Opérations sur les matrices

Exercice1. On considère les matrices suivantes :

$$\blacksquare A = \begin{pmatrix} -1 & -3 & 2 \\ 2 & 0 & -4 \\ 1 & 3 & 0 \end{pmatrix} \blacksquare B = \begin{pmatrix} 2 & -1 \\ -3 & 0 \\ 1 & -2 \end{pmatrix} \blacksquare C = \begin{pmatrix} -1 & -1 & 3 \\ 0 & 4 & 0 \\ -1 & 2 & -5 \end{pmatrix}.$$

Faites, si possible, les opérations suivantes :

$$\blacksquare 3A - 5C \ \blacksquare 3A + 2B \ \blacksquare AC \ \blacksquare BA \ \blacksquare AB \ \blacksquare ABC \ \blacksquare CAB \ \blacksquare BB^t \ \blacksquare B^tB \ \blacksquare B^2 \ \blacksquare A^2 \ \blacksquare C^3$$

(la notation B^t désigne la matrice transposée de B)

Exercice2. Calculer lorsqu'ils sont définies les produits AB et BA dans les cas suivants :

$$\blacksquare A = \begin{pmatrix} 3 & -2 & 5 \\ -1 & 0 & -8 \\ 3 & -2 & 7 \end{pmatrix}, B = \begin{pmatrix} 2 & -1 \\ 4 & 3 \end{pmatrix}.$$

$$\blacksquare A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 3 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ -1 & -1 & -1 \end{pmatrix}.$$

$$\blacksquare A = \begin{pmatrix} -1 & -3 & 2 \\ 2 & 0 & -4 \\ 1 & 3 & 0 \end{pmatrix}, B = \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

$$\blacksquare A = \begin{pmatrix} -1 & -1 & 3 \\ 0 & 4 & 0 \\ -1 & 2 & -5 \end{pmatrix}, B = \begin{pmatrix} 2 & -10 & 8 \end{pmatrix}.$$

$$\blacksquare A = \begin{pmatrix} 3 \\ -5 \\ 12 \end{pmatrix}, B = (10 \ 11 \ 13).$$

Calcul Algébrique Avec Des Matrices Carrée

Exercie3. I- Considérons les matrices carrées A,B et I (I désigne la matrice identité) de même ordre. Développer et simplifier au maximum les expressions suivantes :

II- Ecrire les expressions suivantes sous la forme AB = I ou BA = I:

Equations Matricielles

Exercice4. I- Trouver les matrices A et B sachant que :

$$A + B = \begin{pmatrix} 2 & -1 \\ 4 & 3 \end{pmatrix}$$
 et $A - B = \begin{pmatrix} -6 & 5 \\ 10 & -15 \end{pmatrix}$

II- Soient les matrices
$$A = \begin{pmatrix} 1 & -3 & 8 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$
, $b = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ et $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. Trouver X telle que : $AX = b$.

Déterminants

Exercice5. I- Calculer les déterminants suivants en développant par une ligne ou une colonne :

II- Utiliser la méthode de Sarrus pour calculer les déterminants ci-dessus.

III- En utilisant leurs propriétés, déduire la valeur de chacun de ces déterminants :

IV- Calculer les déterminants suivants en utilisant la méthode du Pivot de Gauss :

Matrices Inverses

Exercice6. Dire si la matrice A est inversible et, le cas échéant, calculer son inverse :

$$\blacksquare A = \begin{pmatrix} 2 & -1 \\ 4 & 3 \end{pmatrix} \blacksquare A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix} \blacksquare A = \begin{pmatrix} 0 & 2 & 3 \\ 1 & 1 & 2 \\ 0 & 2 & 3 \end{pmatrix} \blacksquare A = \begin{pmatrix} 3 & -2 & 5 \\ -1 & 0 & -8 \\ 3 & -2 & 7 \end{pmatrix}$$

Exercice7. On considère les deux matrices A et B, telles que :

$$\blacksquare A = \begin{pmatrix} -3 & -2 & 1 \\ 2 & 5 & -5 \\ 2 & 4 & -4 \end{pmatrix} \blacksquare B = \begin{pmatrix} 0 & -2 & 5/2 \\ -1 & 5 & -13/2 \\ -1 & 4 & -11/2 \end{pmatrix}$$

Vérifier que la matrice inverse $A^{-1} = B$.

Exercice8. On considère la matrice A définie par les cas suivants :

- $\blacksquare A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}. \text{ Montrer que } A^2 = 2I_3 A \text{, en déduire que } A \text{ est inversible et calculer } A^{-1}.$
- $\blacksquare A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix}.$ Calculer $A^3 A$. En déduire que A est inversible puis déterminer A^{-1} .
- $\blacksquare A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}.$ Calculer $A^2 3A + 2I_3$. En déduire que A est inversible et calculer A^{-1} .

Exercices Supplémentaires Sur Le Calcul Matriciel

Exercice9. On considère la matrice A définie par les cas suivants :

- $\blacksquare A = \begin{pmatrix} 1 & 1 & m \\ 1 & m & 1 \\ m & 1 & 1 \end{pmatrix}. \text{ Pour quelles valeurs du paramètre } m \text{ la matrice } A \text{ est inversible ? Dans ce } \text{cas, calculer son inverse.}$
- $\blacksquare A = \begin{pmatrix} 1 & 0 & m \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$. Pour quelles valeurs du paramètre m la matrice A est inversible ? Dans ce cas, calculer son inverse.

Dans chacun de ces cas, trouver la matrice X telle que AX = b, ou $b = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

Exercice 10. On considère les matrices suivantes :

$$\blacksquare A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 3 & 1 & 1 \end{pmatrix} \blacksquare B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \blacksquare C = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & -1 & -1 \end{pmatrix}$$

- 1. Calculer AB et AC. Que constate-t-on?
- 2. Déduire que A ne peut être inversible.

 $\underline{Exercice11}$. Calculer la matrice inverse de A par la méthode du Pivot de Gauss-Jordan :

$$\blacksquare A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix} \blacksquare A = \begin{pmatrix} 0 & 2 & 3 \\ 1 & 1 & 2 \\ 0 & 2 & 3 \end{pmatrix} \blacksquare A = \begin{pmatrix} 3 & -2 & 5 \\ -1 & 0 & -8 \\ 3 & -2 & 7 \end{pmatrix} \blacksquare A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} \blacksquare A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix}$$

Echelonnement

Exercice4: Donner la forme échelonnée et échelonnée réduite de A dans les cas suivants:

$$\blacksquare A = \begin{pmatrix} 1 & 1 & -1 & 1 & 6 \\ -1 & 0 & -1 & 0 & -1 \\ 2 & 2 & -2 & 3 & 14 \end{pmatrix}
\blacksquare A = \begin{pmatrix} 1 & -1 & 1 & 4 \\ 0 & 2 & 4 & 1 \\ 1 & -1 & 6 & 6 \\ 2 & 4 & -1 & 2 \end{pmatrix}
\blacksquare A = \begin{pmatrix} 2 & 2 & -1 & 2 \\ 1 & 0 & 2 & 1 \\ 3 & -2 & 1 & 1 \\ 4 & 4 & -2 & 3 \end{pmatrix}$$

$$\blacksquare A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 7 & 10 \\ -1 & 2 & 1 & 4 \end{pmatrix}
\blacksquare A = \begin{pmatrix} 2 & -3 & -1 & 0 \\ 0 & 0 & 2 & 1 \\ 2 & -2 & 3 & 1 \\ 4 & -6 & -2 & 0 \end{pmatrix}$$