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Received: 15 September 2008 / Received in final form: 24 April 2009 / Accepted: 21 September 2009
Published online: 26 November 2009 – c© EDP Sciences

Abstract. This paper analyses corona discharge in ambient air flow associated with laboratory-scaled
wire-to-plate electrostatic precipitator (WPESP). The corona discharge is analysed by a combined iterative
computational technique based on the finite element method (FEM) and charge simulation method (CSM).
The phenomenon is mathematically described by Maxwell’s equations in differential form. A finite element
method is used to solve the Poisson’s equation and the charge simulation method is used to satisfy the
current continuity condition. Measurement method of the positive dc corona current density and electric
field, taking into account the air flow velocity, has been introduced. The computed results are compared
with experimental results to test the effectiveness of this approach.

PACS. 51.50.+v Electrical properties (ionization, breakdown, electron and ion mobility, etc.) – 52.70.-m
Plasma diagnostic techniques and instrumentation – 52.80.-s Electric discharges

1 Introduction

Electrostatic precipitators are used to collect suspended
particles in gases using an electrostatic force and they
are the one ways to control air pollution caused by in-
dustrial plants. The configuration mostly used in elec-
trostatic precipitation technique is the wires-to-plates. It
consists of high-field parallel active wires located midway
between the grounded plates (the collecting electrodes)
where the air flows through. The ions produced by the
corona discharge near the wires charge the dust particles
which are thus driven toward the collecting plates. The
particle charges are neutralised and the particle is thus col-
lected. The collection efficiency of the wire-to-plate elec-
trostatic precipitators (WPESPs) depends on numerous
variables like the global drift velocity of charged particles
to be removed and their distributions, the magnitude of
applied voltage, the active electrodes radius, the humidity
and temperature of the air, etc.

The basic corona discharge physics is well-known and
it can be described as a self-sustaining electrical gas dis-
charge occurring at the vicinity of high-field electrodes. In
the WPESPs the high-field wires are surrounded by ionisa-
tion region where the free charges are produced and a low-
field drift region where charged particles drift to the col-
lecting plates. The corona drift region is governed by the
Poisson’s equation and the current continuity equation.
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A complete solution of these equations is not straightfor-
ward. For practical applications, therefore, empirical and
semi-empirical formulas have a useful function.

When the number of wires is high the geometry can be
considered equivalent to a coaxial system as described by
Cooperman [1], where the equivalent cylinder radius Re is
given by:

Re =
a

2π
e

πh
a (1)

and the inception field Ei according to the inception volt-
age Vi at the wires surface is given by:

Ei =
Vi

R ln Re

R

, (2)

where h is the wires-to-plate spacing, a is the half wire-to-
wire spacing and R is the wires radius. The Cooperman’s
model is widely used in the design and evaluation of pre-
cipitators.

In this paper we have proposed a numerical method to
solve the Poisson’s equation and a method to measure the
electric field at the one grounded plates where the velocity
of the air flow through the grounded plates is associated.
The method uses the finite-element and the current con-
tinuity equation which updates the space charge density
using the simplified method of characteristics.

The space charge modifies the original Laplacian ap-
plied field and the measurements of this field over the col-
lector electrode are not easy in presence of space charge.
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Fig. 1. Experimental assembly with the circular field probe
(not in scale). 1: corona wires; 2, 3, 4: insulating props; 5:
screen; 6: dc high voltage source; 7: high voltage divider; 8: volt-
meter; 9: picoammeter; 10: dc low voltage source. P probe col-
lector; E biased electrode; G guard planes; C′ collector plane.

The introduced method of electric field measurement uses
the Tassicker’s biased probes [2–5] which are simple cir-
cular or linear sensors, incorporated on a same level of
surface in a plane electrode biased at a voltage. They can
be miniaturised and suitable for dc corona discharge.

2 Experimental apparatus and design
of the probe system

The experimental method aims to obtain new measure-
ments of current density and electric field for positive
dc corona in laboratory-scaled WPESP, Figure 1, and in
which the velocity of the ambient air flow, free of all parti-
cles, is controlled. 13 parallel wires (1) are fixed with two
insulating supports (2) and located midway between two
planes (C) and (C’) at h = 50 mm and the wire-to-wire
spacing is fixed at a = 40 mm, where (C) is made up
of one biased electrode (E), a circular probe (P) and two
guard planes (G). The probe is incorporated on a same
level of surface at the centre of the electrode (E) and the
end-effects were prevented by the two guard planes (G).

All the components are made of stainless steel and are
fixed with insulating props. Positive direct voltage, sup-
plied by a 0−±140 kV source (6), is applied to the wires, a
high voltage divider (7) and a dc voltmeter (8) are used to
measure the applied voltage V . The current probe collec-
tor (P) is connected to a picoammeter (9) and the plane is
online to the dc low voltage source (10). The larger of the
polarised plate (E) is l = 200 mm according to the z-axis
and the longer is L = 800 mm according to the x-axis.

The air flow along the x-axis is generated by a ventila-
tor (11) online to an ac low voltage source and the velocity
v is measured by means of an anemometer. The system is
calibrated in absence of the discharge in measuring v with
varying the supplied source voltage U and the character-
istic v − U is thus used for the velocity control when the
corona discharge occurs in the WPESP. The ventilator al-
lows to follow continuously the air across the precipitator
and we can to vary the velocity of the flow.

The probe requires a careful assembly. Indeed, some
leakage current, of about a few pico-ampers could result
from the bias plate (E) or the high voltage wires and af-
fecting the current measurements. The probe is fixed with
two insulating plates (4) and the leakage was prevented
by using a screen (5). The leakage current between the
corona wires and the probe is evacuated to earth by the
guard planes (G).

The circular biased probe theory is fully developed
in [2,3], but will be briefly recalled in this section. The
probe collector (P) collects a current I0 resulting from the
corona discharge. This current will be reduced or increased
to I when a voltage Vb is applied to the plate (E) in pro-
ducing a bias electric field Eb. In fact, Eb is opposed to the
unknown field E at the surface of the probe collector (P)
when Vb < 0 and Eb is added to E when Vb > 0. The
corona currents I under the condition Vb and I0 under
the condition Vb = 0 are respectively:

I = JS = μρ (E + Eb)S = μρ

(
ϕS0 + ϕS1

ε0

)
(3)

I0 = J0S = μρES = μρ
ϕS0

ε0
· (4)

μ is the positive ion mobility (m2/V s), ρ the space charge
density (C/m3), S = πr2

m (m2) is the effective surface of
the collector (P), rm is the effective radius, ϕS0 is the flux
due to the unknown electric field E to be measured and
ϕS1 is the flux due to the biased electric field Eb:

ϕS0 = SEε0 (5)
ϕS1 = C0Vb. (6)

C0 is the capacity between the probe collector (P) and the
polarised plate (E) [6]

C0 = 4rε0

[
1.07944 + 0.5 ln

(
1 +

r

2g

)]
. (7)

Where r is the radius of the collector (P) and g the air
gap between (P) and (E).
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From equations (3)–(6) the current ration is given by:

I

I0
= 1 +

C0

πε0r2
m

Vb

E
· (8)

The unknown external field E could be determined by
the measurements of I0 and I. The relationship (8) gives
a characteristic I/I0 linear with the biased voltage Vb.
However, for high values of Vb, when the total field at
the surface of the plate is inverted, due to the polarised
electric field Eb > E, a deviation of the characteristics
occurs and thus the relationship (8) is not valid.

The probe functions depend mainly on the choice of
these dimensions and the precision of its construction.
A good sensitivity of the current ratio I/I0 is obtained
for a probe radius r not very high and an air gap g
very small. The ratio r/g must be as high as reason-
ably possible. The probe must be easily removable for a
regular cleaning from dust. The model under consider-
ation is optimised to obtain these qualities. The probe
collector radius is r = 2.235 mm, the plate orifice is
re = 2.27 mm, which gives an air gap g = 0.035 mm,
a ratio r/g = 64, an effective radius of the probe collec-
tor rm = r + g/2 = 2.2525 mm and the capacity value
C0 = 0.223 pF.

The expression (8) can be written as:

I

I0
= 1 + PVb (9)

with

P =
C0

πε0r2
mE

=
1585.35

E
· (10)

The slope P is determined by the measurements of the
current ratio I/I0 and the polarised voltage Vb, thus, the
electric field E can be determined if P is known.

To verify probe function, we used 13 polished wires of
radius R = 0.200 mm. We made the measurements of I/I0

for different bias voltages Vb, between –100 and +100 V,
where the corona voltage V and the air velocity v are
maintained constant during the tests. The measurements
have allowed us to determine the field E, at the plate
surface, using equations (9) and (10). The current ration
I/I0 values measured for various applied corona voltage
are shown in Figure 2. In all the cases, the characteristic
I/I0 = f(Vb) is linear for −80 V < Vb < +80 V. The
deviation of the characteristics occurs when Vb > 80 V
or Vb < −80 V. These results provide a verification of the
probe function and the limit of the polarisation voltage Vb.

The inception corona voltage Vi is deduced from the
measurements of the dc corona current-voltage character-
istics and the method is fully described in [7]. Tests with
our laboratory-scaled WPESP were made in air with vary-
ing the number n of wires and the results are shown in
Figure 3 for positive and negative corona discharge. The
measured inception voltage Vi according to the number n
of discharging wires remained constant for n > 5 and equal
to 12.0 kV for positive corona and 12.8 kV for negative
corona. This result confirms the predicted Cooperman’s
theory [1] widely used in the WPESPs.
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Fig. 2. Measured current density ration I/I0 as a function of
the bias voltage Vb.
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Fig. 3. Measured inception corona voltage versus the number
of discharging wires.

3 Boundary conditions and numerical
computation

The method uses the finite-element and the current con-
tinuity equation which updates the space charge density
using the simplified method of characteristics. The veloc-
ity of the ions under the effect of the electric field and the
air flow is higher than the velocity of their diffusion. The
ion diffusion is thus neglected for a small distance between
electrodes and the ion mobility under the electric field is
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taken as constant. These assumptions are largely used in
the literature [8–11].

The system of equations that constitute the mathe-
matical description of the corona is:

�∇ �E =
ρ

ε0
(11)

�∇ �J = 0 (12)

�J = ρ
(
μ�E + �v

)
(13)

�E = −�∇Φ. (14)

Where �E is the vector electric field (V/m), Φ the elec-
tric potential (V), �J the current density vector (A/m2), μ
the positive ion mobility (m2/V s), ε0 the air permittiv-
ity (F/m), ρ the space charge density (C/m3) and �v the
velocity vector of the air flow (m/s).

Actually, it is difficult to find an exact solution to equa-
tions (11)–(14) because of their non linear nature, for this,
many attempts have been made for describing corona dis-
charge. Simplifying approaches have been developed for
these basic equations to formulate theoretical models for
descriptions of charge density and electric field distribu-
tions in the wire-to-plane and coaxial systems. Deutsch’s
assumption [12] stipulates that the space charge affects
only the magnitude and not the direction of the electric
field. This assumption is commonly accepted in analytical
approaches in the past, it is satisfied in coaxial cylindrical
configuration but in wire-to-plane system it is not ver-
ified. Kaptzov’s assumption postulates that the electric
field distribution at the wire remains constant whatever
is the applied voltage [13]. The ionisation layer thickness
around the wires is always disregarded with respect to
the interelectrode space. The space between electrodes is
characterised mainly by the transport of positive ions.

This paper describes an iterative finite element tech-
nique proposed as a numerical tool to solve Poisson’s equa-
tion in using new boundary conditions for the electric field
in WPESP. The Deutsch’s assumption is overlooked here.
The boundary conditions are developed in [7] where the
corona is subdivided in two distinct regions, the ionisation
and the drift regions:
– The ionisation region, R < r < Rc, is considered of

circular form because its thickness layer is small. It is
separated from the drift region by a boundary of ra-
dius Rc. In this region, it is often assumed to the first
order, that the electric field is described adequately
by Laplace’s equation. That is, within this region, the
space charge field is assumed to be dominated by the
geometric electric field associated with the large cur-
vature of the wire.

– The drift region, Rc < r < h, is characterised mainly
by the transport of positive ions to the grounded planes
and within this region the electric field is significantly
distorted by space charge. It is often assumed that, to
the first order, the space charge is formed by positive
ions.

The electric field Ec, at the ionisation region/drift region
(IRDR) interface corresponds to a zero net ionisation co-

Fig. 4. Computational domain with borders.

efficient (α − η = 0). The minimum ionisation field Ec

is calculated by Hartmann [14] from a representation of
(α − η)/P = f(E/P, Ha) for the range 0 < E/P <
750 V/cmmbar. The computed results are expressed by
an analytic equation:

Ec (δ, Ha) = Ec(1, 0)δ
(
1 + αh

√
Ha

)
(15)

with
δ =

P

1013
293

273 + T
· (16)

δ is the related air density (δ = 1 for P = 1013 mbar and
T = 20 ◦C) and Ha is the absolute humidity in g/m3.
Ec(1, 0) = 2.468 × 106 V/m and αh = 1.603 ×
10−2 (g/m3)−1/2.

The average mobility of positive ions is often assumed
to be constant during the transit time from the ionisation
region to the collecting planes. It is also considered to be
independent of the electric field. Indeed, in ambient air at
atmospheric pressure, the variations of the reduced field
are insignificant in the drift region.

The field equations are solved in WPESP taking into
account the layer of the ionisation region. We neglected
here Deutsch’s assumption and diffusion of ions. The new
boundary condition proposed is the IRDR interface where
r = Rc and E(Rc) = Ec. The corona radius is easily found
from the Kaptzov’s assumption which stipulates that the
field at the surface of the corona wires remains at the in-
ception value Ei. If the space charge field of the ionisation
region is ignored, then Rc is given by the relationship:

Rc =
Ei

Ec
R. (17)

The computational domain can be reduced to the rect-
angular Ω of dimensions h × a, as shown in Figure 4,
due to the double symmetry in the WPESP geometry and
the boundary conditions Ex = 0 along the symmetry line
y-axis and Ey = 0 along the symmetry line x-axis are indi-
rectly satisfied. To solve equations (11)–(14), the following
boundary conditions are required:

(i) The potential of the corona wires is equal to the ap-
plied voltage (Φ = V );
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(ii) The potential of the grounded plates is zero (Φ = 0);
(iii) The initial charge density value at the IRDR interface

(r = Rc) is given in [15,16]:

ρRc,j = ρe cos
(

θj

2

)
j = 1, 2, 3, . . . , n , (18)

where j is related to the field line number and θ is the
angle formed by the jth field line and the y-axis and ρe is
given by:

ρe = ρ0
h

Re

E0

Ei
(19)

ρ0 =
4π0Vi (V − Vi)
h2V

(
5 − 4Vi

V

) (20)

E0 =
Vi

h ln Re

R

, (21)

where Vi is the corona inception voltage and E0 is the field
at the plane surface.

In the present investigation the WPESP is supposed
to be infinite length and consequently the system is re-
duced to 2D. Under the condition of double symmetry, one
fourth of the cross-section area Ω of rectangular form is
enough for the problem formulation, Figure 4. The method
of analysis is described in the following steps:

Step 1. The first grid generation is mapped in the absence
of the space charge density, and therefore the electric field
is due to the applied voltage. We used the charge simu-
lation method to map the space charge free lines. Once
the field lines are drawn, we connect the points of the
same potential on all field lines. The node (i, j) repre-
sents the intersection between the jth field line and the
ith equipotential contour. The linear triangular elements
are obtained by subdividing each quadrangle produced by
the intersection of field lines and equipotentials contours
into two triangles.

Step 2. Solve for Φ the Laplace’s equation via the finite
element technique (assuming ρ = 0 in the entire domain).
The estimation of the electric field values E is done using
the interpolation/extrapolation method.

Step 3. Estimate the space charge density on the border
of the ionisation region by using equation (18).

Step 4. The evaluation of the space charge density for the
other grid nodes is gotten while using the method of char-
acteristics which taken into account the air velocity and
neglected ion diffusion. Thus, from equations (11)–(13) we
can write:

�∇
[
ρ

(
μ�E + �v

)]
= 0 ⇒

(
μ�E + �v

)
�∇ρ + ρ�∇

(
μ�E + �v

)

=
(
μ�E + �v

)
�∇ρ + ρμ

ρ

ε0
= 0. (22)

Equation (22) can be written as:

�∇ρ = − ρ2

ε0

(
�E + �v

μ

) · (23)

Along field lines, equation (23) becomes:

∂ρ

∂r
= − ρ2

ε0

(
�E + �v

μ

) · (24)

Integration of equation (24) gives the values of the space
charge density along field lines. As initial values of E we
took those gotten in step 2 and for the resolution of equa-
tion (24), we used the modified method of Euler.

Step 5. Solve the Poisson’s equation via the finite element
method.

ΔΦ +
ρ

ε0
= 0. (25)

Step 6. Calculate the electric field distribution from the
potential interpolation. These values will be used for the
revaluation of the space charge density on the grid nodes.

Step 7. Repeat steps 4–6 until the maximum mismatch
(Err) between the last two estimates of the potential at
each node, Φl and Φl+1, is less than a pre-specified error δ1.
Err is defined as:

Err =

∣∣Φ(l) − Φ(l+1)
∣∣

Φav
(26)

with Φ = (Φ(l)−Φ(l+1))
2 and l is the iteration number.

Step 8. Estimate discrete charges q(i). They are given as
follows:

q(i) = ρ(i)moyΔe(i) (27)

with

ρ(i)moy =
(

ρ(1) + ρ(2) + ρ(3)
3

)
. (28)

ρ(1), ρ(2) and ρ(3) are the space charge density values on
the ith triangle peak, which area is Δe(i).

Step 9. Reconstruct the orthogonal grid. Discrete
charges estimated in step 8 modify the Laplacian electro-
static field and distorts field lines. Indeed, the electrostatic
field in any grid point is the superposition of fields created
by all charges including the ones simulating the electrodes
system. These last charges will be modified to keep the
same applied voltage on the wires. Once the space charge
is estimated on all the nodes of the grid, the Poisson’s
equation can be solved using the finite element method
and in which our contribution appears when we intro-
duced the new third boundary condition: the potential
corresponding to the minimum ionisation field (E = Ec

for α − η = 0). This condition speeds up the numerical
resolution since it eliminates the loop of convergence for
the electric field at the border of the ionisation region.
Once the Poisson’s equation is solved, the density of the
space charge is restored until the distribution of the poten-
tial reaches a stable value. Thus, the discrete space charges
are localised in the centres of the triangular elements. This
will again allow the reconstitution of the electrostatic grid
in the presence of the space charge. To keep the potential
on the wires equal to the applied voltage, we must reap-
praise the value of the charge on the wires taking account
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Fig. 5. Flow-chart of the numerical procedure.

of all the discrete charges and then do all the preceding
steps until the stability of the electrostatic grid.

Step 10. Steps 3–9 are repeated until the difference value
between the space charge densities of two consecutive grids
is less than a pre-specified value δ2.

Figure 5 shows the flow-chart that describes these ste-
ps of analysis.

4 Results and discussion

The method of analysis is applied to the corona discharge
in our laboratory-scaled WPESP. The air flow, free of all
particles, is provided with a ventilator where the velocity
is controlled. The ion mobility μ is taken as constant in the

drift region. This assumption is commonly used and has
been experimentally confirmed for the positive ions [16]
and the value of μ is taken equal to 2× 10−4 m2/V s. The
probe collector is also used to measure the normal current
density Jn when the probe is unbiased (Vb = 0):

Jn =
I0

πr2
m

· (29)

Where rm = 2.25 mm is the effective radius of the probe
and I0 the collected current of corona discharge. The cur-
rent density given by equation (13) can be written as the
sum of a normal component due to the electric field E and
a tangential component due to the air flow velocity v:

�J = �Jn + �Jt (30)
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Fig. 6. (Color online) Electric field lines in the computed domain Ω (corona wires radius R = 0.200 mm, applied voltage
V = 20 kV, air flow velocity: v = 1 m/s for continue line and v = 4 m/s for dashed line).

with
�Jn = ρμ�E (31)

and
�Jt = ρ�v. (32)

The charge density can be thus deduced at the plane sur-
face from equation (31):

ρ =
Jn

μE
· (33)

The electric field lines in the computed domain are shown
in Figure 6 for two values of the air flow velocity. The
deflection of the field lines indicate that the charges are
deflected in the direction of the air flow. The electric field
strength E, the current density J and the charge density ρ
at the probe collector according to the air flow velocity v
and for various corona applied voltage V are shown re-
spectively in Figures 7–9. It can be seen that the present
calculated values of the J , E and ρ fit reasonably the mea-
sured ones and increased weakly with v. In the laboratory-
scaled WPESP for the number of wires n = 1 and where
the probe collector is fixed at the centre of the plane col-
lector beneath the wire (x = 0) the values of J , E and
ρ are maximum for x = 0 and they decrease as we move
away from the centre of this plane along the x-axis ac-
cording to the Warburg’s law [5]. For n = 13 J , E and ρ
are maximum beneath the wires and minimum at midway
between the wires according to the superimposing princi-
ple. The characteristics J(x) E(x) and ρ(x) are deflected

0 1 2 3 4 5
200

300

400

500

600

700
E (kV/m) 

v (m/s)

V = 16 kV

V = 18 kV

V = 20 kV

V = 22 kV

+ Numerical 
● Measurements 

Fig. 7. Electric field at the proximity of the plane surface
centre versus the air flow velocity for various applied corona
voltage (corona wires radius R = 0.200 mm).

by the air flow along the x-axis which causes the weak
increasing of the values of J , E and ρ. In fact the probe
collector (P) is 8 mm moved forward the centre during the
tests.
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Fig. 8. Normal current density at the proximity of the plane
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corona voltage (corona wires radius R = 0.200 mm).
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Fig. 9. Space charge density at the proximity of the plane
surface centre versus the air flow velocity for various applied
corona voltage (corona wires radius R = 0.200 mm).

The method of analysis described in this work pre-
dicts also the distributions of the electric potential and
the electric field in the computed domain and the results
are shown in Figures 10 and 11 respectively. It can be seen
that the electric potential and the electric field values are
higher and the distributions are strongly decreasing near
the corona wires (in the ionisation region) and near the
collecting planes the values are lower and the distributions
are slightly decreasing.

Fig. 10. (Color online) 2D electric potential distribution in
the computation domain (corona wires radius R = 0.200 mm,
applied voltage V = 20 kV, air flow velocity v = 0 m/s).

Fig. 11. (Color online) 2D electric field distribution in the
computation domain (corona wires radius R = 0.200 mm, ap-
plied voltage V = 20 kV, air flow velocity v = 0 m/s)

5 Conclusion

In this paper, an improved efficient iterative method to
solve the coupled space charge-electric field problem in the
wire to plate electrostatic precipitator system is described.
This method uses new boundary conditions which take
into account the layer thickness of the ionisation region,
whereas in previous works this region is disregarded. The
border corresponding to the minimum ionisation field is
the third boundary condition introduced which reduces
the flow-chart since it eliminates the loop of convergence
for the electric field at this border.

Measurements of current density and electric field have
been carried out with a good accuracy at the planes sur-
face with the circular biased probe where the measurement
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of the air flow velocity, free of all particles, is associated.
The presented results indicate a good agreement between
numerical and experimental values for the electric field,
the current density and the space charge density distribu-
tions.

The results of numerical and experiments show that
the method is reliable when applied to wire-to-plate elec-
trostatic precipitator taking into account the velocity of
the air flow and with neglecting the turbulence due to
the electric wind. Future work will use these results to
determine the performances of electrostatic precipitators
and their efficiency when pollution particles are combined
with the air flow.
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