }

Swap(Arr[Mid], Arr[First])

END;

{ -------------------- Procedure QuickSort ------------------------ }

PROCEDURE QuickSort(VAR Arr: NumbersArray; First, Last: INTEGER);

{ The QuickSort procedure calls the DivideAndConquer procedure, and calls

itself to repeat processing sub-arrays recursively }

VAR

Mid : INTEGER;

BEGIN

Advanced Programming Algorithms � 299

IF First < Last THEN { If the sub-array contains more than one item }

BEGIN

DivideAndConquer(Arr, First, Last, Mid);

QuickSort(Arr, First, Mid-1);

QuickSort(Arr, Mid+1, Last)

END

END;

{ -------------------------- Main Program ------------------------- }

BEGIN

{ Read the array }

WRITE('Enter the number of elements in the list: ');

READLN(ArraySize);

FOR I := 1 TO ArraySize DO

BEGIN

WRITE('Enter element #', I,': ');

READLN(Element[I])

END;

{ Sort the array }

QuickSort(Element, 1, ArraySize);

{ Print results }

WRITELN;

WRITELN('The sorted array is:');

FOR I := 1 TO ArraySize DO

WRITELN(Element[I]);

WRITELN('Press ENTER to continue..');

READLN

END.

{ --- }

Sample Run:

Enter the number of elements in the list: 7

Enter element #1: 11

Enter element #2: 2

Enter element #3: 44

Enter element #4: 25

Enter element #5: 6

Enter element #6: 77

Enter element #7: 8

The sorted array is:

2

6

8

11

25

44

77

Press ENTER to continue..

300 � Chapter 12

Drill 12-2

Make the necessary changes to the preceding program to make it useful for sorting

names.

12-4 Searching Algorithms

In the preceding chapters, we searched arrays, linked lists, and files for a specific data

item or array element. The search algorithm that we used so far is called the linear

search. The linear search is good for small lists or files that contain a limited number

of records. When it comes to lists that contain a huge amount of data, the binary search

algorithm is faster. In the following sections, the following topics are introduced:

� A review of the linear search algorithm

� The binary search algorithm

� Examples on using the binary search logic in programs

12-5 Linear Search

The following is the pseudo-code that represents the logic for searching an array of

size ArraySize by using the linear search method:

� Set the flag Found to FALSE.

� Start from index #1.

� Do the following until Found becomes TRUE or the index becomes greater than

ArraySize:

a. If the sought item = the current array element, set Found to

TRUE and exit.

b. Otherwise, increment the index counter.

12-6 Binary Search

The binary search algorithm may only be used with a sorted array. You start by com-

paring the sought item to the middle element in the array. According to the result of

this comparison, you can decide if the item is in the upper half or the lower half of the

array. Therefore, you search only one half of the array. By using the same method

repeatedly, you divide any sub-array into smaller sub-arrays, and search another half

until you find the sought item. The following is the pseudo-code for searching an array

Arr of the size ArraySize:

Advanced Programming Algorithms � 301

� Set the flag Found to FALSE.

� Set the variable First to index #1 and the variable Last to the number of elements.

� Do the following until Found becomes TRUE or First becomes greater than Last:

a. Locate the sequence of middle element by using the formula:

Mid=(First+Last)/2.

b. Compare the sought item to Mid. The comparison renders

one of three results:

If the item is found, then the sought item is Arr[Mid]. Set

Found to TRUE.

If the item > Arr[Mid], the sought item is in the upper half.

Set First to Mid+1.

If the item < Arr[Mid], the sought item is in the lower half.

Set Last to Mid–1.

The BinarySearch Procedure

The following procedure is the Pascal code for the binary search algorithm. Notice that

the array must be sorted for the search to work.

{ ------------------------- Binary Search ------------------------- }

PROCEDURE BinarySearch(VAR Arr: NumbersArray; ArraySize: INTEGER;

Element: INTEGER; VAR Found: BOOLEAN);

{ This procedure searches a sorted array for a specific element using the

binary search algorithm }

VAR

First, Last, Mid :INTEGER;

BEGIN

First := 1;

Last := ArraySize;

Found := FALSE;

WHILE (First <= Last) AND (NOT Found) DO

BEGIN

Mid := (First + Last) DIV 2;

IF Element = Arr[Mid] THEN

Found := TRUE

ELSE IF Element > Arr[Mid] THEN

First := Mid + 1 { Search the second half }

ELSE IF Element < Arr[Mid] THEN

Last := Mid - 1 { Search the first half }

END

END;

{--}

302 � Chapter 12

The Binary Search Program

In order to build the complete binary search program, you need to add the following

procedures, which you already used in this chapter:

� A procedure to sort the array (BubbleSort): In this program the bubble sort

procedure is used. Of course, you can replace it by the quicksort procedure, if you

are processing large lists.

� A procedure to exchange elements (Swap): This procedure is used by other

sorting procedures.

You also need a text file that contains some numbers. You can create this file by using

any text editor such as the NOTEPAD.EXE, or use the file on the companion CD.

In this program, you are going to read the numbers from the file, store them in an

array, and search the array for an item. For simplicity, the following test file

NUMBERS.TXT (which is on the companion CD) is used:

The File NUMBERS.TXT:

10

8

9

6

7

4

3

2

1

5

Searching the array for a single number is the same as searching it for a complete

record. In the case of records, once you locate the sequence of the record in the

records array, then you can easily retrieve the rest of the information using the key

field.

{ ------------------------- Example 12-3 -------------------------- }

PROGRAM BinarySearchProgram(INPUT,OUTPUT,DiskFile);

{ This program reads a list of numbers from a text file, sorts the list using

the bubble sort algorithm, and then applies the binary search algorithm to

search for an element in the array. }

{ Note: The file NUMBERS.TXT must be in the same folder with the program,

otherwise you must change the pathname. }

CONST

MAXSIZE = 100;

FileName = 'Numbers.txt'; TYPE

Range = 1..MAXSIZE;

NumbersArray = ARRAY[Range] OF INTEGER;

VAR

Advanced Programming Algorithms � 303

Arr :NumbersArray;

I, ArraySize :INTEGER;

DiskFile :TEXT;

Item :INTEGER;

Found :BOOLEAN;

{ ------------------------ Procedure Swap ------------------------- }

PROCEDURE Swap(VAR X, Y: INTEGER);

{ This procedure swaps two integers }

VAR

Pot :INTEGER;

BEGIN

Pot := X;

X := Y;

Y := Pot

END;

{ --------------------- Procedure BubbleSort ---------------------- }

PROCEDURE BubbleSort(VAR Arr: NumbersArray);

{ Sort the array }

VAR

I, J :INTEGER;

BEGIN

FOR I := 1 TO ArraySize-1 DO

BEGIN

FOR J := I+1 TO ArraySize DO

IF Arr[I] > Arr[J] THEN

Swap(Arr[I], Arr[J])

END

END;

{ ------------------------- Binary Search ------------------------- }

PROCEDURE BinarySearch(VAR Arr: NumbersArray; ArraySize: INTEGER;

Element: INTEGER; VAR Found: BOOLEAN);

{ This procedure searches a sorted array for a specific element using the

binary search algorithm }

VAR

First, Last, Mid :INTEGER;

BEGIN

First := 1;

Last := ArraySize;

Found := FALSE;

WHILE (First <= Last) AND (NOT Found) DO

BEGIN

Mid := (First + Last) DIV 2;

IF Element = Arr[Mid] THEN

Found := TRUE

ELSE IF Element > Arr[Mid] THEN

First := Mid + 1 { Search the second half }

ELSE IF Element < Arr[Mid] THEN

Last := Mid - 1 { Search the first half }

END

END;

304 � Chapter 12

{--------------------------- Main Program --------------------------}

BEGIN

ASSIGN(DiskFile, FileName);

RESET(DiskFile);

I := 1;

WHILE NOT EOF(DiskFile) DO

BEGIN

{ Read one line from the text file }

READLN(DiskFile, Item);

Arr[I] := Item;

I := I + 1

END;

{ Store the counter I into the array size }

{ Notice that I was incremented after the last read }

ArraySize := I-1;

CLOSE(DiskFile);

{ Sort the array }

BubbleSort(Arr);

WRITE('Please enter the number you are searching for: ');

READLN(Item);

{ Search the list }

BinarySearch(Arr, ArraySize, Item, Found);

IF Found THEN

WRITELN('Item ', Item, ' found in the list')

ELSE

WRITELN('Item not found, sorry.');

WRITELN('Press ENTER to continue..');

READLN

END.

{---}

Sample Run:

Please enter the number you are searching for: 3

Item 3 found in the list

Press ENTER to continue..

Please enter the number you are searching for: 55

Item not found, sorry

Press ENTER to continue..

Advanced Programming Algorithms � 305

Drill 12-3

Make the necessary changes to the preceding program to make it search for names.

You can test the program by creating a text file NAMES.TXT that contains one name

on each line. You can also use the text file NAMES.TXT on the companion CD. In this

program, you need to enter the complete name of the person. The following is a sam-

ple run:

Please enter the name you are searching for: Sally Suttleworth

The name Sally Suttleworth not found, sorry.

Press ENTER to continue..

Please enter the name you are searching for: Sally Shuttleworth

The name Sally Shuttleworth found in the list

Press ENTER to continue..

12-7 Binary Search Trees

The binary search tree, also referred to as multiply linked structure, is a special kind of

linked list that enables binary searching. Like a linked list, a tree consists of nodes.

Unlike linked lists, each node consists of three fields, a data field and two link fields or

pointers. The data field may be a simple type such as an integer or a string, or a com-

plete record that contains many fields.

The Binary Tree Structure

A simple representation of a binary tree, which contains some numbers, is shown in

the following figure. Each node in the tree can have two pointers, a left and a right

pointer. Each pointer is a link to another node.

306 � Chapter 12

The root of the tree, which is the number 12 in this example, is the first node in the

tree. The root has two pointers, one to the left and one to the right. Each pointer is

pointing to a subtree (or a child). Any node in the binary tree can have a maximum of

two children; in which case it is called a parent node (for example, 12, 7, and 17).

Except for the root, a node can be a child and a parent at the same time (for example, 7

and 17). The children that are not parents to other nodes are called leaves (for exam-

ple, 6, 10, and 14). You must have noticed that the tree looks like a real tree, except

that it is drawn upside down. In many applications, the left and right children are used

to represent binary data such as TRUE or FALSE, 1 or 0, YES or NO, and so forth.

The record representation of a tree node is shown in the following figure. The node

contains the following three fields:

� The data field (which can be a record made up of many fields)

� The pointer to the left child

� The pointer to the right child

Advanced Programming Algorithms � 307

12

10 14

177

6

Leaves

Child

Parent / Child

Root

As you can see in the graph, the two link fields contain pointers to left and right chil-

dren. If any of the pointers is NIL, the node does not have a corresponding child. If

both pointers are NIL, the node is a leaf.

In the following figure, the same binary tree example is illustrated as records.

Searching the Tree

One way to search a binary tree is to start at the root and traverse the tree in the fol-

lowing order:

� Visit each node

� Visit the left subtree

� Visit the right subtree

In the current example, notice that the data are organized in the tree in such a way

that at any node, the larger number is to the right, while the smaller number is to the

left. This kind of tree is called a binary search tree (BST). To search the tree for the

number 10, for example, proceed as follows:

� Start at the root and compare the number 10 to the data field 12. The result is

FALSE. Because 10 is less than 12, it must be in the left subtree.

308 � Chapter 12

Data Field

To the left child To the right child

12

17

14106

7 TE
AM
FL
Y

Team-Fly®

� Visit the left child and compare the number 10 to the data field 7. Because the

number 10 is greater than 7, it must be in the right child.

� Visit the right child (10) and compare the number 10 to the data field; the result is

TRUE.

As you can see, in the previous search, there was no need to visit all the nodes to find

the number 10, which lies at the bottom of the tree. Actually, you visited only one half

of the tree; this is because of the logical way in which data are organized in the tree.

Another example is to search for the number 13, which does not exist in the tree. In

this case, only three comparisons are made:

� Compare the number 13 to the root (12). The result is FALSE. Because the

number 13 is larger than 12, the next comparison should be done in the right

subtree.

� Compare the number 13 to the right child (17). Because the number 13 is less than

17, the next comparison should be done in the left subtree.

� Compare the number 13 to the left child (14). Because the number 13 is less than

14, it is not expected to be found by going any further in the tree.

Drill 12-4

Write a pseudo-code algorithm to search the following tree for the number 61:

Advanced Programming Algorithms � 309

50

28

5 38 60 75

72

Traversing the Tree

You can traverse a binary tree using one of the following sequences:

� Left child-Node-Right child (LNR)

� Node-Left child-Right child (NLR)

� Left child-Right child-Node (LRN)

You may use any one of these methods to search for items in the tree. However, to

retrieve the data from the tree in a sequential order, you have to use the first method

(LNR), which is known as the inorder traversal method.

Try to experiment with these methods in traversing the tree in the figure on page 307.

The results should be:

� The LNR method: 6, 7, 10, 12, 14, 17

� The NLR method: 12, 7, 6, 10, 17, 14

� The LRN method: 6, 10, 7, 14, 17, 12

Drill 12-5

Traverse the tree in Drill 12-4 using each of the three methods: LNR, NLR, and LRN.

Then list the results in each case.

12-8 Programming Binary Trees

In this section, you learn how to declare, build, and test a binary search tree.

Tree Declaration

The following program segment is used to declare a binary tree, whose nodes contain

three fields, an integer data field, a left pointer, and a right pointer:

TYPE

NodePointer = ^TreeRecord;

TreeRecord = record

DataKey :INTEGER;

LeftChild :NodePointer;

RightChild :NodePointer

END;

In this declaration, the DataKey field is the only field that contains data. It is possible,

of course, to have the data field as a whole record consisting of any number of data

items. In this case, one of the data items must be used as a key to sort the data in the

tree. For example, you can use the name of a person as a key, in which case the data

310 � Chapter 12

are sorted alphabetically. If you use a numeric field as a key, it has to be unique such as

an ID number. In this example, the integer field, which is the only data field in the

node, is the sort key.

Building a Binary Search Tree

To build a binary search tree, you have to insert the nodes in a sequential order. The

following procedure is an example of building the binary search tree that contains an

integer in each node. The procedure uses a tree pointer (NodePointer) as a parameter.

In the process of creating the tree, two tree pointers, Current and Previous, are used

to point to the current and the previous nodes. The first number is accepted from the

keyboard, and inserted in the root node. Then, the rest of the numbers are read and

inserted in the proper sequence by comparing each number to the previous number.

{ --------------------- Procedure BuildBT ------------------------- }

PROCEDURE BuildBT(VAR Node :NodePointer);

{ This procedure is used to build a binary search tree (BST). Each node

contains one number, and two pointers, LeftChild and RightChild.

Two pointers, Current and Previous, are used to point to the current and

previous nodes. }

VAR

Current, Previous :NodePointer;

Number :INTEGER;

BEGIN

{Read the first number and insert it into a node to start the root

of a tree.}

Node := NIL;

NEW(Node);

READLN(Node^.DataKey);

Node^.LeftChild := NIL;

Node^.RightChild := NIL;

Current := Node;

Previous := Node;

{Read the rest of the numbers until the EOF is encountered.}

WHILE NOT EOF DO

BEGIN

Current := Node;

READLN(Number);

{Traverse the tree to find the proper location to insert the number.}

WHILE (Number <> Previous^.DataKey) and (Current <> NIL) DO

BEGIN

Previous := Current;

IF Number < Previous^.DataKey THEN

Current := Previous^.LeftChild

ELSE

Current := Previous^.RightChild

END;

{Check if the number is previously inserted in the tree.}

Advanced Programming Algorithms � 311

IF Number = Previous^.DataKey THEN

WRITELN('The number ', Number, ' already exists.')

ELSE

BEGIN

{Insert the number.}

New(Current);

Current^.DataKey := Number;

Current^.LeftChild := NIL;

Current^.RightChild := NIL;

{Add the new node to the tree.}

IF Number < Previous^.DataKey THEN

Previous^.LeftChild := Current

ELSE

Previous^.RightChild := Current

END

END

END;

{ --- }

Testing the Tree

In order to test the binary tree, you can write a procedure to read the tree the con-

tents of each node. The following is a recursive procedure that reads and displays the

contents of the binary tree by using the inorder traversal method (LNR). You should

expect to see the output sorted sequentially.

{ --------------------- Procedure ReadLNR ------------------------- }

PROCEDURE ReadLNR(Node: NodePointer);

{ This procedure reads the tree using the sequence LNR, and prints the contents

of the data field in each node. }

BEGIN

IF Node <> NIL THEN

BEGIN

ReadLNR(Node^.LeftChild);

WRITELN(Node^.DataKey);

ReadLNR(Node^.RightChild)

END

END;

{ --- }

12-9 Application: Building and Printing a Binary Tree

In this program, the two procedures are brought together to give you experience in

using a binary tree. When you run this program, you are asked to enter the data ele-

ments of the tree from the keyboard. When you are done, the data are sorted and dis-

played.

312 � Chapter 12

{ ------------------------- Example 12-4 -------------------------- }

Program BuildaTree(INPUT, OUTPUT);

{ This program is used to build a tree of numbers and print the data field in

each node to check the validity of the tree. }

TYPE

NodePointer = ^TreeRecord;

TreeRecord = record

DataKey :INTEGER;

LeftChild :NodePointer;

RightChild :NodePointer

END;

VAR

TreePointer :NodePointer;

{ --------------------- Procedure BuildBT ------------------------- }

PROCEDURE BuildBT(VAR Node :NodePointer);

{ This procedure is used to build a binary search tree (BST).

Each node contains one number, and two pointers, LeftChild and RightChild. Two

pointers, Current and Previous, are used to point to the current and previous

nodes. }

VAR

Current, Previous :NodePointer;

Number :INTEGER;

BEGIN

{Read the first number and insert it into a node to start the root

of a tree.}

Node := NIL;

NEW(Node);

READLN(Node^.DataKey);

Node^.LeftChild := NIL;

Node^.RightChild := NIL;

Current := Node;

Previous := Node;

{Read the rest of the numbers until the EOF is encountered.}

WHILE NOT EOF DO

BEGIN

Current := Node;

READLN(Number);

{Traverse the tree to find the proper location to insert the number.}

WHILE (Number <> Previous^.DataKey) and (Current <> NIL) DO

BEGIN

Previous := Current;

IF Number < Previous^.DataKey THEN

Current := Previous^.LeftChild

ELSE

Current := Previous^.RightChild

END;

{Check if the number is previously inserted in the tree.}

IF Number = Previous^.DataKey THEN

Advanced Programming Algorithms � 313

WRITELN('The number ', Number, ' already exists.')

ELSE

BEGIN

{Insert the number.}

New(Current);

Current^.DataKey := Number;

Current^.LeftChild := NIL;

Current^.RightChild := NIL;

{Add the new node to the tree.}

IF Number < Previous^.DataKey THEN

Previous^.LeftChild := Current

ELSE

Previous^.RightChild := Current

END

END

END;

{ ---------------------- Procedure ReadLNR ------------------------ }

PROCEDURE ReadLNR(Node: NodePointer);

{ This procedure reads the tree according to the sequence LNR, and prints the

contents of each data field. }

BEGIN

IF Node <> NIL THEN

BEGIN

ReadLNR(Node^.LeftChild);

WRITELN(Node^.DataKey);

ReadLNR(Node^.RightChild)

END

END;

{ -------------------------- Main Program ------------------------- }

BEGIN

WRITELN('Please enter the numbers to be inserted into the tree.');

WRITELN('Press <Enter> after each number. Press <Ctrl+Z> when done.');

{Build the tree }

BuildBT(TreePointer);

{List the data fields in the tree }

WRITELN('The contents of the binary tree are:');

ReadLNR(TreePointer);

WRITELN('Press <ENTER> to go back...');

READLN

END.

{ --- }

Sample Run:

Please enter the numbers to be inserted into the tree.

Press <Enter> after each number. Press <Ctrl+Z> when done.

5

11

8

5 � Notice that the number 5 has been inserted before

314 � Chapter 12

The number 5 already exists.

6

88

66

^Z

The contents of the binary tree are:

5

6

8

11

66

88

Press <ENTER> to go back...

The following are important notes on the preceding program:

� In this program, the data are entered from the keyboard. By making minor changes

to the program, you can read the data from a disk file as explained in Chapters 9

and 10.

� Notice that the root of the tree is determined by the first number that you enter.

Consequently, the shape of the tree will change according to the value of the root.

This is because all the smaller numbers go to the left subtree and all the larger

ones go to the right subtree.

� Regardless of the shape of the tree, when you traverse it using the inorder

traversal method (LNR), you always get a sorted list of numbers as shown in the

sample run.

� In addition to printing the tree contents as part of checking and validating the tree,

you can add a debugging statement that prints on the screen the value stored in

the previous node each time you add a new node to the tree. This way, you can

almost watch the branches as they grow. The following is an example of the

debugging statement that you can add right after attaching a new node (see the

complete program, 12-4A.pas, on the companion CD):

...

{Add the new node to the tree.}

IF Number < Previous^.DataKey THEN

Previous^.LeftChild := Current

ELSE

Previous^.RightChild := Current

END;

{ The debugging statement }

WRITELN('Previous Node= ',Previous^.DataKey) � Add this line

...

This feature will make it easy to visualize the tree while it is being built. For example,

consider the following run:

Please enter the numbers to be inserted into the tree.

Press <Enter> after each number. Press <Ctrl+Z> when done.

Advanced Programming Algorithms � 315

5

11

Previous Node= 5

4

Previous Node= 5

88

Previous Node= 11

66

Previous Node= 88

^Z

Press <ENTER> to go back...

The following graphs show you how the tree was built step by step according to the pre-

ceding data entries. Notice that the previous node is marked with a small bold circle:

316 � Chapter 12

5Step #1

5

11

Step #2

5

4 11

Step #3

Advanced Programming Algorithms � 317

5

4 11

88

Step #4

5

4 11

66

88

Step #5

Drill 12-6

Draw the tree produced by the following sample runs of Example 12-4:

Sample Run 1:

Please enter the numbers to be inserted into the tree.

Press <Enter> after each number. Press <Ctrl+Z> when done.

1 � the root

2

3

4

5

^Z

The contents of the binary tree are:

1

2

3

4

5

Press <ENTER> to go back...

Sample Run 2:

In this sample run, the output of the debugging statement shows you the last node

visited each time you add a new number.

Please enter the numbers to be inserted into the tree.

Press <Enter> after each number. Press <Ctrl+Z> when done.

50 � the root

5

Previous Node= 50

28

Previous Node= 5

65

Previous Node= 50

38

Previous Node= 28

60

Previous Node= 65

^Z

The contents of the binary tree are:

5

28

38

50

60

65

Press <ENTER> to go back...

318 � Chapter 12

TE
AM
FL
Y

Team-Fly®

12-10 Application: Sorting Data Files Using Binary Trees

The program in this example reads data from files and sorts them in memory in the

form of a binary tree. The data file TREE.TXT contains a list of numbers, each written

on a separate line. This program is modified from the previous example and has the

following features:

� Data are read from a disk file instead of the keyboard. You may create a text file for

yourself or use the file TREE.TXT on the companion CD. You can also modify the

program to make it read a file of records.

� The program issues a warning message if it encounters a repeated number in the

file, and ignores it. If the number is a key field, you must check the data file for

redundancy. However, because this error is not likely to happen in real-life

databases, you may want to disable this feature by removing the IF block that

checks for repetition.

� When you run a program that uses data files, you should place the data file and the

source code in the same directory (or include the data file pathname explicitly in

the program).

{ ----------------------- Example 12-5 ---------------------------- }

Program BuildTreeFromFile(INPUT, OUTPUT, DiskFile);

{ This program reads a data file that contains numbers, builds a tree

of the numbers, and prints the data field in each node. }

CONST

FileName = 'Tree.txt';

TYPE

NodePointer = ^TreeRecord;

TreeRecord = record

DataKey :INTEGER;

LeftChild :NodePointer;

RightChild :NodePointer

END;

VAR

TreePointer :NodePointer;

DiskFile :TEXT;

{ ---------------------- Procedure BuildBT ------------------------ }

PROCEDURE BuildBT(VAR Node :NodePointer);

{ This procedure reads a data file and builds a binary search tree (BST). Each

node contains one number, and two pointers, LeftChild and RightChild. Two

pointers, Current and Previous, are used to point to the current and previous

nodes. }

VAR

Advanced Programming Algorithms � 319

Current, Previous :NodePointer;

Number :INTEGER;

BEGIN

{ Read the first number and insert it into a node to start the root of

a tree. }

Node := NIL;

NEW(Node);

READLN(DiskFile, Node^.DataKey);

Node^.LeftChild := NIL;

Node^.RightChild := NIL;

Current := Node;

Previous := Node;

{ Read the rest of the numbers until the EOF is encountered. }

WHILE NOT EOF(DiskFile) DO

BEGIN

Current := Node;

READLN(DiskFile, Number);

{ Traverse the tree to find the proper location to insert the number.}

WHILE (Number <> Previous^.DataKey) and (Current <> NIL) DO

BEGIN

Previous := Current;

IF Number < Previous^.DataKey THEN

Current := Previous^.LeftChild

ELSE

Current := Previous^.RightChild

END;

{ Check if the number is previously inserted in the tree. }

IF Number = Previous^.DataKey THEN

WRITELN('Warning: The number ', Number, ' already exists. ',

'Record skipped.')

ELSE

BEGIN

{ Insert the number.}

New(Current);

Current^.DataKey := Number;

Current^.LeftChild := NIL;

Current^.RightChild := NIL;

{ Add the new node to the tree. }

IF Number < Previous^.DataKey THEN

Previous^.LeftChild := Current

ELSE

Previous^.RightChild := Current

END

END

END;

{ ---------------------- Procedure ReadLNR ------------------------ }

PROCEDURE ReadLNR(Node: NodePointer);

{ This procedure reads the tree according to the sequence: Left-Node-Right,

and prints the contents of each data field. }

320 � Chapter 12

BEGIN

IF Node <> NIL THEN

BEGIN

ReadLNR(Node^.LeftChild);

WRITELN(Node^.DataKey);

ReadLNR(Node^.RightChild)

END

END;

{ ------------------------ Main Program --------------------------- }

BEGIN

{ Open the disk file }

ASSIGN(DiskFile, FileName);

RESET(DiskFile);

{ Build the BST }

BuildBT(TreePointer);

{ Close the file }

CLOSE(DiskFile);

{ List the data fields in the tree }

WRITELN('The contents of the binary tree are:');

ReadLNR(TreePointer);

WRITELN('Press <ENTER> to go back...');

READLN

END.

{ --- }

The Data File TREE.TXT:

5

11

4

88

66

5

110

60

1

60

55

71

125

198

Sample Run:

Warning: The number 5 already exists. Record skipped.

Warning: The number 60 already exists. Record skipped.

The contents of the binary tree are:

1

4

5

11

Advanced Programming Algorithms � 321

55

60

66

71

88

110

125

198

Press <ENTER> to go back...

Drill 12-7

Modify the previous program to make it read and sort names.

12-11 Application: Searching

a Data File Using Binary Trees

In order to search a data file for a specific item, you only need to add one new module

to the previous program (Example 12-5), the search module. This time, the module

will be a function that returns a pointer to the sought item.

The Search Function

The following is the code of a function that searches a binary tree for a specific num-

ber. If the sought item is not found, the function returns NIL. Otherwise, it returns a

pointer (NodePointer) to the sought item. The function is built using a recursive algo-

rithm in which the search is done either in the left child or in the right child depending

on whether the sought item is greater or less than the data in the current node.

{ ------------------ Function RecursiveSearchBT ------------------- }

FUNCTION RecursiveSearchBT(Node: NodePointer; Item: INTEGER) :NodePointer;

{ This function searches a binary tree recursively and returns a pointer to

the node that contains the sought item. }

BEGIN

IF Node = NIL THEN

RecursiveSearchBT := NIL

ELSE

IF Item < Node^.DataKey THEN

RecursiveSearchBT :=

RecursiveSearchBT (Node^.LeftChild, Item)

ELSE

IF Item > Node^.DataKey THEN

RecursiveSearchBT :=

322 � Chapter 12

RecursiveSearchBT (Node^.RightChild, Item)

ELSE

RecursiveSearchBT := Node

END;

{ --- }

The Search Program

In the following program, you are going to read a data file, store its contents into a

binary search tree, and search the tree for a specific item. Now that you have already

built many procedures to process binary search trees, you don’t need to write a com-

pletely new program. You simply reuse the existing code by putting modules together

and adding the new function as one of the building blocks. At the end of this program,

the data in the binary tree are displayed only for demonstration.

{ ---------------------- Example 12-6 ---------------------------- }

Program BuildaTreeFromFile(INPUT, OUTPUT, DiskFile);

{ This program reads a data file that contains numbers, builds a tree

of the numbers, and searches the tree for the item entered from the

keyboard. }

CONST

FileName = 'Tree.txt'; { The data file name }

TYPE

NodePointer = ^TreeRecord;

TreeRecord = record

DataKey :INTEGER;

LeftChild :NodePointer;

RightChild :NodePointer

END;

VAR

TreePointer :NodePointer;

DiskFile :TEXT;

Item :INTEGER;

{ ---------------------- Procedure BuildBT ------------------------ }

PROCEDURE BuildBT(VAR Node :NodePointer);

{ This procedure reads a data file and builds a binary search tree

BST. Each node contains one number, and two pointers, LeftChild and

RightChild. Two pointers, Current and Previous, are used to point to

the current and previous nodes. }

VAR

Current, Previous :NodePointer;

Number :INTEGER;

BEGIN

{ Read the first number and insert it into a node to start the root

of a tree. }

Advanced Programming Algorithms � 323

Node := NIL;

NEW(Node);

READLN(DiskFile, Node^.DataKey);

Node^.LeftChild := NIL;

Node^.RightChild := NIL;

Current := Node;

Previous := Node;

{ Read the rest of the numbers until the EOF is encountered. }

WHILE NOT EOF(DiskFile) DO

BEGIN

Current := Node;

READLN(DiskFile, Number);

{ Traverse the tree to find the proper location to insert the number.}

WHILE (Number <> Previous^.DataKey) and (Current <> NIL) DO

BEGIN

Previous := Current;

IF Number < Previous^.DataKey THEN

Current := Previous^.LeftChild

ELSE

Current := Previous^.RightChild

END;

{ Check if the number is previously inserted in the tree. }

IF Number = Previous^.DataKey THEN

WRITELN('Warning: The number ', Number, ' already exists. ',

'Record skipped.')

ELSE

BEGIN

{ Insert the number.}

New(Current);

Current^.DataKey := Number;

Current^.LeftChild := NIL;

Current^.RightChild := NIL;

{ Add the new node to the tree. }

IF Number < Previous^.DataKey THEN

Previous^.LeftChild := Current

ELSE

Previous^.RightChild := Current

END

END

END;

{ ---------------------- Procedure ReadLNR ------------------------ }

PROCEDURE ReadLNR(Node: NodePointer);

{ This procedure reads the tree according to the sequence Left-Node-Right,

and prints the contents of each data field. }

BEGIN

IF Node <> NIL THEN

BEGIN

ReadLNR(Node^.LeftChild);

WRITELN(Node^.DataKey);

324 � Chapter 12

ReadLNR(Node^.RightChild)

END

END;

{ ------------------ Function RecursiveSearchBT ------------------- }

FUNCTION RecursiveSearchBT(Node: NodePointer; Item: INTEGER):NodePointer;

{ This function searches a binary tree recursively and returns

a pointer to the node that contains the sought item. }

BEGIN

IF Node = NIL THEN

RecursiveSearchBT := NIL

ELSE

IF Item < Node^.DataKey THEN

RecursiveSearchBT :=

RecursiveSearchBT (Node^.LeftChild, Item)

ELSE

IF Item > Node^.DataKey THEN

RecursiveSearchBT :=

RecursiveSearchBT (Node^.RightChild, Item)

ELSE

RecursiveSearchBT := Node

END;

{ ------------------------ Main Program --------------------------- }

BEGIN

{ Open the disk file }

ASSIGN(DiskFile, FileName);

RESET(DiskFile);

{ Build the BST }

BuildBT(TreePointer);

{ Close the file }

CLOSE(DiskFile);

{ List the data fields in the tree }

WRITE('Please enter the number you are searching for: ');

READLN(Item);

{ Search the tree }

IF (RecursiveSearchBT(TreePointer, Item))<> NIL THEN

WRITELN('Item ', Item, ' found in the list')

ELSE

WRITELN('Item not found, sorry.');

WRITELN('The contents of the binary tree are:');

ReadLNR(TreePointer);

WRITELN('Press <ENTER> to go back...');

READLN

END.

{ --- }

The Data File TREE1.TXT

5

11

4

Advanced Programming Algorithms � 325

88

66

110

1

60

55

71

125

198

Sample Run:

Please enter the number you are searching for: 60

Item 60 found in the list

The contents of the binary tree are:

1

4

5

11

55

60

66

71

88

110

125

198

Press <ENTER> to go back...

Summary

In this chapter, you learned some advanced programming tools and algorithms.

1. You learned how to sort data by using the bubble sort and the quicksort method. You

should also keep in mind that the latter is faster and more efficient, especially with

large databases.

2. You also learned the different methods to search a file or a list for a specific item, and

that the binary search algorithm is faster than the linear search algorithm. However,

the binary search works with sorted data only.

3. You learned how to sort data by storing them into a binary search tree, whose

declaration takes the following form:

TYPE

Data-Type = type-definition;

NodePointer = ^TreeRecord;

TreeRecord = record

DataKey :Data-Type;

326 � Chapter 12

LeftChild :NodePointer;

RightChild:NodePointer

END;

4. Finally, you learned how to traverse a binary tree using different methods, and how to

apply the binary search algorithm to search the tree for data items.

Exercises

1. Write a program to read text strings from the keyboard and store them into a binary

search tree. The strings in the tree must be unique; in other words, if you enter the

same text twice, it should be ignored.

2. Write a program to read text strings from a text file and store them into a binary search

tree. You may use the file NAMES.TXT on the companion CD to test your program.

3. One of the popular classic computer games is a guessing game known as Animal. In

this game, the program asks you to think of an animal, and tries to guess the name of

this animal by asking you some questions, which can be answered by either Yes or No.

If the program gives up, it asks you to provide the name of the animal, and a suitable

question that distinguishes this animal from others. Here is how it works (the player’s

responses are bolded):

Welcome to the animal Game.

I will try to guess the name of the animal you are thinking of.

Are you ready to play (Y/N)? y

Is it domestic? y

Is it a cat? n

I give up! Please tell me the name of the animal: a dog

Thanks...

Please type a question that tells the difference between a dog and a cat:

Does it bark?

For a dog, is the answer to this question Yes or No (Y/N)? y

Are you ready to play (Y/N)?

If you play again, you will find that the program learned the new information about the

dog:

Is it domestic? y

Does it bark? y

Is it a dog? y

The more you play the more the computer learns about new animals. The following

are some tips to help you write this program:

1. The knowledge base behind this program is a binary search tree. It is initialized with

three elements only:

� The question Is it domestic, which is the root of the tree. The two pointers coming

out from the node are Yes and No.

Advanced Programming Algorithms � 327

� The name cat on the Yes side.

� The name lion on the No side.

2. Each time you enter a new animal, you add to the tree a new question node and a new

animal node either on the Yes side or on the No side.

The Next Step

You should now have enough tools to write solid code in Pascal and create good appli-

cation programs. However, you may want to read about the following compiler-specific

topics that are not covered in this book:

� Direct/Random access files

� Graphics

Although this book does not cover Windows programming, mastering the standard

Pascal language is necessary before you step into Windows programming.

328 � Chapter 12

TE
AM
FL
Y

Team-Fly®

Appendix A

The ASCII Character Set

The Printable Characters

Decimal Octal Hexadecimal Character

32 40 20 space

33 41 21 !

34 42 22 "

35 43 23 #

36 44 24 $

37 45 25 %

38 46 26 &

39 47 27 '

40 50 28 (

41 51 29)

42 52 2a *

43 53 2b +

44 54 2c ,

45 55 2d -

46 56 2e .

47 57 2f /

48 60 30 0

49 61 31 1

50 62 32 2

51 63 33 3

52 64 34 4

329

Decimal Octal Hexadecimal Character

53 65 35 5

54 66 36 6

55 67 37 7

56 70 38 8

57 71 39 9

58 72 3a :

59 73 3b ;

60 74 3c <

61 75 3d =

62 76 3e >

63 77 3f ?

64 100 40 @

65 101 41 A

66 102 42 B

67 103 43 C

68 104 44 D

69 105 45 E

70 106 46 F

71 107 47 G

72 110 48 H

73 111 49 I

74 112 4a J

75 113 4b K

76 114 4c L

77 115 4d M

78 116 4e N

79 117 4f O

80 120 50 P

81 121 51 Q

82 122 52 R

83 123 53 S

84 124 54 T

85 125 55 U

86 126 56 V

87 127 57 W

88 130 58 X

330 � Appendix A

Decimal Octal Hexadecimal Character

89 131 59 Y

90 132 5a Z

91 133 5b [

92 134 5c \

93 135 5d]

94 136 5e ^

95 137 5f _

96 140 60 `

97 141 61 a

98 142 62 b

99 143 63 c

100 144 64 d

101 145 65 e

102 146 66 f

103 147 67 g

104 150 68 h

105 151 69 i

106 152 6a j

107 153 6b k

108 154 6c l

109 155 6d m

110 156 6e n

111 157 6f o

112 160 70 p

113 161 71 q

114 162 72 r

115 163 73 s

116 164 74 t

117 165 75 u

118 166 76 v

119 167 77 w

120 170 78 x

121 171 79 y

122 172 7a z

123 173 7b {

124 174 7c |

The ASCII Character Set � 331

Decimal Octal Hexadecimal Character

125 175 7d }

126 176 7e ~

The Control Characters

Decimal Octal Hexadecimal Key Mnemonic Code

0 0 0 ^@ NUL

1 1 1 ^A SOH

2 2 2 ^B STX

3 3 3 ^C ETX

4 4 4 ^D EOT

5 5 5 ^E ENQ

6 6 6 ^F ACK

7 7 7 ^G BEL

8 10 8 ^H BS

9 11 9 ^I HT

10 12 a ^J LF

11 13 b ^K VT

12 14 c ^L FF

13 15 d ^M CR

14 16 e ^N SO

15 17 f ^O SI

16 20 10 ^P DLE

17 21 11 ^Q DC1

18 22 12 ^R DC2

19 23 13 ^S DC3

20 24 14 ^T DC4

21 25 15 ^U NAK

22 26 16 ^V SYN

23 27 17 ^W ETB

24 30 18 ^X CAN

25 31 19 ^Y EM

26 32 1a ^Z SUB

27 33 1b ESC ESC

28 34 1c FS

332 � Appendix A

Decimal Octal Hexadecimal Key Mnemonic Code

29 35 1d GS

30 36 1e RS

31 37 1f US

127 177 7f DEL DEL

The ASCII Character Set � 333

Appendix B

Reserved Words and
Standard Identifiers

Reserved Words

AND ARRAY BEGIN

CASE CONST DIV

DO DOWNTO ELSE

END FILE FOR

FORWARD FUNCTION GOTO

IF IN LABEL

MOD NIL NOT

OF OR PACKED

PROCEDURE PROGRAM RECORD

REPEAT SET THEN

TO TYPE UNTIL

VAR WHILE WITH

Additional words reserved in Turbo Pascal:

ABSOLUTE EXTERNAL IMPLEMENTATION

INLINE INTERFACE INTERRUPT

SHL SHR STRING

UNIT USES XOR

335

Standard Identifiers

Constants

FALSE MAXINT TRUE

Types

BOOLEAN CHAR INTEGER

REAL TEXT

Files

INPUT OUTPUT

Functions

ABS ARCTAN CHR

COS EOF EOLN

EXP LN ODD

ORD PRED ROUND

SIN SQR SQRT

SUCC TRUNC

Procedures

DISPOSE GET NEW

PACK PAGE PUT

READ READLN RESET

REWRITE UNPACK WRITE

WRITELN

Additional identifiers predefined in Turbo Pascal:

Constants

MAXLONGINT PI

Types

BYTE COMP DOUBLE

EXTENDED LONGINT SHORTINT

SINGLE WORD

Functions (discussed in this book)

CONCAT COPY LENGTH

PI POS RANDOM

Procedures (discussed in this book)

APPEND ASSIGN CLOSE

DELETE EXIT INSERT

Note: The standard procedures GET, PUT, PACK, UNPACK, and PAGE are not

defined in Turbo Pascal.

336 � Appendix B

Appendix C

Operators

Arithmetic Operators

Operator Arithmetic Operation Operands Result

+ Addition REAL/INTEGER REAL/INTEGER

– Subtraction REAL/INTEGER REAL/INTEGER

* Multiplication REAL/INTEGER REAL/INTEGER

/ Real division REAL/INTEGER REAL

DIV Integer division INTEGER INTEGER

MOD Remainder of integer
division

INTEGER INTEGER

Relational Operators

Operator Meaning

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

= Equal

<> Not equal

337

Set Operations

Operation Operator

Union +

Intersection *

Difference –

Set Relational Operators

Operator Expression Meaning

= S1 = S2 Both S1 and S2 contain the same elements.

<> S1 <> S2 S1 and S2 do not contain the same elements.

>= S1 >= S2 All elements of S2 are in S1.

<= S1 <= S2 All elements of S1 are in S2.

Precedence of Pascal Operators

Operator Precedence

NOT Priority 1 (highest)

* / DIV MOD AND Priority 2

+ - OR (XOR in Turbo Pascal) Priority 3

= > < >= <= <> IN Priority 4 (lowest)

338 � Appendix C

TE
AM
FL
Y

Team-Fly®

Index

A
ABS, 24
accessing files, 172
accessing record fields, 162-164
actual parameters, 137
adding data to linked list, 252
algorithms,

searching, 301-303
sorting, 291-292, 295-296

allocating memory, 236
AND, 37
APPEND, 193-194
appending, 193
applications

building and printing a binary tree, 312-317
calculating change, 26-27
character counter, 122
computing averages, 72-73
disk-file text analyzer, 176-178
displaying scores and grades, 52-54
displaying student scores, 95-96, 105-107
displaying tabulated results, 97-99
employee information, 183-185
employee records, 253-254
factorial, 73-74
Fibonacci sequence, 143-144
frequency counter, 123-124
linked list database, 276-286
linked list demo, 248-251
one-dimensional arrays, 95-101
payroll, 185-188
payroll system, 189-193, 203-210
powers of two, 70-72
prime numbers, 81-82, 99-101
returning number of days in month, 57-58
scrambling letters, 120-121
searching data files using binary trees, 322-326
sorting, 140-142
sorting an array, 102-104

sorting coins in vending machine, 56-57
sorting data files using binary trees, 319-322
sorting names, 125-126
testing characters, 50-52
testing credit card limits, 45-46
text analyzer, 159-161
two-dimensional arrays, 105-107

ARCTAN, 24
arithmetic expressions, precedence of, 8-9
arithmetic functions, 24-26

Turbo Pascal, 27-28
arithmetic operators, 5, 9
arranging nodes, 273
array, 75

components, 94
ARRAY, 95, 104-105
arrays, 92-94

declaring, 95, 101, 104-105
initializing, 108
multidimensional, 104-105 see also

two-dimensional arrays
one-dimensional, 93, 95
sorting, 102-104
two-dimensional, 93-94 see also

multidimensional arrays
ASSIGN, 173-174
assignment operations, 238
assignment operator, 11

B
base type, 152
BEGIN-END blocks, 46-47
binary files, 172
binary operators, 8
binary search, 301
binary search trees, 306

building, 311
declaring, 310-311
searching, 308-309

339

structure, 306-308
testing, 312
traversing, 310

binary searching, 306
BOOLEAN, 34
Boolean expressions

compound, 37
simple, 35

Boolean operators, 37
Boolean values, 34
branching,

conditional, 44
unconditional, 59

bubble sort, 102, 291-292
building a linked list, 244-245
building binary search trees, 311
BYTE, 22, 23

C
CASE, 56, 203
CASE-ELSE, 61
case expression, 56
case labels, 56
CHAR, 28
character constant, 29
character functions, 29

using, 30-31
character input, 116-119
character set, 29
CHR, 29
CLOSE, 174
closed loop, 60
comments, 2
COMP, 23
comparison operations, 239
CONCAT, 128
conditional branching, 44
CONST section, 12-13
constant variable, 12
constants, 12-13

literal, 12
named, 12

control structures, 44
COPY, 128
COS, 24
counted loop, 68
creating a file, 181-182

D
data field, 244
data types, 21-22, 85-86

converting, 14
declaring, 90-91
integer, 22-23
numeric, 22-24
ordinal, 86-87
real, 23
renaming, 91
scalar, 21-22
simple, 86
standard, 86
structured, 86
Turbo Pascal, 22-23
user-defined, 86, 91-92

deallocating memory, 237
decisions,

making, 43-44
multiple, 56
simple, 44

declaring
arrays, 95, 101, 104-105
binary search trees, 310-311
data types, 90-91
functions, 142-143
linked lists, 244
pointers to integers, 236
pointers to records, 241
procedures, 134-136
records, 161-162
set variables, 152-153
strings, 33
variables, 9-10
variant records, 203

decrementing, 73
DELETE, 129
deleting nodes from lists, 262-263
deleting records, 211
difference operation, 156-157
direct access files, see random access files
displaying output, 3-5, 112
displaying TEXT files, 178-179
DISPOSE, 237
DIV, 7
DO, 76
DOUBLE, 23
DOWNTO, 73

340 � Index

dynamic length, 33
dynamic memory allocation, 236
dynamic variables, 235

E
ELSE-IF, 50
empty set, 154
end-of-file, 123
end-of-line, 112
enumerations, 87-88

restrictions on, 90
EOF, 123, 175
EOLN, 122, 175
ERASE, 194
exclusive OR, 38
EXIT, 61-62
EXP, 24
EXTENDED, 23

F
field, 161
fielded variable, 162
file buffer variable, 195

using, 195-196
FILE, 172
FILE OF, 189
file parameters, 2, 173
file variable, 173
file window, 195
files,

accessing, 172
adding data to, 193-194
binary, 172
closing, 174
creating, 181-182
opening, 173-174
typed, 172
types of, 172
writing items to, 182

FOR, 70
FOR loop, 69-70
formal parameters, 137
format descriptors, 16
formatting output, 16-17
forward declaration, 145
FRAC, 27
FUNCTION, 142
functions, 127, 142-143

arithmetic, 24-26, 27-28
declaring, 142-143
string, 127-128

G
GET, 195-196
global variables, 139-140
GOTO, 59-60

I
identifiers, 2
IF-THEN, 44
IF-THEN-ELSE, 48
IN, 152
incrementing, 69-70
index, 93
infinite loop, 60
inner loop, 75
INPUT, 2
INPUT file, 111
input procedures, 175
input,

character, 116-119
mixed, 119
numeric, 113-115
preparing file for, 174-175
reading, 113

INSERT, 128
inserting nodes, 273
INT, 27
INTEGER, 23
integer data types, 22-23
integer division, 7
intersection operation, 156

K
key field, 273

L
LABEL, 59
LABEL section, 59
leaves, 307
LENGTH, 34, 128
linear search, 301
link field, 244
linked list, 236, 243-244

adding data to, 252
building, 244-245
declaring, 244

Index � 341

deleting nodes from, 262-263
demo, 248-251
ordered, 273
reading, 246-247
searching, 274-275
storing, 251-252
unordered, 273

list, searching, 254-255
literal constants, 12
LN, 24
local variables, 139-140
logical operators, 37

Turbo Pascal, 38
LONGINT, 23
loop,

closed, 60
counted, 68
FOR, 69-70
inner, 75
outer, 75
REPEAT, 79-81
WHILE, 76-79

loops, 68-69
infinite, 60
nested, 75

M
making decisions, 43-44, 56
manipulating strings, 124-126
matrix, 94
MOD, 7
modulo, 7
multidimensional arrays, 104-105 see also

two-dimensional arrays

N
named constants, 12
nested conditions, 52
nested loops, 75
nesting

conditions, 52
constructs, 55
records, 166-168

NEW, 236
node, 243, 307

arranging, 273
deleting from lists, 262-263
inserting, 273

non-TEXT files, 172
properties of, 189

NOT, 37
numeric data types, 22-24
numeric input, 113-115

O
one-dimensional arrays, 93, 95
operations,

pointer, 238-239
set, 155-157

operators,
*, 5, 156
–, 5, 156-157
:=, 11, 238
+, 5, 155-156
/, 5-6
<, 35
<=, 35, 158
<>, 35, 158, 239
=, 35, 158, 239
>, 35
>=, 35, 158
addition, 5
arithmetic, 5, 9
assignment, 11
binary, 8
Boolean, 37
comparison, 239
DIV, 7
division, 5-6
logical, 37
MOD, 7
multiplication, 5
relational, 35, 157-158
set, 154-158
subtraction, 5
unary, 8

OR, 37
ORD, 29
ordered linked list, 273

searching, 274-275
ordinal data types, 86-87
ordinal number, 29
outer loop, 75
OUTPUT, 2
output,

displaying, 3-5, 112

342 � Index

formatting, 16-17
OUTPUT file, 111
output procedures, 182

P
PACKED ARRAY OF CHAR, 32
parameters, 137

actual, 137
formal, 137
value, 138
variable, 138

parameters,
passing, 138
passing pointers as, 243
passing to procedures, 136-137

Pascal conventions, 3
Pascal operators, precedence of, 38-39, 159
passing parameters, 136-138
pointer field, 244
pointer operations, 238-239
pointers, 236-238

declaring, 236, 241
passing as parameters, 243

POS, 128
power operator, 25-26
precedence of Pascal operators, 38-39, 159
PRED, 29
PROCEDURE, 138-139
procedure call, 137
procedures, 127

declaring, 134-136
passing parameters to, 136-137
returning values from, 138-139
string, 127

PROGRAM, 2
program quality, 94
program structure, 2
PUT, 195-196

Q
quicksort, 291, 295-296

R
RANDOM, 28
random access files, 172
READ, 115-118, 175
reading

a file of text, 123

a line of text, 122
a linked list, 246-247
input, 113
multiple strings, 180-181
TEXT files, 173-174, 179-180

READLN, 15, 113-114, 118, 175
REAL, 23
real data types, 23
real division, 6
real numbers, 6, 11, 22
RECORD, 161, 203
record fields, accessing, 162-164
records, 161

declaring, 161-162
deleting, 211
nesting, 166-168
updating, 219
variant, 201-202

recursion, 146
relational

expressions, 37
operators, 35, 157-158

renaming data types, 91
REPEAT, 79
REPEAT loop, 79-81
reserved words, 2
RESET, 173-174
returning values from procedures, 138-139
REWRITE, 181-182
root, 307
ROUND, 14, 24

S
saving data, 171
scalar data types, 21-22
scope of variables, 144-146
searching algorithms, 301-303
searching lists, 254-255, 274-275
selector, 56
semicolons, 49
sequential access files, 172
SET OF, 152
set operators, 154-158
set variables, declaring, 152-153
sets, 151

using, 154
SHORTINT, 22-23
simple data types, 86

Index � 343

SIN, 24
SINGLE, 23
sorting, 102
sorting algorithms, 291-292, 295-296
SQR, 24
SQRT, 24
standard data types, 86
static variables, 235
storing linked lists, 251-252
STRING, 33
string functions, 127

using, 128-129
string procedures, 127
strings, 32

declaring, 33
manipulating, 124-126
measuring length of, 33
reading multiple, 180-181

structured data types, 86
subprogram, 133-134
subranges, 88-90

restrictions on, 90
subscript, 93
subtree, 307
SUCC, 29
syntax, 3

T
tag field, 202
testing binary search trees, 312
TEXT files, 172-173

closing, 174
displaying, 178-179
reading, 173-174, 179-180

traversing binary search trees, 310
TRUNC, 14, 24
truth tables, 37-38
Turbo Pascal

arithmetic functions, 27-28
data types, 22-23
logical operators, 38

two-dimensional arrays, 93-94 see also

multidimensional arrays
TYPE, 90, 105
TYPE section, 90-91

typed files, 172
types, see data types

U
unary operators, 8
unconditional branching, 59
union operation, 155-156
unordered linked list, 273
UNTIL, 79
updating records, 219
user-defined data types, 86

naming, 91-92

V
value parameters, 138
VAR, 9, 95
VAR section, 13
variable

declaration, 9-10
parameters, 138

variables, 9-12
dynamic, 235
fielded, 162
global, 139-140
local, 139-140
scope of, 144-146
static, 235
using, 10

variant records, 201-202
declaring, 203

vector, 94

W
WHILE, 76
WHILE loop, 76-79
WITH, 163-164
WORD, 22-23
WRITE, 4, 182
WRITELN, 3-4, 182
writing items to file, 182

X
XOR, 38

344 � Index

About the CD

The companion CD-ROM included with this book contains the examples and drills ref-

erenced throughout the text and a full retail version of Delphi 4 Standard Edition.

The examples and drills are in the Exercises folder, and are organized by chapter. For

more information about these files and how to install them, see the readme.htm or

readme.txt file in the Exercises folder.

When you insert the CD, a setup screen for Delphi 4 will pop up. Click on Delphi 4 to

begin the installation process. The Serial Number is 100-004-2029 and the Authoriza-

tion Key is 4AX35FX0.

Use Windows Explorer to access the Exercises folder.

In order to compile the programs in this book using the Delphi compiler, you must use

the console mode. You do this by adding the following directive to your program:

{$APPTYPE CONSOLE}

To compile a console program, for example P1.PAS, use the command line:

DCC32 P1

This will create the executable file P1.EXE.

To run the program, use the command line:

P1

Notice that your path must include the Delphi\Bin directory. For more information on

using console applications, see “A simple console application” in the Delphi Help.

Caution: Opening the CD package makes this book nonreturnable.

	sample.pdf
	sterling.com
	Welcome to Sterling Software

