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Abstract
Advances in the biological sciences have led to an ongoing paradigm shift in toxicity testing based on expanded application 
of high-throughput in vitro screening and in silico methods to assess potential health risks of environmental agents. This 
review examines progress on the vision for toxicity testing elaborated by the US National Research Council (NRC) during the 
decade that has passed since the 2007 NRC report on Toxicity Testing in the 21st Century (TT21C). Concomitant advances in 
exposure assessment, including computational approaches and high-throughput exposomics, are also documented. A vision 
for the next generation of risk science, incorporating risk assessment methodologies suitable for the analysis of new toxico-
logical and exposure data, resulting in human exposure guidelines is described. Case study prototypes indicating how these 
new approaches to toxicity testing, exposure measurement, and risk assessment are beginning to be applied in practice are 
presented. Overall, progress on the 20-year transition plan laid out by the US NRC in 2007 has been substantial. Importantly, 
government agencies within the United States and internationally are beginning to incorporate the new approach method-
ologies envisaged in the original TT21C vision into regulatory practice. Future perspectives on the continued evolution of 
toxicity testing to strengthen regulatory risk assessment are provided.

Keywords Toxicity testing · New approach methodologies · Computational toxicology · High-throughput in vitro testing · 
High-throughput exposomics · High-throughput pharmacokinetics · In vitro to in vivo extrapolation

Introduction

In 2007, the US National Research Council (NRC) published 
a landmark report on Toxicity Testing in the 21st Century, 
which put forward a long-term strategy designed to take Electronic supplementary material The online version of this 

article (https ://doi.org/10.1007/s0020 4-019-02613 -4) contains 
supplementary material, which is available to authorized users.

 * D. Krewski 
 dkrewski@uottawa.ca

1 School of Epidemiology and Public Health, University 
of Ottawa, Ottawa, ON, Canada

2 Risk Sciences International, Ottawa, ON, Canada
3 Scitovation, Charlotte, NC, USA
4 Faculty of Medicine, McLaughlin Centre for Population 

Health Risk Assessment, University of Ottawa, Peter Morand 
Crescent 216A-600, Ottawa, ON K1G 5Z3, Canada

5 Institut de recherche Robert-Sauvé en santé et en sécurité du 
travail, Montréal, QC, Canada

6 Centers for Alternatives to Animal Testing (CAAT), Johns 
Hopkins University, Baltimore, MD, USA

7 Pathology and Laboratory Medicine, Brown University, 
Providence, RI, USA

8 National Center for Computational Toxicology, US 
Environmental Protection Agency, Research Triangle Park, 
NC, USA

9 School of Medicine, Emory University, Atlanta, GA, USA
10 European Commission, Joint Research Center (JRC), Ispra, 

Italy
11 Healthy Environments and Consumer Safety Branch, Health 

Canada, Ottawa, ON, Canada
12 National Center of Environmental Assessment, US 

Environmental Protection Agency, Washington, DC, USA
13 University of Konstanz, Constance, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00204-019-02613-4&domain=pdf
https://doi.org/10.1007/s00204-019-02613-4


 Archives of Toxicology

1 3

advantage of new tools and technologies to increase the 
efficiency of toxicity testing in order to permit the assess-
ment of the large numbers of environmental agents to which 
human populations may be exposed (US NRC 2007). Key 
elements of this strategy included increased use of high-
throughput in vitro test systems and methods in compu-
tational toxicology, with less reliance on more time-con-
suming and costly toxicological studies using experimental 
animals (see Fig. 1). The NRC vision has received wide-
spread support internationally and has provided a blueprint 
for change in toxicological science. A subsequent NRC 
report on Exposure Science in the 21st Century provided 
a parallel vision for the advance of exposure science (US 
NRC 2012b) emphasizing high-throughput exposomics 
and computational methods for exposure assessment. The 
US Environmental Protection Agency’s NexGen initiative 
subsequently integrated new developments in toxicological 
risk assessment within an overarching framework for the 
Next Generation of Risk Science (US EPA 2014b; Krewski 
et al. 2014) (see Fig. 2). This paper provides a review and 
update on the NRC vision, including concomitant advances 
in risk science, and applications in assessing the risks of 
environmental agents. 

TT21C: the need for change

TT21C was born out of the need to improve the safety 
assessment of environmental and industrial chemicals 
(Hartung 2009a), both existing and new ones coming to the 
market (Hartung 2009b, c). The number of substances to be 
tested is impressive: more than 85 million chemicals have 
been synthesized; about 140,000 of these have been com-
mercialized on a larger scale, but many more are found in 
natural products.

In comparison, the number of well-studied substances 
such as drugs and pesticides is only in the realm of a few 

thousand, while the number of those which were tested at 
all—typically only done for acute and topical endpoints—is 
likely between 10 and 20 thousand. Furthermore, the appar-
ent bias toward acute and topical effects is owed to feasibility 
rather than what investigators would ideally like to know 
about the safety of products.

The reason for not testing all substances or important 
chronic endpoints is primarily economical (Bottini and Har-
tung 2009). For example, a full assessment of a pesticide 
can amount to $20 million USD, which is not affordable 
for many chemicals given typical production volumes and 
profit margins of these substances. In addition, the volume 
of substance required (about 20 kg) and the time required to 
process the results of these assessments (4 + years) can be 
prohibitive. There is a need to strategically develop adequate 
and feasible approaches here (Busquet and Hartung 2017).

Even if such assessments are available, such as those pri-
marily in rodents, rabbits and guinea pigs, with very few 
available in other species such as dogs and monkeys, the 
relevance to humans must still be considered (Hartung et al. 
2013). It is difficult to determine the extent to which these 
species resemble humans in their toxic effects; however, it 
may be easier to determine how representative such species 
are of each other. Toxicology is one of few fields where 
testing is standardized across species: for more complex 
endpoints such as cancer and reproductive toxicology, the 
correlation is only about 60% (Basketter et al. 2012); for 
severe eye irritation, approximately 70%; and for skin sensi-
tization, 77% (Luechtefeld et al. 2016a, b). For most hazards, 
we can only assess their reproducibility: these results are not 
very impressive, despite the fact that toxicology is highly 
standardized, studies are often conducted using GLP quality 
assurance, and high-dose effects are assessed. Compared to 
pharmacology, where human-relevant doses are tested in a 
disease model with very few parameters being measured, 
toxicology is more likely to generate reproducible results.

Testing very high doses in order not to miss effects 
impairs relevance for human exposure situations. What 
does the high-dose exposure to a single substance in a short-
lived animal of a few hundred grams for a short period of 
time tell us about human hazards? It definitively does not 
reflect human diversity (such as age, gender, weight, race, 
or comorbidities), special susceptibilities and exposure 
scenarios. Most importantly, we are not exposed to single 
chemicals but to their mixtures in very different quantities 
and patterns.

In consequence, there is a requirement for more human 
models, which are more reproducible, faster and more 
cost-effective. All these are design criteria identified for 
TT21C. Over the last ten years, the evidence for these 
problems has strongly increased (Hartung 2017). The 
most recent discussion of a “reproducibility crisis” (Baker 

Fig. 1  US NRC framework for toxicity testing in the 21st Century
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2016) in science is an example, but also large-scale toxi-
cological databases such as the one accumulating through 
the European REACH process (Luechtefeld et al. 2016a, 
b) allow such assessments, e.g., acute fish toxicity (Hrovat 
et al. 2009), for eye irritation (Luechtefeld et al. 2016a, 
b) or skin sensitization (Luechtefeld et al. 2016a, b). This 
emphasizes the foresight of TT21C.

Toxicity testing in the 21st Century

Toxicity pathways: taking the first steps by bringing 
toxicity pathways to safety assessment

The TT21C vision and strategy arose largely from con-
siderations of advances in understanding human biology 

Fig. 2  A framework for the next 
generation of risk science
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and in the explosion of tools for assessing perturbations 
of test systems by chemicals and other stressors. This new 
knowledge formed the basis for proposing a novel, higher 
throughput system for toxicity testing and chemical safety 
assessment. Obviously, there are many changes that can 
be measured using cell and tissue platforms. For toxic-
ity testing purposes, it is necessary to ascertain which of 
these changes would be of sufficient concern to serve as 
the basis of risk or safety assessment. The concept of a 
toxicity pathway was the nexus on which to build a strat-
egy for collecting and utilizing information on perturba-
tions in biological systems and assessing adversity. Tox-
icity pathways were defined as normal cellular response 
pathways and cellular signaling networks whose disruption 
would likely lead to adverse consequences. The examples 
provided were related to oxidative stress pathways and 
estrogenic signaling through a nuclear receptor-mediated 
pathway. Other examples might include G-protein coupled 
receptors (GPCRs) that are frequent targets for pharma-
ceutical intervention, but less frequently affected by envi-
ronmental chemicals.

Systems biology approaches for assessing pathway 
perturbations and analysis of their dose–responses behav-
iors had already been discussed, including the manner in 
which in vitro and ex vivo assays could provide informa-
tion on pathway components and assess dose–responses 
characteristics for pathway perturbations (Andersen et al. 
2005a, b). Cellular perturbations would be expected to show 
dose-dependent transitions—from sub-threshold regions, 
through responses leading to adaptation and on to those 
that would be sufficiently intense and long-lasting to cause 
adverse responses in the test system. While the comparison 
to previous efforts was not highlighted, toxicity pathways 
clearly represent an extension of concepts of mode-of-action 
(MOA) that had been developed to aid the use of mecha-
nistic studies in chemical risk assessment and especially in 
assessing the human relevance of animal toxicity studies 
(Seed et al. 2005; Boobis et al. 2008). The initial interactions 
of chemical with biological targets was similar to concepts 
of molecular initiating events (MIEs) and dose-dependencies 
had been discussed for many compounds and a broad range 
of toxicological responses in intact animals (Slikker et al. 
2004).

If toxicity pathway assays are to form the basis for devel-
oping new test procedures and dose–response assessment, 
some inventory of likely pathways would be valuable to 
ensure coverage during toxicity test procedures. Papers 
appeared categorizing canonical stress pathways (Simmons 
et al. 2009) and pathways associated with nuclear receptors 
(Jennings 2013; Jennings et al. 2013). While initiatives to 
implement the recommendations related to higher through-
put testing were jointly proposed by US Environmental Pro-
tection Agency (US EPA) and National Institutes of Health 

(NIH) (Collins et al. 2008), other groups moved forward 
to either define toxicity pathways from cellular responses 
to compounds or to focus on specific pathways, creating 
assays based on known characteristics of pathway biology. 
General principles for developing assays and dose–response 
models for DNA-damage pathways were first described in 
a more prospective fashion (Bhattacharya et al. 2011) lead-
ing on to more detailed work on assay development, data 
collection, safety assessment applications (Clewell et al. 
2014; Adeleye et al. 2015) and systems biology approaches 
to pathway-based safety assessment (Zhang and Andersen 
2007; Li et al. 2014; Zhang et al. 2014). Another pathway 
selected for study was estrogenic signaling in uterus (Miller 
et al. 2016, 2017). These examples represent developing a 
clear rationale for measuring cellular endpoints related to the 
pathway responses and components—developing so-called 
“fit-for-purpose” assays that are based on the biology of the 
pathway and the tools available for querying pathway func-
tion (Clewell et al. 2016).

Biological pathways post-2007: In assessing overall pro-
gress on the specific recommendations from the TT21C 
report, we need to reflect on the evolution of pathway-based 
concepts and look to instances where the idea of toxicity 
pathways is now guiding new directions. The term ‘pathway’ 
is ubiquitous in life-science research and is used to convey 
mechanistic understanding about a process. A pathway is a 
description of a process within a larger system that involves 
the interaction of components of the system leading to a 
particular outcome (Kleensang et al. 2014). Pathways cap-
ture knowledge in either a narrative (textual), graphical or 
mathematical form, with varying degrees of formality and 
compliance with different established conventions utilized 
by various research communities. In the last 10 years, sig-
nificant resources have been invested in the elucidation of 
pathways and there are now many related databases avail-
able: Pathguide.org, for example, has a catalogue of well 
over 500 pathway databases. Unfortunately, there remains a 
considerable lack of formalization, harmonization and stand-
ardization for describing and reporting pathways (O’Hara 
et al. 2016), which hinders sharing, collaboration and, ulti-
mately, the practical exploitation of pathway information 
by end-users.

Typically, biological pathways describe sets of molecular 
interactions that lead to a change in the phenotypic state of 
a cell. Thus, according to this definition, toxicity pathways 
and biological or cellular-response pathways are intrinsi-
cally linked (i.e., no biological pathway, no toxicity path-
way). Owing to the nature of typical biological pathways, a 
region of adaptation is expected to exist that precedes injury, 
dysfunction and adversity. Jennings (2013) points out that 
doses causing adaptation compared to those with overt 
toxicity may not differ substantially. For a proper descrip-
tion of a toxicity pathway, the dose/concentration–response 
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relationship (dynamics) needs to be fully characterized 
(experimentally) and described (ideally, mathematically) 
(Jennings 2013).

Regarding application of results from toxicity path-
ways, in some risk contexts a dose–response model based 
on in vitro results (e.g., from which a point-of-departure 
or benchmark dose can be derived) might provide adequate 
data to support a risk-management decision. Essentially 
such an approach is about identifying regions (exposures) 
of safety, as opposed to risk per se (Andersen and Krewski 
2009). For most risk contexts (i.e., chemical-specific assess-
ments) the TT21C vision and strategy would entail extrapo-
lation modeling to link in vitro with in vivo dosimetry and 
low-dose modeling either with safety factors or systems biol-
ogy modeling of the pathway (Zhang et al. 2010).

Toxicogenomics

Toxicogenomics was identified in TT21C as a transformative 
approach that was expected to play a pivotal role in identify-
ing the toxicity pathways and cellular responses associated 
with exposure to environmental agents. Although it was 
noted that toxicogenomics would not be “the staple tech-
nology”, expectations were high that in combination with 
advances in bioinformatics, systems biology, and computa-
tional toxicology, toxicogenomic approaches could support 
the evolution of toxicity testing toward the TT21C paradigm.

State of the science circa 2007

TT21C defined toxicogenomics as “a broad field combin-
ing expertise in toxicology, genetics, molecular biology, and 
environmental health and includes genomics, proteomics, 
and metabonomics”, although the predominant focus and 
prevailing application since 2007 has been transcriptional 
profiling. Toxicogenomics was viewed as a key platform 
on which to expand knowledge of toxicity pathways and 
implement higher throughput methods for querying cellular 
effects.

In 2007, the field of toxicogenomics was dominated by 
the application of DNA microarrays for gene expression 
analysis, with a variety of well-established commercial 
technologies available (e.g., Affymetrix, Illumina, Agilent 
Technologies Inc., and others). However, early studies in this 
field were often poorly designed and executed, applied faulty 
analytical pipelines, failed to apply sufficient statistical rigor 
and data filters, or suffered from errors and incomplete bio-
informatics annotation of probes and pathways. This led to a 
lack of reproducibility across studies, a decline in confidence 
in the technologies in the first decade of application, and a 
plateau in the number of papers applying toxicogenomics 
in research after 2007 (Chen et al. 2012). Concerns as to 

the possibility to validate such approaches prevailed (Corvi 
et al. 2005).

Nonetheless, by 2007 a variety of studies had demon-
strated strong correlations across microarray technologies 
from high-quality studies (Yauk and Berndt 2007), and the 
US Food and Drug Administration (FDA) Microarray Qual-
ity Consortium (MAQC) published its first series of papers 
defining the reproducibility of DNA microarray technologies 
and outlined some best practices (Consortium et al. 2006). 
This, in parallel with more judicious implementation of 
the Minimal Information About a Microarray Experiment 
(MIAME) standards (Brazma et al. 2001), including require-
ments to make expression data publicly available through a 
variety of public repositories (e.g., ArrayExpress, Chemicals 
Effects in Biological Systems, and Gene Expression Omni-
bus) by scientific journals, led to increases in the quality 
and availability of the data and analyses applied in toxicog-
enomic experiments.

Prior to the release of TT21C, numerous experiments had 
been conducted to explore the utility of toxicogenomics both 
in vivo and in vitro for a variety of applications in regula-
tory toxicology, and large-scale efforts to develop databases 
of expression profiles were underway. For example, Iconix 
Biosciences, Inc. produced expression profiles for over 600 
drugs in vivo and in vitro in male Sprague–Dawley rats and 
commercially released their DrugMatrix database for the 
development of predictive toxicogenomic signatures and dis-
covery of mode of action of prototype and new chemicals 
(Ganter et al. 2005; Fielden and Kolaja 2006; Fielden et al. 
2007). In parallel, there was increasing regulatory interest in 
the technology (e.g., US Environmental Protection Agency 
(EPA) produced a variety of reports including ‘A framework 
for the use of genomics data at the EPA’ (Dix et al. 2006). 
Indeed (US NRC 2012a), there was sufficient information, 
experience and momentum by 2007 that the NRC released 
its report outlining the potential use of toxicogenomics 
for hazard identification, analysis of mechanism of action, 
chemical classification, exposure assessment, genetic sus-
ceptibility, and toward reductions in animal testing (US NRC 
2007; Ganter et al. 2005; Fielden and Kolaja 2006; Fielden 
et al. 2007).

Overall, despite acknowledged limitations, at the time of 
publication of TT21C, toxicogenomics appeared to be in a 
position to relatively efficiently derive mechanistic infor-
mation associated with toxicity pathway perturbation from 
in vivo and invitro experiments. However, significant chal-
lenges included the high cost of microarray experiments and 
a lack of: (a) automation for higher throughput applications; 
(b) quality control standards and international guidelines for 
analysis/application; (c) understanding of the associations 
between pathway perturbations and apical effects; and (d) 
efficient bioinformatics tools/pipelines for meaningful inter-
pretation of toxicogenomics data in a reasonable timeframe. 
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Although significant progress has been made, a number of 
these challenges still exist one decade later.

State of the science circa 2017

Toxicogenomics continued to evolve rapidly post-TT21C. 
Major technological advances since 2007 include the 
development of RNA-sequencing (RNA-seq) approaches 
and higher throughput platforms to query gene expression 
changes, and improvements in bioinformatics platforms, 
databases and analytical tools. In parallel, the increasing 
availability of open sources of data and bioinformatic tools 
has broadened the community’s ability to mine toxicog-
enomic data to derive biomarkers of toxicity and mode of 
action, and refine pathway analyses. Experiments and efforts 
aimed at defining standards and best practices have moved 
the field forward. Importantly, over this time period, a vari-
ety of case studies demonstrated practical examples of how 
toxicogenomic data may be used in a regulatory context, and 
a framework for tiered testing that integrates toxicogenomics 
was published (Thomas et al. 2013a).

Technological advances Development and refinement of 
microarray platforms continued in this decade, bringing 
about higher quality output, declining costs, and increased 
automation. Analytical approaches for microarrays were 
increasingly standardized, leading to more reproduc-
ible results across studies and improved confidence in the 
technology. Widely available quantitative real-time PCR 
(qPCR) arrays in micro-well plates (96- and 384-well for-
mats) also now provide high-quality tools for more specific 
query of the genome, enabling smaller laboratories without 
specialized genomics infrastructure to apply toxicogenom-
ics approaches. However, although microarrays and qPCR 
continue to be standards, a pivotal technological advance 
in toxicogenomics has been in the area of whole genome 
sequencing, which has continued to progress at an astound-
ing rate in the last decade.

Next generation sequencing has emerged as a power-
ful, more sensitive and precise method to quantify tran-
scriptional changes. Because RNA-seq does not rely on 
pre-defined probes, it can, in principle, be used to study the 
entire transcriptome. Moreover, the count-based approach 
has a much greater dynamic range than microarray tech-
nologies, allowing more precise measurement of low- and 
high-abundance transcripts. With multiplexing and increas-
ing automation, large numbers of samples can be analyzed 
simultaneously. Within the field of toxicology a variety of 
studies have demonstrated reproducibility of RNA-seq rela-
tive to microarrays at the pathway level, but increased sensi-
tivity to identify differentially expressed transcripts (Consor-
tium 2014; Wang et al. 2014; Webster et al. 2015a, b; Zhang 
et al. 2015a, b). Moreover, RNA-seq is more effective for 

analysis of highly degraded archival samples (such as those 
preserved in formalin), which, in moving forward, provides 
the unprecedented opportunity to derive molecular signa-
tures from well-characterized (i.e., phenotypically anchored) 
tissues that are in archives (e.g., the National Toxicology 
Program’s archive) (Auerbach et al. 2015; Webster et al. 
2015a, b; Hester et al. 2016). Leveraging this opportunity 
to query expression changes in archived tissues would be 
very useful for defining toxicity pathways linked to adverse 
effects and developing transcriptional signatures that can 
serve as biomarkers of toxicity.

In parallel with RNA-seq, a number of approaches have 
emerged that enable high-throughput screening (HTS) for 
gene expression changes. These technologies have been 
developed to permit an analysis of transcripts in cells in 
culture that work on crude cell lysates, rather than requiring 
the extraction of RNA from cells, which makes them ame-
nable to automation. For example, the L1000 assay queries 
RNA from cell lysates using ligation-mediated amplification 
(Peck et al. 2006). The L1000 technology measures 1000 
‘landmark genes’ that are used to capture information con-
tained within the entire transcriptome (Lamb et al. 2006). 
Similar approaches include RNA-mediated oligonucleotide 
Annealing, Selection, and Ligation with Next-Gen sequenc-
ing (RASL-seq) (Li et  al. 2012) and the TempO-seq™ 
technology (BioSpyder Technologies, Inc., Carlsbad, CA), 
which is integrated with a bioinformatics pipeline for the 
rapid identification of differentially expressed genes (Bushel 
et al. 2018). These and other ground-breaking techniques 
are changing the field of HTS to enable the assessment of a 
more complete and complex biological space than has been 
possible using standard HTS approaches.

Analytical/bioinformatics advances A major area of devel-
opment in the past decade has been in analytical tools and 
knowledge bases for genomic data. A variety of both com-
mercial and public applications are now available for rapid 
assignment of changes in gene expression to molecular 
pathways and processes. For example, commercial soft-
ware packages for functional analysis of genomic data, such 
as Ingenuity Pathway Analysis (Qiagen) and MetaCore 
(Thomson Reuters) now provide straightforward analytical 
tools to identify perturbations in curated pathways, biologi-
cal processes and molecular functions; identify regulatory 
agents and signaling networks that are driving responses; 
and have specifically tailored applications for toxicology. 
Publicly available sites also continue to be refined to pro-
vide high-quality approaches to mine genomics datasets and 
identify perturbed pathways, processes and networks (e.g., 
Bioconductor http://www.bioco nduct or.org, and The Data-
base for Visualization and Integrated Discovery (Huang 
da  et al. 2009). This progress has meant that identifying 
the molecular alterations induced by exposures to toxicants 

http://www.bioconductor.org
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is more straightforward; however, linking these perturba-
tions to associated apical effects or mode of action remains 
a time-consuming challenge. To circumvent this problem, 
increasing focus has been placed on the development of 
transcriptional signatures that can be used to predict mode of 
action/toxicological effect. Of substantial benefit to research 
and development in this area has been the public release 
of a number of large databases of toxicogenomics profiles 
in vivo and vitro. Predictive toxicogenomic signatures and 
transcriptomic databases are described in more detail below.

Another critical advance has been in the area of quantita-
tive toxicogenomics, with the release of the BMDExpress 
software (Yang et al. 2007; Phillips et al. 2019). BMDEx-
press enables high-throughput benchmark dose (BMD) mod-
eling of global gene expression data. The tool has been used 
to demonstrate that the lowest pathway BMDs derived from 
toxicogenomic data in short-term rodent studies (e.g., 5, 14, 
28 or 90 days studies) are consistent with BMDs derived 
from conventional endpoints (e.g., histopathological changes 
and cancer) (Thomas et al. 2013a, b). In addition, BMDs 
from specific perturbed pathways associated with different 
modes of action are similar to BMDs for later apical effects 
(e.g., Bhat et al. 2013; Jackson et al. 2014; Moffat et al. 
2015; Labib et al. 2016). Toxicogenomic BMDs derived 
from different gene expression platforms are largely con-
cordant (Black et al. 2014; Webster et al. 2015a, b), indi-
cating that as platforms evolve BMD values derived using 
toxicogenomics approaches should remain relatively con-
sistent. The US National Toxicology Program recently con-
vened an expert panel to establish an acceptable approach 
for genomic dose–response modeling, which will ensure 
greater consistency in this application to facilitate the use 
of transcriptomic dose–response data in risk assessment (US 
NTP 2018). Overall, transcriptomic BMD analysis provides 
insight into the doses at which molecular changes occur, 
and is poised to become a key tool in next generation risk 
assessment (Thomas et al. 2013a, b; Moffat et al. 2015; Cote 
et al. 2016).

Significant resources to advance the development of pre-
dictive signatures of mode of action/toxicity, and for other 
types of data mining, include the public release of two large 
toxicogenomics databases: DrugMatrix and The Japanese 
Toxicogenomics Project (TG-GATES). As described above, 
DrugMatrix contains in vivo and in vitro global toxicog-
enomics profiles of hundreds of drugs across two doses [a 
fully effective dose (defined as the dose used for treating 
disease, converted from human), and the maximum tolerated 
dose (defined as 50% reduction in weight gain)], in 13 tis-
sues and across multiple early time points (hours to 5 days). 
This database was purchased by the US National Institute 
of Environmental Health Science in 2011 and made pub-
licly available. TG-GATES was produced by the Japanese 
National Institute of Health Science, the National Institute 

Biomedical Innovation, and 15 pharmaceutical companies 
(http://toxic o.nibio .go.jp/open-tggat es/searc h.html), and was 
also released publicly in 2011. TG-GATES contains in vitro 
and in vivo expression profiles with liver as the primary tar-
get organ (Uehara et al. 2010). Data for approximately 170 
compounds (predominantly drugs) are available for single- 
and repeat-dose study designs. Experiments spanned three 
dose groups (1:3:10 ratio) up to the maximum tolerated dose 
alongside concurrent controls, which provides an oppor-
tunity to explore both dose- and temporal-response. The 
strengths of these databases lie in both the size and scope 
of the projects, and the controlled nature of the experiments 
that enables direct comparison across chemicals. Moreo-
ver, the availability of toxicogenomics profiles from both 
in vivo and in vitro studies for the same chemicals facilitates 
assessment of the relevance of pathway perturbations across 
models.

Databases of HTS transcriptomic data are also being 
produced and used. For example, the Library of Integrated 
Network-based Cellular Signatures (LINCS) L1000 dataset 
contains gene expression profiles from human cells exposed 
to over 20,000 small-molecule compounds, including most 
of the FDA-approved drugs, with measures taken before and 
after the exposures. A compound signature discovery pipe-
line that spans raw L1000 data processing to drug screening 
and mechanistic analysis has now been developed to expe-
dite signature-based toxicological analyses (Liu et al. 2015).

Although there are other excellent databases that are 
available in this area, the above provides key examples of 
resources available for the discovery of toxicity pathways 
and the development of signatures of mode of action and 
toxicological effects. Moreover, these databases can be lev-
eraged immediately to assess similarities of transcriptional 
changes induced by novel chemicals to prototypes within 
the database for hazard identification and mode of action 
analyses.

In addition to mode of action analysis, a promising area 
of research has been in the development of gene expression 
signatures that can be used to predict whether a chemical 
agent produces a specific toxicological effect, or operates 
through a specific mode of action. Such signatures can facili-
tate rapid analysis of transcriptomic datasets through simple 
pattern recognition approaches integrated with probability 
assessment. For example, the TGxDDI biomarker comprises 
64 genes that were derived from analysis of 28 training com-
pounds in human TK6 cells (Li et al. 2015, 2017; Yauk et al. 
2016; Cho et al. 2019). Transcriptional changes in these 
genes following toxicant treatment predict whether an agent 
induces DNA damage or not. Similar methods have been 
applied in vivo to identify interaction of chemicals with key 
transcription factors such as constitutive activated receptor 
(CAR) (Oshida et al. 2015a) and peroxisome proliferator-
activated receptor alpha (PPARalpha) (Oshida et al. 2015b). 

http://toxico.nibio.go.jp/open-tggates/search.html
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Overall, many published gene expression signatures have 
been generated to predict diverse toxicological endpoints 
including genotoxicity, carcinogenicity (Gusenleitner et al. 
2014; Saito et al. 2016), hepatotoxicity (Hrach et al. 2011; 
Van den Hof et al. 2014), nephrotoxicity (Fielden et al. 2005; 
Minowa et al. 2012), developmental toxicity (Pennings et al. 
2011), and specific exposures (Hochstenbach et al. 2010, 
2012; Chauhan et al. 2014). A key gap is the development 
of bioinformatic tools to rapidly apply these signatures to 
the analysis of new datasets, although promising approaches 
have been recently proposed (Rooney et al. 2018; Corton 
et al. 2018).

Although toxicogenomics has not been widely applied 
to develop toxicity or adverse outcome pathways (AOPs), 
there has been some progress in this area. Overall, it has 
been challenging to precisely define the associations because 
of redundancies across pathways, and lack of tools to mine 
the networks produced. A recent publication leveraged the 
TG-GATES and ToxCast datasets to develop computation-
ally predicted AOPs (Bell et al. 2016). The authors found 
that computationally derived AOPs approximated manu-
ally curated AOPs and suggested that their approach could 
be used to accelerate expert-curated AOP development. 
Applications of such machine-based approaches followed 
by manual validation through text and data mining will 
greatly advance the TT21C agenda. Moreover, these efforts 
will define the sequence of transcriptional perturbations that 
are linked to adverse effects to support effective use of tran-
scriptomic data in toxicological testing. In the context of 
the Human Toxome project (see below), transcription factor 
analysis including weighted gene network analysis proved to 
be especially helpful (Andersen et al. 2015; Maertens et al. 
2015; Rahnenfuhrer and Leist 2015; Pendse et al. 2016a, b).

Development of standards and best practices A critical gap 
in the field of toxicogenomics is the absence of guidance 
describing the specific details of experimental approaches 
and analyses as they should be conducted for application 
in regulatory toxicology (e.g., an OECD test guideline). 
This is generally viewed as an impediment to the use of 
toxicogenomics data in human health risk assessment. The 
US FDA’s Microarray Quality Control consortium (MAQC) 
conducted a variety of validation studies to demonstrate that 
toxicogenomics technologies are robust and reproducible, 
and suggested best practices for the identification of differ-
entially expressed genes for both microarrays and RNA-seq 
(Consortium et al. 2006; Guo et al. 2006; Shi et al. 2010; 
Consortium 2014; Wang et al. 2014). Additional work from 
this group demonstrated the consistency of predictive signa-
ture genes and classifiers across transcriptomic technologies 
(Fan et al. 2010), which is critical given the rapidly evolv-
ing technologies in genomics. However, although individual 
international regulatory agencies have produced policies, 

guidance documents and reports relating to the use of toxi-
cogenomics and transcriptional profiling in human health 
risk assessment (e.g., the US EPA’s ‘A Framework for the 
Use of Genomics Data at the EPA’ and the FDA’s ‘Guid-
ance for Industry: Pharmacogenomic Data Submissions’ in 
2003, and their ‘Voluntary Exploratory Data Submissions 
(VXDS)’ program), the lack of international guidelines for 
toxicogenomics tests has hampered regulatory uptake. A 
variety of case studies have provided specific examples of 
applications of toxicogenomics in human health risk assess-
ment, which have helped to advance the field (described in 
more detail below). Moreover, recent efforts to more spe-
cifically define the experimental design and study quality 
criteria in this field have been published (e.g., McConnell 
et  al. 2014; Bourdon-Lacombe et  al. 2015). These efforts 
will facilitate the development of formal, harmonized, inter-
national guidance to advance this field in the future. Finally, 
the OECD has initiated projects to follow on important rec-
ommendations from working groups of the European Centre 
for Ecotoxicology and Toxicology of Chemicals to develop 
reporting standards for transriptomics, metabolomics and 
proteomics (Gant et al. 2017; Buesen et al. 2017).

Summary

The field of toxicogenomics has matured to a state where 
automatedprocedures facilitate rapid and cost-effective pro-
duction of these data, and analytical tools are available for 
relatively efficient data analysis and interpretation. BMD 
analyses have demonstrated that transcriptional perturba-
tions occur at doses that are highly predictive of adverse 
effects and tools are available for rapid BMD modeling on 
global transcriptomic datasets. Databases and tools are avail-
able to develop and implement the use of signatures of spe-
cific toxicities and modes of action for chemical assessment. 
However, significant efforts are required to improve data 
mining to define the specific transcriptional perturbations 
that are causally linked to adverse effects, and to produce 
the guidelines required for routine uptake of these types of 
data by the regulatory community.

High‑content imaging

While the 2007 NRC report provided an overall roadmap 
of the knowledge and thought processes that conceptually 
frame the new toxicity testing paradigm, the actual in vitro 
toxicity testing platforms and interpretative tools needed to 
acquire the data for safety assessments were acknowledged 
to be evolving works in progress. The ideal in vitro toxicity 
testing platform will provide broad coverage of the biologi-
cal response landscape, be simple enough to be medium- 
to high-throughput, and produce an inherent indication of 
adversity with toxicant exposure. To achieve these goals, 
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three-dimensional (3D) predictive biology platforms com-
posed of various microtissues are likely needed, as argued 
below, and require experimental, technical, and computa-
tional innovation in three areas:

• demonstration that 3D microtissue cultures manifest 
important biologically relevant behavior;

• design and testing of simple medium- to high-throughput 
array platforms in a simple and inexpensive format suit-
able for living 3D microtissue culture and high-content 
confocal imaging; and

• evidence that the morphogenetic and cytopathological 
signals produced by the 3D microtissues identify adverse 
responses and points of departure for safety assessments.

Each of these identified areas of required innovation is 
discussed in the context of the problem it solves, and how it 
contributes to the development of a fit-for-purpose predictive 
biology platform for in vitro toxicity testing.

3D microtissue cultures manifest important biologically 
relevant behaviors. Two examples of in vitro toxicity test-
ing approaches developed by the USEPA (ToxCast) and the 
Hamner Institute use protein and cell-based reporter systems 
and 2D cell culture plus omics detection techniques, respec-
tively. While important and ground-breaking in many ways, 
these testing approaches have significant limitations. Often, 
the reporter assays are designed as protein–protein interac-
tion indicators or as artificial constructs inserted into cells 
without the usual co-factors that modulate responses, raising 
concern about their relevance to in vivo biology. The 2D 
cell culture plus omics detection techniques are dependent 
upon the biology of 2D cells in culture which may be dis-
tinctly different from in vivo biology (Petersen et al. 1992). 
In addition, the omics detection techniques require a large 
expenditure of resources (time and money) for data genera-
tion. While these approaches have been necessary and highly 
informative in developing the tools and strategies for the 
new toxicity testing paradigm, it is now important to devote 
resources to optimizing the test platforms themselves.

A key feature of an optimal test platform is that it be 
able to manifest the broad spectrum of responses inherent 
to living humans, a property we are calling broad coverage 
of the biological response landscape. To achieve this broad 
coverage of biological responses requires the incorporation 
into the test system of as many of the properties of in vivo 
cells as possible. In vivo cells interact in 3 dimensions to 
form tissues, and such 3D interactions markedly change the 
behavior of cells, resulting in cell sorting, differentiation, 
and polarization (Bissell et al. 2003). Therefore, in vitro 
test systems that incorporate 3D cellular models are likely 
required to fully represent the biological response landscape. 
Cells grown in 3D more closely mimic the differentiated 
function, phenotype, and biology of tissues than the same 

cells grown in conventional 2D mono-layers (Cukierman 
et al. 2001; Griffith and Swartz 2006) because of increased 
cell–cell contact, enhanced cell–ECM signaling, and the 
absence of an unnaturally stiff and highly adherent plastic 
substrate (Baker 2012).

A critical need in the development of fit-for-purpose 3D 
predictive biology platforms for in vitro toxicity testing is 
a way to rapidly assess living 3D cultures repeatedly over 
time. To meet this challenge requires scale-up of the existing 
3D culture platforms for screening, which implies a design 
based on simplicity, a key feature of any medium- to high-
throughput test platform. Numerous 3D technologies have 
been developed, including cells on membranes, cells in gels/
scaffolds, cells in micro-fluidic devices and cells aggregated 
into spheroids or microtissues. From a biology perspective, 
each has its advantages and disadvantages as it tries to rep-
licate the complex in vivo environment in a simple in vitro 
system. Likewise, from a technology perspective, each has 
its niche.

Microtissue systems based on attaching cells to scaffolds 
(natural and synthetic) are non-permissive for many complex 
three-dimensional morphological events because their cell 
density is low and cell-to-scaffold interactions predominate 
(Lee et al. 2008). Human-on-a-chip technologies are com-
plicated devices difficult to adapt for rapid testing (Marx 
et al. 2012). For example, a human biomimetic lung-on-a-
chip device has been developed to model the effect of cyclic 
mechanical strain on uptake of nanoparticles by alveolar 
epithelial cells (Huh et al. 2010). However, this complex 
microfluidic system is not easily translated to traditional bio-
medical laboratories due to the need for specialized equip-
ment and training, nor does it accurately model subchronic 
pathological endpoints such as pulmonary fibrosis. Predic-
tive in vitro models for adverse chronic pulmonary out-
comes, including rodent lung slices, human lung airway tis-
sue constructs, airway epithelial cell cultures at an air–liquid 
interface, and open porous lung scaffolds are promising but 
are not yet sufficiently reliable or reproducible as alternatives 
to in vivo animal toxicity testing (Patel et al. 2012; Nichols 
et al. 2013; Sauer et al. 2014; Jeannet et al. 2015).

Therefore, the most advantageous 3D microtissue designs 
are likely scaffold-free, allowing the cells to make their own 
extracellular matrix rather than relying on externally sup-
plied materials that might vary batch-to-batch and domi-
nate the biological behavior of the cells. This approach also 
creates 3D microtissues of high cellular density, mimick-
ing the conditions of normal in vivo tissues. Examples of 
scaffold-free 3D microtissues culture approaches include the 
hanging drop system and the use of non-adhesive hydrogels. 
The hanging drop system, commercialized by In  Sphero®, 
collects cells at the bottom of a small drop where they self-
assemble a spheroid. However, the small drops are prone 
to spillage and evaporation, media changes are difficult, 
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spheroids are difficult to image in the drop (beyond work-
ing distance of objective) and the culture environment is 
relatively unstable during the longer time frames needed for 
morphological assays (Mehta et al. 2012). Another scaffold-
free system in use is non-adhesive hydrogels, as commercial-
ized by MicroTissues,  Inc® (Napolitano et al. 2007). This 
technology creates a stable, long-term, reproducible culture 
environment for microtissues to form at normal organotypic 
density and architecture, with maximal cell-to-cell commu-
nication and movement, allowing mixtures of different cell 
types to interact while undergoing complex 3D morphologi-
cal changes and differentiation (Achilli et al. 2012, 2014).

Morphogenetic and cytopathological signals identify 
adverse responses. Animal toxicity tests are phenotypic 
“apical” tests—complex experiments that measure inte-
grated biological endpoints, each of which is an integrated 
measure of multiple facets of the machinery necessary for 
in vivo function. As such, these apical tests may provide 
little insight into the cellular and molecular events, mecha-
nisms, and targets responsible for toxicant action. The tra-
ditional definition of an adverse effect is “A biochemical, 
morphological or physiological change…that….adversely 
affects the performance of the whole organism or reduces 
the organism’s ability to respond to an additional environ-
mental challenge” (Lewis et al. 2002). By this definition, 
adverse effects are limited in scope to apical events mani-
fested by the whole organism. On the otherhand, the new 
toxicity testing paradigm is non-apical, focused on human 
cells, in vitro approaches, and high-throughput techniques. 
There is an obvious disconnect between the accepted defini-
tion of adversity used in risk assessments and the require-
ments for interpreting adversity signals from the new system 
of toxicity testing.

Rudolf Ludwig Karl Virchow (1821–1902), the famous 
German physician, said, “… the cell is really the ultimate 
morphological element in which there is any manifestation 
of life …” in articulating his vision of the cellular basis of 
disease. The implementation of the microscope as a diag-
nostic tool, and the development of an explanation of disease 
organized around cellular dysfunction contributed greatly to 
the advances in medicine that took place during the first half 
of the twentieth century. The determination of the double 
helix structure of DNA in 1953 by Watson and Crick her-
alded the modern era of molecular pathogenesis, enhancing 
our understanding of the cellular basis of disease based on 
altered gene and protein expression. The tools now at our 
disposal are phenomenal, rapidly evolving, and supported 
by remarkable computational power.

Aided by advances in technology, the morphologi-
cal study of cells (cytopathology) and of cells in tissues, 
including their organization and alterations (histopathol-
ogy), continues to be a powerful diagnostic indicator of 
adverse effects. The 3D predictive biology platforms being 

developed inherently manifest morphogenetic and cellular 
alterations over time that depend upon 3D interactions that 
can be altered by toxicant exposure. The in vitro morpho-
logic manifestations of adversity include alterations in the 
appearance, organization, and number of cells, and altera-
tions in subcellular organelles. An advantage of relying on 
these morphological manifestations as indicators of adver-
sity is the long track record of success using this approach 
in diagnostic pathology as well as chronic toxicity assays in 
animal models.

The distinction between an adaptive response and an 
adverse response plays a fundamental role in toxicology, 
defining the level of exposure associated with a significant 
effect that can lead to disease. In risk assessment, the bound-
ary between the no observed adverse effect level (NOAEL) 
and the lowest observed adverse effect level (LOAEL) has 
guided regulatory practice. Cytopathology and histopathol-
ogy have played key roles in defining this boundary and 
identifying adversity. An example of the power of mor-
phological assessment as an adversity indicator using high 
content images is the measurement of changes in neurite 
outgrowth (Crofton et al. 2012). The morphological tools 
used to identify the effects of toxicant exposures include 
high content image analysis of the patterns of neurite out-
growth and differential cytoplasmic distributions of neurite 
biomarkers (Harrill et al. 2013). Live cell imaging of in vitro 
cultures of human neuronal cells has further demonstrated 
the power and relevance of this approach (Stiegler et al. 
2011).

Therefore, technical advances in imaging of 3D micro-
tissues (van Vliet et al. 2014) allow a rejuvenated “in vitro 
pathology” to integrate morphological indicators of adver-
sity identified in the 3D microtissues with functional and 
molecular endpoints of effect, such as action potentials and 
transcriptomics. This combination of tried-and-true mor-
phological signals of adversity plus mechanistic molecular 
validation will lead to the development of a new adversity 
standard suitable for 3D predictive biology platforms. This 
effort will be guided by the following re-definition of adver-
sity focused on an understanding of toxicant-induced per-
turbations at the molecular and cellular level: “Adversity is 
defined as a combination of molecular and cellular events 
that are dose and treatment related by statistical test and 
evolve over time across biological pathways to lead to a 
pathophysiological alteration.”

Exposure science in the 21st Century

Exposure science includes quantitative estimation of the 
external dose received by a human or ecological species. 
Prior to the introduction of high-throughput screening tech-
nologies that have enabled the implementation of toxicity 
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testing in the 21st century, exposure science was, perhaps, 
in a better place than toxicology. There were ongoing efforts 
monitoring the biomarkers of dozens to hundreds of chemi-
cals in human tissues (Calafat et al. 2006; US CDC 2012; 
Dodson et al. 2014) and large, sustained efforts for environ-
mental monitoring of hundreds of chemicals in media such 
as water and air (Alexander et al. 1998). Environmental fate 
and transport models could provide estimates of human and 
ecological exposure for thousands of other chemicals. The 
developers of these “high throughput” exposure models for 
thousands of chemicals specifically noted the lack of “con-
sistent” toxicology information, often with no human data 
available (Arnot et al. 2006; Rosenbaum et al. 2008). The 
relative standing of exposure and hazard for thousands of 
chemicals was abruptly inverted by high-throughput screen-
ing for bioactivity and bioinformatic approaches to organize 
existing chemical toxicity information. As noted by Egeghy 
et al. (2012): “Of the roughly 100,000 chemicals that have 
at least limited toxicity information available, less than 
one-fifth also have exposure information—and for most of 
these the information is of limited utility (e.g., production 
volume).”

Risk is a combination of hazard and exposure—if the 
exposure level is sufficiently low, even if uncertain there is 
little or no risk. Similarly, if the hazard level is sufficiently 
low, exposure is less relevant (Wetmore et al. 2015). High-
throughput risk prioritization efforts that tried to combine 
rapid estimates of chemical hazard and exposure illustrated 
how for some chemical classes (i.e., pesticides) there were 
hundreds of example chemicals with exposure estimates 
while for other classes (e.g., industrial process chemicals 
and ingredients in consumer products) there were almost no 
traditional exposure estimates (Wetmore et al. 2012). This 
“knowledge gap” was compounded by the continued addi-
tion of thousands of new chemicals and/or new chemical 
uses every year (US NRC 2012a). Thus, in 2012 the National 
Research Council (US NRC) released a new report entitled 
“Exposure Science in the 21st Century” (US NRC 2012a).

The NRC report identified significant data needs to 
inform the estimation of chemical risk (US NRC 2012a). 
Since for many chemicals only the total production volume 
or volume released to the environment was known, the devel-
opment of methods for determining the fraction of that total 
chemical to which populations are exposed (i.e., the “intake 
fraction”) was a primary goal (Nazaroff et al. 2012). Efforts 
to relate basic exposure information to markers of exposure 
in biomonitoring data had limited success (Gangwal et al. 
2012). The existing fate and transport models were designed 
for making predictions for exposure due to chemical migra-
tion from industrial releases (i.e., “far-field” sources) (Arnot 
et al. 2006) through the environment (including air, water, 
and the food web) for tens of thousands of chemicals (Arnot 
et al. 2012). However, there was a growing realization that 

the primary source for many organic chemicals that were 
present in biomonitoring data was due to “near-field” 
sources in the home, such as consumer products and articles 
of commerce (e.g., furniture and flooring) (Wallace et al. 
1987; Wambaugh et al. 2013). Unfortunately, there were no 
high-throughput models for describing this near-field expo-
sure to chemicals (Arnot et al. 2012; Wambaugh et al. 2013). 
In particular, there was a great need to determine the pres-
ence and weight fraction of chemical ingredients in products 
that were commonly in homes but for which there were few 
public sources of consistent information (Goldsmith et al. 
2014; Dionisio et al. 2015; Isaacs et al. 2016).

To address the need to provide exposure context for 
twenty-first century toxicity testing, programs such as the 
EPA’s Exposure Forecasting (ExpoCast) project (Hubal 
2009) and the Emory Health and Exposome Research 
Center: Understanding Lifetime Exposures (HERCULES) 
were initiated. Through a combination of model develop-
ment and new experimentation, in particular the advent of 
new, non-targeted screening mode high-resolution mass 
spectrometry (e.g., metabolomics and exposomics), expo-
sure science has begun to implement the NRC vision as 
well as develop similar capacity to high-throughput toxic-
ity testing (Park et al. 2012; Goldsmith et al. 2014; Wam-
baugh et al. 2014; Auerbach et al. 2015; Dionisio et al. 2015; 
Egeghy et al. 2016; Rager et al. 2016).

Advances in exposure science

Within “Exposure Science and the 21st Century” the NRC 
specifically mentions the need for advances in the technol-
ogy and analyses of exposure monitoring data (US NRC 
2012a). This is perhaps epitomized by the exposome, i.e., 
“every exposure to which an individual is subjected from 
conception to death” (Wild 2012). The NRC recognized that 
the use of tools such as high-resolution mass spectrometry to 
identify factors including diet, behavior, and disease might 
fundamentally alter the way in which exposure science could 
be conducted (US NRC 2012a).

Advances in raw computational power have also allowed 
the implementation of new algorithms and approaches (e.g., 
computational tools) to further transform the way in which 
exposure science was conducted (Egeghy et al. 2016). Com-
putational exposure science has been enabled by algorithms 
such as Markov Chain Monte Carlo (Metropolis et al. 1953) 
for Bayesian analysis and the Random Forest algorithm 
(Breiman 2001) for machine learning. For example, more 
systematic analyses of data such as exposure biomarkers 
revealed trends, enabling simple models largely based on 
whether or not chemicals are used in the home to explain half 
of the chemical-to-chemical variance in exposures that can 
be inferred from exposure biomonitoring aspects US Cent-
ers for Disease Control and Prevention National Health and 
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Nutrition Examination Survey (NHANES) (Wambaugh et al. 
2014). The need for describing near-field sources to chemi-
cal exposure (e.g., consumer products) has been addressed 
both on a whole home level (Goldsmith et al. 2014) and with 
greater precision for specific product classes (e.g., personal 
care products) (Csiszar et al. 2016). Computational expo-
sure science has been enabled by algorithms such as Markov 
Chain Monte Carlo (Metropolis et al. 1953) for Bayesian 
analysis and the Random Forest algorithm (Breiman 2001) 
for machine learning. For example, more systematic analy-
ses of data such as exposure biomarkers revealed trends, 
enabling simple models largely based on whether or not 
chemicals are used in the home to explain half of the chem-
ical-to-chemical variance in exposures that can be inferred 
from exposure biomonitoring aspects of the US Centers for 
Disease Control and Prevention National Health and Nutri-
tion Examination Survey (NHANES) (Wambaugh et al. 
2014). The need for describing near-field sources to chemi-
cal exposure (e.g., consumer products) has been addressed 
both on a whole home level (Goldsmith et al. 2014) and with 
greater precision for specific product classes (e.g., personal 
care products) (Csiszar et al. 2016).

The ability to algorithmically process large data sets 
to reveal sometimes remarkable trends and correlations is 
described as “Big Data” analytics and has been applied 
with success to exposure science (Egeghy et al. 2016). In 
order to feed these algorithms, large amounts of data are 
needed in a format that can be processed by a computer (i.e., 
“machine readable”). Efforts have been made to capture data 
that was previously only human readable in computer data-
bases (Goldsmith et al. 2014), and to harmonize databases 
allowing broader analyses to be conducted (Dionisio et al. 
2015). These analyses have identified as many or more gaps 
as they have answered. For example, while chemicals within 
consumer products are now well characterized, chemicals 
within articles of commerce are not.

Big Data analytic techniques show promise for address-
ing long outstanding problems in the field of toxicology, in 
particular with respect to mixtures (Simmons 1995; Sturla 
et al. 2014; Hartung 2017). For example, although HTS is, 
by definition, high-throughput, testing all permutations of 
even 100 chemicals  (2100 combinations, or roughly a 1 with 
thirty zeros after it) would be literally impossible. However, 
it has been recognized that the occurrence of chemicals in 
environmental media (such as dust in a child care center) 
are structured (Ryker and Small 2008; Tornero-Velez et al. 
2012). Similar combinations of the same chemicals often 
recur, likely due to patterns in consumer purchasing and 
other human activities. Kapraun et al. (2017) recently used 
the technique of Frequent Itemset Mining (FIM) (Borgelt 
2012) to identify combinations of chemicals that frequently 
occurred in the US blood samples obtained by NHANES. 
FIM is an example of a Big Data analytics technique that 

is more commonly used by retailers to identify products 
that are frequently purchased together (for example, bread 
is purchased in conjunction with peanut butter and jelly). 
What Kapraun et al. (2017) found were a few dozens of 
combinations of chemicals that co-occurred in significant 
fractions of the US population (> 30%). By reducing the 
mixtures problem from all possible mixtures to dozens of 
the most relevant mixtures, FIM allows HTS to examine 
relevant mixtures for potential synergistic effects (Ryker and 
Small 2008; Kapraun et al. 2017). Further, recognition that 
there are frequent combinations of chemicals may increase 
the statistical power of environment-wide association stud-
ies (EWAS, discussed below) that have typically focused on 
univariate associations between single analytes and health 
effects (Patel et al. 2013) and can now focus on more multi-
factorial environmental causes of adverse outcomes (Patel 
and Ioannidis 2014; Bell and Edwards 2015).

Though human activity can and does give rise to structure 
in chemical exposure, it often remains difficult to determine 
when and why a chemical is used (Dionisio et al. 2015; 
Isaacs et al. 2016; Phillips et al. 2017). Chemical use in turn 
dictates the exposure pathway (e.g., direct application or 
accumulation through the food web) (Auerbach et al. 2015). 
Chemical exposure information problems can be addressed 
on a per chemical basis, but are important to overcome 
more rapidly and systematically (Wambaugh et al. 2013; 
Auerbach et al. 2015). New tools and databases allowing 
greater capacity for systematic analysis should be expected 
to continue to answer some questions while identifying new 
research areas capable of transforming exposure science.

For example, describing thousands of chemicals with suf-
ficient accuracy to allow high-throughput exposure models 
to make predictions remains an open and difficult challenge 
(Arnot et al. 2012; Goldsmith et al. 2014). For example, the 
High-Throughput Stochastic Human Exposure Dose Simu-
lator (SHEDS-HT) can simulate aggregate exposure to a 
chemical from multiple pathways in the home, including 
chemical emission from and use of diverse consumer prod-
ucts (Goldsmith et al. 2014). However, in order for SHEDS-
HT to run, estimates of the chemical presence, weight frac-
tion, and emissivity must be available to “parameterize” the 
model. Although public databases exist to describe con-
sumer products in this manner for many thousands of chem-
icals and products (Goldsmith et al. 2014; Dionisio et al. 
2015; Rager et al. 2016), there are many more chemicals and 
products for which this information is complete. One recent 
example of applying machine learning is the development 
of “functional use” models which can predict the role served 
by a chemical within a formulation (e.g., dye or surfactant) 
from physico-chemical properties that can be predicted 
from structure. The outputs of functional use models allow 
exposure models like SHEDS-HT to make predictions for 
chemicals and chemical-containing products where data are 



Archives of Toxicology 

1 3

not available, albeit with greater uncertainty (Rager et al. 
2016). One tantalizing prospect offered by predicting the use 
of chemicals from structure alone is that libraries of chemi-
cals that have been screened for bioactivity, as in the Tox21 
project, can be further screened to identify novel chemical 
uses among chemicals with lesser bioactivity (Phillips et al. 
2017). Though the current models fall short of commercial 
needs (e.g., the potential use of a fragrance can be predicted 
but the pleasantness of that fragrance is more challenging 
(Juberg et al. 2017)), there is enormous potential for “green 
chemistry” (Anastas and Warner 2000) using high-through-
put exposure tools and HTS (Phillips et al. 2017).

Advances in exposure science have most importantly pro-
vided critical “real world” context for data obtained from 
HTS for chemical hazards. Risk prioritization on the basis of 
toxicity predicted from in vitro HTS and estimates of expo-
sure show great potential. Risk-based prioritization separates 
those chemicals where, for the general population, the mar-
gin between putative hazardous dose and exposure is small 
(i.e., greater risk) from those chemicals where the expected 
margin is quite large (i.e., lower risk) (Rotroff et al. 2010; 
Aylward et al. 2011; Wetmore et al. 2012; Thomas et al. 
2013a, b). Unfortunately, it was quickly recognized that for 
non-pesticidal chemicals there are few estimates of exposure 
rates for the general public (Wetmore et al. 2015). Empirical, 
i.e., statistical (Gangwal et al. 2012) and mechanistic (Wam-
baugh et al. 2013) descriptions of human exposure were not 
initially found to be adequate for dealing with the large num-
bers of chemicals being screened for toxicity. Once large-
scale information on chemical use (Dionisio et al. 2015) 
became available, however, statistical models that focused 
on exposure pathways (i.e., route of exposure) as identified 
by use became able to provide very approximate, but use-
ful, estimates of human exposure (Wambaugh et al. 2013, 
2014). The approximate estimates were very coarse, with 
between six and eight orders of magnitude of uncertainty 
(e.g., exposure is between a µg/kg body weight/day and a 
pg/kg body weight/day). Yet, if the hazard was estimated 
to occur at a higher rate (e.g., tens of mg/kg bodyweight/
day) there still might be a sufficient margin to consider a 
chemical as a lower risk priority. In fact, when combining 
high-throughput exposure estimates with toxicity estimates 
from the ToxCast project, Wetmore et al. (2015) found that 
many chemicals have an expected margin of, at worst, a mil-
lion fold. Thus, approximate but high-throughput exposure 
tools can be combined with HTS to sift among thousands 
of chemicals to identify the highest priority targets for addi-
tional research (Thomas et al. 2013a, b).

In an effort to advance exposure science, US EPA has 
initiated the Systematic Empirical Evaluation of Models 
(SEEM) framework, which is designed to calibrate expo-
sure predictions based on empirical measurements. This 
framework implements a consensus approach for validation 

of exposure predictions, and is being applied in a wide range 
of occupational and environmental exposure circumstances 
(Wambaugh et al. 2018).

Notably, first attempts to combine the Exposome concept 
with the Adverse Outcome Pathways (AOPs) of TT21C are 
on the way (Escher et al. 2017). They promise to make sense 
of the exposure patterns by using mechanistic information.

High‑throughput toxicokinetics

High-throughput in vitro screening has the potential to iden-
tify concentrations which cause biological perturbations To 
relate these perturbations to in vivo hazard methods for 
in vitro–in vivo extrapolation (IVIVE) methods are needed 
for toxicokinetics (Coecke et al. 2013; Bell et al. 2018). Tox-
icokinetics describes the absorption, distribution, metabo-
lism, and excretion of a chemical and its metabolites by the 
body (O’Flaherty 1981). Toxicokinetics allows the relation-
ship between an external exposure  (e.g., chemical inges-
tion) and tissue concentrations caused by that exposure to be 
described. For most chemicals, however, chemical-specific 
toxicokinetic models are unavailable (Wetmore et al. 2012). 
Toxicokinetic data have been typically obtained using labo-
ratory animals. These studies are expensive, but can be used 
to make human predictions via physiologically based toxi-
cokinetic (PBTK) models if sufficient data are available (Tan 
et al. 2018; Cohen Hubal et al. 2019).

In vitro tools have been developed to anticipate pharma-
cokinetic behavior for the pharmaceutical industry using 
in vitro methods (Shibata 2002; Waters et al. 2008). These 
methods typically produce predictions within a factor of 
three of what is observed in human clinical trials (Wang 
2010). In the last 10 years a series of studies have addressed 
the use of these pharmaceutical methods for environmen-
tal chemicals (Rotroff et al. 2010; Tonnelier et al. 2012; 
Wetmore et al. 2012, 2013, 2015). These so-called “high-
throughput toxicokinetic (HTTK)” approaches provide 
chemical-specific predictions of toxicokinetics for chemicals 
where there are no other data.

Chemical-specific hazardous doses can be predicted 
from in vitro bioactive concentrations using IVIVE based 
upon HTTK. An approach known as “reverse dosimetry” 
(Tan et al. 2006) is used to predict the dose rate (mg/kg 
body weight/day) that would be needed to cause a steady-
state plasma concentration equal to the bioactive in vitro 
concentration. A model (Wilkinson and Shand 1975) for 
predicting steady-state plasma concentrations can be used 
based on the measured plasma binding and metabolic clear-
ance Comparisons between the bioactive doses predicted by 
reverse dosimetry and hazardous doses observed in toxicity 
studies found this method for IVIVE to be conservative (i.e., 
predicting lower hazardous doses than observed) (Wetmore 
et al. 2013).
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HTTK currently relies on two medium throughput in vitro 
assays: The first assay characterizes the amount of chemi-
cal that is free in the presence of human plasma protein 
(Waters et al. 2008) and the second assay characterizes the 
rate of metabolism of the parent chemical by incubating a 
known initial concentration of the chemical with a suspen-
sion of human hepatocytes, and drawing aliquots over to 
time (Shibata 2002). Both assays require the development of 
chemical-specific methods for the determination of chemi-
cal concentration in samples, for example, to examine the 
disappearance of chemical due to metabolic activity. Devel-
opment of chemical-specific analytical methods is time 
consuming, and not necessarily always successful (Tolonen 
and Pelkonen 2015). For this reason, attempts have been 
made to develop and apply quantitative-structure property 
relationships (QSPR) for both protein binding (Ingle et al. 
2016) and clearance (Sipes et al. 2017). While HTTK data 
have so far been obtained for hundreds of chemicals, QSPR 
methods based on these data allow the application of HTTK 
to much larger sets of chemicals. While currently limited 
to two primary assays, additional in vitro measures, e.g., 
absorption (Artursson and Karlsson 1991; Wetmore et al. 
2012), are under evaluation and may be adopted as predic-
tive performance can be demonstrated for non-pharmaceu-
tical compounds.

Lacking clinical data on environmental chemicals, the 
uncertainty in HTTK must be carefully quantified through 
comparisons with in vivo data (Yoon et al. 2014). The pre-
dictions of HTTK have been shown to be often within a 
factor of three, and generally biased toward overestimation 
of plasma concentration (Wambaugh et al. 2015). HTTK 
IVIVE has been evaluated by collecting matched in vitro 
and in vivo toxicokinetic data in rats for several dozen 
chemicals. Generally, peak, time-integrated (area under the 
curve, AUC), and steady-state plasma concentrations could 
be moderately well predicted, while properties like over-
all clearance rate were generally underestimated for non-
pharmaceutical chemicals (Wambaugh et al. 2018). This 
difference is potentially due to the omission of processes 
like extra-hepatic metabolism and active secretion/resorp-
tion in the kidneys from current in vitro toxicokinetic assays 
(Rotroff et al. 2010). Additionally, the duration of the hepatic 
metabolism assay, which is conducted over four hours, may 
be too short to properly characterize chemicals with rela-
tively slow clearance (Wambaugh et al. 2015). Supplemental 
Table 3 provides a summary of analysis methods and tools.

High‑throughput exposomics

The NRC report “Exposure Science in the 21st Century: A 
Vision and A Strategy” summarized successes of exposure 
science and development of powerful new approaches to 
complement the strategies of “Toxicity Testing in the 21st 

Century. Examples are summarized in Figure S2 of the NRC 
report, and include remote sensing, use of geographic infor-
mation systems, nanosensors, participatory assessments, 
biomonitoring and integration by source to dose models 
(US NRC 2012a). The report omitted critical review of the 
practical limitations of these approaches to address the expo-
some and personalized environmental health. Environment, 
defined broadly, and gene-environment interactions account 
for most human disease, while only a small fraction is attrib-
utable to genetics alone (Rappaport 2016). Humans have 
more than a million exposures over a lifespan (Idle and Gon-
zalez 2007), and this spectrum is amplified by the sequen-
tial nature of exposures, exposure interactions, cumulative 
biological responses to exposures and variable reparative/
restorative functions in response to frequency and intensity 
of exposures (Miller and Jones 2014). Only a small frac-
tion of the million or more human chemical exposures have 
been evaluated for health effects, and development of effec-
tive means to monitor lifelong exposures and health impacts 
poses a considerable challenge. At the same time, increased 
attention to personalized health brings awareness that each 
individual has a unique set of exposures. Additionally, stake-
holders are increasingly demanding greater specificity and 
sensitivity to address individual health concerns. Some of 
these challenges are summarized in Fig. 3 as a foundation 
and motivation for new approaches to complement the NRC 
vision for toxicity testing in the 21st Century.

Perhaps the most critical challenge to toxicity testing 
and exposure science is the logistics of measuring and test-
ing one chemical at a time. While fundamentally sound 
to address a relatively small number of hazardous agents 
causing severe toxicities, the approach becomes impractical 
for a million or more exposures having more moderate or 
delayed toxicities. For instance, the Human Metabolomics 
DataBase (HMDB) began cataloguing chemicals in human 
plasma about 10 years ago and has added about 6000 new 
chemicals per year; at the current rate, it will take more than 
a century to have a catalogue of one million chemicals in 
human plasma (Uppal et al. 2016). One can similarly pro-
ject from the remarkable achievements of ToxCast/Tox21 
screening of 8000 chemicals during the past decade; to 
screen one million chemicals at this rate will take a mil-
lennium. If this can be scaled to 10,000/y, it will only take 
100 years. Unfortunately, the latter approach may not capture 
toxicities of products of environmental chemicals produced 
within the biosphere unless they are within the suspect list of 
chemicals subjected to screening. So without diminution of 
the important advances in toxicity testing and exposure sci-
ence, motivation exists to complement these strategies with 
efforts to broadly measure the human exposome and support 
personalized environmental health assessments.

High-resolution metabolomics (HRM) was developed 
as a practical approach for personalized medicine (Johnson 
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et al. 2010; Walker et al. 2016a). The approach uses ultra-
high resolution mass spectrometry with liquid chromatog-
raphy and electrospray ionization to measure metabolites 
in most human metabolic pathways (Jones et al. 2012). By 
measuring metabolites in most pathways, HMR provides a 
global approach to measure biological effects (see Fig. 4). 
Importantly, by pairing reverse phase liquid chromatography 
(C18) and hydrophilic interaction liquid chromatography 

(HILIC) together with switched negative and positive elec-
trospray ionization in a dual chromatography protocol, the 
approach supports routine detection of more than 20,000 
ions and can be performed for about $100 per sample, ana-
lyzed with three technical replicates (Jones 2016). Compu-
tational methods provide confidence scores for thousands 
of metabolites (Uppal et al. 2016), and absolute quantifica-
tion can be obtained for known chemicals using reference 

Fig. 3  Selected challenges to 
central framework for exposure 
science resulting from expo-
some research and personalized 
health initiatives. Challenges are 
listed on the periphery of the 
central framework (in the blue 
rectangle) (NRC 2012) (color 
figure online)

Fig. 4  Conceptual framework for metabolic phenotyping in exposome research. High-resolution metabolomics provides means to measure bioef-
fects of exposures and link these to internal dose of environmental chemicals obtained from biomonitoring (Walker et al. 2016a, b, c)
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standardization (Go et al. 2015). If such an approach was 
applied to a large-scale study with a million or more indi-
viduals with documented exposures, the results would pro-
vide a large-scale reference for bioeffects. The feasibility of 
this has been established in smaller studies of occupational 
exposure (Walker et al. 2016a, b).

Application of HRM to evaluate metabolic differences 
between seven mammalian species provided the unexpected 
finding that environmental chemicals, including plasticizer, 
insecticide, flame retardant and fungicide contaminant, were 
present in all species (Park et al. 2012). Such environmental 
chemicals are often present at three to five orders of mag-
nitude lower concentrations than intermediary metabolites 
(Rappaport et al. 2014). Quantification in human plasma 
using reference standardization showed that chlorobenzoic 
acid, chlorophenylacetic acid, chlorsulfuron dibutylphtha-
late, dipropylphthalate, octylphenol, pirimicarb, styrene, 
tetraethylene glycol, triethylphosphate, triphenylphosphate, 
tris(2-chloropropyl)phosphate and xylylcarb are present in 
nanomolar and sub-nanomolar concentrations (Go et al. 
2015). The results raise the possibility that affordable analyt-
ical platforms can be developed for biomonitoring to broadly 
survey the occurrence and concentrations of environmental 
chemicals in populations. If such data were available, then a 
metabolome-wide association study (MWAS) could be per-
formed to determine which metabolites vary in association 
with a chemical. Examples are available for benzo(a)pyrene 
(Walker et al. 2016a) and chlorophenylacetic acid (Walker 
et al. 2016b), trichloroethylene (Walker et al. 2016c) and 
cotinine (Jones et al. 2016). Applied to large populations, 
this approach could evaluate large numbers of environmental 
chemicals and chemical combinations for associated changes 
in metabolism. Those associations could then be experimen-
tally verified using existing toxicity testing procedures. An 
example of the complete sequence from external exposure to 
internal dose to metabolic effect to disease marker outcome 
is available (Walker et al. 2016a).

HRM provides a foundation for universal exposure sur-
veillance of environmental chemical exposures (Jones 2016); 
while chemical space is effectively infinite (Kirkpatrick and 
Ellis 2004), development of affordable, complementary ana-
lytical platforms to maximize coverageof chemical space 
is practical (Uppal et al. 2016). For instance, gas chroma-
tography (GC) enables detection of non-polar aromatic 
chemicals that do not ionizewell by electrospray ionization 
so that coupling of GC to ultra-high resolution mass spec-
trometry complement HRM to detect hundreds to thousands 
of additional environmental chemicals. Thus, even though 
universal exposure surveillance cannot be construed to mean 
“comprehensive” exposure biomonitoring, feasibility studies 
indicate that measurement of 100,000 or more chemicals 
may be possible with current analytical methods if appro-
priate protocols and computational tools are developed. A 

computational framework to extend this to a million or more 
chemicals is available (Uppal et al. 2016).

Detailed cost–benefit analysis of universal surveillance 
methods to complement toxicity testing of known chemical 
entities is beyond the scope of the current discussion. The 
most critical argument for inclusion of such an approach 
is, however, important as a possible approach to improve 
toxicity testing. Currently, about half of the ions detected in 
mass spectral analyses of human samples are un-identified 
and about half of the ions associated with human disease do 
not match known chemicals in human metabolomics data-
bases (Uppal et al. 2016). This suggests that up to half of 
the chemicals in blood that are associated with disease are 
chemicals that are not within suspect chemical lists. It is 
unclear whether these represent food or microbial metabo-
lites, or possibly uncharacterized environmental products 
derived from the more than 80,000 agents registered with 
the US EPA for commercial use. HRM and associated uni-
versal surveillance approaches could provide an alternative 
means to prioritize chemical substances for toxicity testing. 
Specifically, if applied to large-scale population studies with 
health outcome data, mass spectral features associated with 
specific diseases can be subjected to purification, identifi-
cation and prioritization for targeted toxicity testing. Such 
data would then provide reference data, which could be used 
to address many of the limitations identified in Fig. 3: for 
example, individual profiles could be compared to this ref-
erence to evaluate personalized exposures of concern, and 
personalized exposure models could be developed to facili-
tate remediation.

Making toxicity pathways useful 
in the regulatory process

There have been some efforts to elaborate the toxicity 
pathway concept itself and to make pathway knowledge 
more readily available for application in safety assess-
ment (Whelan and Andersen 2013; Kleensang et al. 2014). 
Although progress has been primarily at the theoretical 
level, the concept itself has gained widespread appeal and 
has helped a great deal to encourage scientists and regula-
tors to start thinking and talking on a mechanistic basis. 
The challenge of exploiting pathway knowledge to inform 
actionable decisions has been approached, at least in part, 
by the development of adverse outcome pathway (AOP) 
descriptions of toxicological processes (Ankley et al. 2010) 
that incorporate toxicity pathways, describe their linkages to 
apical responses and allow identification of specific assays 
needed to actually test a chemical for hazardous properties 
of regulatory concern. Thus AOPs provide a framework to 
more easily bring toxicity pathway assay results into the 
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risk assessment process and represent a formalization of the 
more ad hoc approaches attempted with specific case studies.

The epistemic properties of AOPs

An AOP is a practical analytical tool for collecting, syn-
thesising, reviewing and disseminating knowledge about a 
toxicological process (Vinken et al. 2017). Thus one can 
consider an AOP as a way of ‘managing’ biological knowl-
edge of a mechanistic nature. Moreover, although there are 
certainly gaps in our knowledge that should be filled through 
research, an extensive body of knowledge already exists pri-
marily in the form of peer-reviewed papers that needs to be 
extracted and made available in a form that can be readily 
applied within a risk assessment context.

Analytically, an AOP is a discretization of a process 
occurring within a system into a chain of sequential causally 
related key events (KEs) linked by key event relationships 
(KERs). A molecular initiating event (MIE) triggers the pro-
cess that, under the appropriate conditions (e.g., magnitude 
and duration of insult), leads to an adverse outcome of regu-
latory concern, for example an anticipated specific organ 
toxicity in a human or a population decline of an environ-
mental species. Essentially, a KE reflects the state of the sys-
tem at a particular stage or time, while a KER describes the 
reasons or conditions for the system transiting from one KE 
(upstream) to another (downstream). An important premise 
of AOP theory is that toxicological processes tend to share 
KEs and KERs, not only within an individual organism but 
also across species. Moreover, one MIE may be associated 
with different adverse outcomes, and vice versa. Thus the 
collective knowledge captured by AOPs is best represented 
as a causality network, with KEs being the nodes and the 
KERs being the edges. From a practical perspective, an 
AOP is a structured document that is the product of an AOP 
development process (OECD 2013, 2016a; Villeneuve et al. 
2014a, b) which involves collaborative input from subject 
specialists, expert peer review, and in some cases endorse-
ment by a regulatory body (OECD 2017a).

Another important element of the framework is the AOP 
Knowledgebase (AOP-KB) that provides public-domain 
access to AOP content (http://aopkb .org). The AOP-KB 
developed under the auspices of the Organisation for Eco-
nomic Co-operation and Development (OECD) currently 
comprises a number of complementary on-line software 
modules, with the AOP-Wiki (https ://aopwi ki.org) currently 
being at the core. However, with the anticipated adoption 
of an OECD harmonized template for reporting AOPs, it 
is envisioned that interoperable AOP platforms maintained 
by different parties across the world will soon emerge thus 
transitioning the KB from a centralized to a distributed 
infrastructure. The framework is built with crowdsourcing 
and knowledge-sharing very much in mind, not only for 

the initial development of an AOP but also during ongo-
ing refinement and review. Since an AOP covers many 
levels of biological organization, this naturally stimulates 
and relies upon extensive collaboration across numerous 
scientific disciplines, from molecular toxicologists to epi-
demiologists. Thus the AOP framework and the associated 
AOP development program at the OECD can be seen as 
very much addressing the priority of “knowledge develop-
ment” as described in the TT21C Vision and Strategy and 
the proposed focus on “elucidating toxicity pathways and 
developing an associated data-storage, -access, and -man-
agement system”. Although AOPs have gained widespread 
appeal both in the scientific and regulatory communities, 
there is clear impetus to continue to refine the framework 
(LaLone et al. 2017; Leist et al. 2017; Vinken et al. 2017) to 
ensure it can sufficiently capture key information relevant to 
many important aspects of toxicology including: sensitive 
life stages; species specificity; acute versus chronic and high 
versus low levels of activation (exposure); quantification of 
response dynamics; and simultaneous triggering of multiple 
pathways. In addition, the relationship between AOPs and 
computational models for predictive toxicology is also being 
explored (Wittwehr et al. 2017).

AOPs and risk assessment

An AOP is not a magic bullet. Neither is an AOP a test 
method, a computational model nor a risk assessment. In 
its primary form, today, an AOP is simply a peer-reviewed, 
highly structured textual description of collective knowledge 
of a toxicological process which is supported by scientific 
evidence. To be practically useful in risk assessment there-
fore, the knowledge conveyed by an AOP has to be applied 
through some practical means and for some purpose that is 
relevant to a decision-making context. Outside the context of 
AOPs, mechanistic knowledge has been used for many years 
by different agencies and companies in a variety of sectors to 
support chemical risk assessment. Thus the use of mechanis-
tic knowledge is nothing new per se. However, mechanistic 
information has typically been a ‘nice to have’ rather than 
a ‘need to have’ since the assessment of the potential toxic-
ity posed by a chemical still relies heavily on information 
derived from pathological observations manifest in animal 
studies. This continuing over-reliance on animal testing has 
had the result that for the most part, regulatory toxicology 
is driven more by observation rather than by mechanistic 
reasoning. In reality therefore, mechanistic information, if 
actually available, is typically used to trigger follow-up ani-
mal studies or to increase confidence in a risk assessment 
decision based on animal data.

Responding to the need to increase the efficiency and 
effectiveness of chemical risk assessment through the incor-
poration of modern toxicological tools and methodologies, 

http://aopkb.org
https://aopwiki.org
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the OECD’s Working Party on Hazard Assessment (WPHA) 
recently proposed a framework for Integrated Approaches 
to Testing and Assessment, or IATA (OECD 2017b). The 
output of an IATA is intended to be a conclusion concern-
ing hazard identification, hazard characterization or safety 
assessment that can inform a decision in a certain regula-
tory context. Much like general provisions in risk assess-
ment, an IATA integrates existing information and employs 
weight-of-evidence to decide if a conclusion can be drawn 
or if more information is required through, for example, tar-
geted testing. An IATA draws data from any relevant source 
including: physicochemical properties, computational mod-
els, grouping and read-across, in vitro methods, in vivo ani-
mal studies and human data. However, an important goal 
of IATA is the use of new data-streams coming from non-
animal approaches to not only address the ethical issues sur-
rounding animal testing but also to further enhance levels of 
protection of human health and the environment in an eco-
nomically beneficial and socially acceptable manner. Moreo-
ver, the core or blueprint of IATA is intended to be based 
on mechanistic information and reasoning, ideally presented 
as AOPs and the toxicity pathways therein (OECD 2016b).

An important consideration in the development of the 
IATA framework has been how additional toxicological 
data could be best generated when existing information is 
insufficient to draw a conclusion about a potential chemical 
hazard or risk. In the interests of efficiency both in the gen-
eration of additional data and the consideration of it within 
an assessment, it was considered important to be explicit 
as possible about means of filling typical information gaps. 
This led to the concept of a Defined Approach (DA) to test-
ing and assessment which “consists of a fixed data inter-
pretation procedure used to interpret data generated with a 
defined set of information sources, that can either be used 
on its own, or together with other information sources within 
an IATA, to satisfy a specific regulatory need” (OECD 
2016c). According to DA principles, the following attrib-
utes should be clearly defined: the toxicological endpoint 
being addressed; the intended purpose in a regulatory con-
text; the underlying rationale including mechanistic basis 
(e.g., AOP); the individual information sources (methods) 
used; how the individual information sources are combined 
and processed to arrive at an outcome (prediction); and the 
known uncertainties including limitations of the approach. 
These principles and associated attributes are captured in a 
recommended reporting template (OECD 2016d) that facili-
tates understanding and acceptance of a DA used within 
an IATA by end-users and decision-makers. This addresses 
the reality that irrespective of the scientific validity of a 
DA, trust in the information it delivers depends a great deal 
on how it is described and presented. To complement and 
exploit the development of IATA/DA guidance, in 2015 the 
OECD launched the IATA Case Studies Project within its 

Cooperative Chemicals Assessment Programme (CoCAP) to 
facilitate a collective learning-by-doing process. The project 
is cyclic in that annually member countries and organiza-
tions submit case studies to the WPHA that typically reflect 
particular assessment priorities or interests they may have. 
These are then subject to analysis and review (OECD 2017c) 
by WPHA members with the aim of identifying and describ-
ing aspects such as the overall strengths and weakness of 
the IATA, principle sources of uncertainty, needs for guid-
ance development, and any potential regulatory applications 
of the IATA in addition to that foreseen by the developer. 
The case studies considered so far have been quite varied 
and cover a number of human health and ecotoxicological 
endpoints; different chemical classes including nanomateri-
als; predictive approaches such as grouping, read-across and 
ab initio; and assessment aims including hazard identifica-
tion, hazard characterization, and screening and prioritiza-
tion. In addition to the OECD programs, there are many 
other IATA related activities being pursued internationally 
(Tollefsen et al. 2014; Berggren et al. 2015, 2017) which are 
providing a solid foundation for transitioning to pathway-
informed approaches to achieve the aims of sound chemicals 
management worldwide.

There have been a number of notable successes regarding 
the impact of IATA using non-animal methods on chemi-
cals regulation. In 2016 the European Union changed the 
REACH information requirements for skin corrosion/irrita-
tion, serious eye damage/eye irritation, acute dermal toxicity 
(Commission Regulation (EU) 2016) and skin sensitization 
(Commission Regulation (EU) 2016) to make data from 
in vitro methods the default. Concerning skin sensitization, 
the revised REACH legal text now makes specific reference 
to ‘key events’ and the combination of test data derived from 
associated in vitro methods. There were many elements and 
actors that had to come together to make this happen which 
not only represents a scientifically superior way to assess 
chemicals regarding skin sensitization potential, but also 
heralds a substantial shift in the formulation of information 
requirements within a legislative context, i.e., with a refer-
ence to toxicological pathways that can be captured within 
an in vitro assay rather than to conventional pathological 
observations in animal models (Casati et al. 2013, 2018). 
There were many important elements that had to be put in 
place to ultimately put forward an alternative approach to 
skin sensitization assessment that was acceptable to regula-
tors (JRC (Joint Research Centre) 2017) These included the 
development and endorsement of the skin sensitization AOP 
(OECD 2012), the adoption of the first 3 in vitro methods 
as OECD Test Guidelines (442C, 442D and 442E) and the 
publication of OECD guidance on the reporting of DAs and 
individual information sources to be used within IATA for 
skin sensitization (OECD 2017d). The latter includes (in 
annex) descriptions of 12 different case studies which clearly 
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demonstrate that the same mechanistic knowledge base (i.e., 
the AOP in this case) and tool box (i.e., in vitro and in silico 
methods) can rationally inform the design of different DAs 
that address the same problem demonstrating similar levels 
of predictive performance. In 2015, the US EPA announced 
its plans to incorporate a pathway-informed in vitro approach 
(Browne et al. 2015) into the Tier 1 battery of the Endocrine 
Disruptor Screening Program (EDSP) to test chemicals for 
estrogen receptor bioactivity (US EPA 2014a, b). This has 
paved the way for the anticipated introduction of similar 
in vitro high-throughput screening solutions to address endo-
crine disruption via androgen and thyroid toxicity pathways. 
The EPA’s Office of Pesticide Programs (OPP) has put for-
ward its “Strategic Vision for Adopting 21st Century Sci-
ence Methodologies” (US EPA 2017) and has committed 
itself to the development and evaluation of new technologies 
that can be combined with a hypothesis-driven approach to 
underpin IATA that can supplement or replace more tradi-
tional methods of toxicity testing and risk assessment. One 
near-term objective is to propose a set of IATAs based on 
non-animal methods that satisfy the information require-
ments for acute toxicity (the “6 pack”) requested for pes-
ticides. Additional case studies involving endocrine active 
compounds are currently underway within the OECD IATA 
initiative (OECD 2019).

Looking to the future, AOPs and IATA will likely con-
tinue to serve as a bridge. A bridge between different sci-
entific communities, from computational biochemists and 
molecular toxicologists to epidemiologists and clinicians, 
who can contribute to the development of AOPs; between 
method developers providing the tools and risk assessors 
who need solutions; and between regulatory scientists 
and decision-makers whose have a collective responsibil-
ity to translate new approaches into the regulatory arena. 
But AOPs also provide another important bridge, that is 
between toxicity pathways described at the molecular and 
cellular level and the apical endpoints that current regula-
tion is based on, including topical toxicities, skin sensiti-
zation, acute and chronic systemic toxicities, cancer, and 
reproductive toxicity. There are many who highly value 
this aspect of AOPs since it may offer the possibility of 
retaining the current regulatory basis for characterizing 
the toxicological hazard of chemicals while at the same 
time exploiting new types of data derived from in vitro 
and computational methods. This of course implies that it 
will be eventually possible, and desirable, to use AOPs as 
a means to construct models or DAs that predict conven-
tional endpoints. This “marrying the old with the new” 
strategy may indeed accelerate the uptake of new science 
in risk assessment to some extent. However, it is debatable 
if this would eventually constitute the paradigm shift actu-
ally proposed by TT21C. An alternative strategy to fully 
realize that vision would be to use the AOP framework 

to facilitate a pivotal, paradigm-shifting transition from 
defining toxicological hazard not in terms of conventional 
endpoints associated with animal models but instead in 
terms of intermediate key events specific to the species of 
concern. Only then will there be a sound scientific basis to 
adapt regulatory information requirements and risk assess-
ment methodology to exploit twenty-first century tools and 
thinking to its fullest.

The next generation of risk science

In the last 25 years, a transformation in biological under-
standing has happened, but the practical implication for our 
daily work as risk assessors and risk managers often goes 
unrecognized. The exploration of the genome and epige-
nome, advent of high-throughput biological assays, and the 
explosion of new scientific information pertaining to disease 
causation alone dictate that we must embrace new ways of 
thinking about risk assessment science. New science is being 
used to inform risk assessment, but probably has not been 
as widely applied as warranted. It must be recognized that 
environmental regulations, risk-management decisions, and 
the scientific support of these actions are based on legal 
precedent in successful court cases. This is a criterion not 
generally required of science in general. Consequently, there 
is a tendency to rely on “tried and true” approaches that have 
been utilized successfully in the past. New types of science 
will also have to withstand challenge in courts of law. The 
initial uses of new types of science in support of regula-
tion likely will be accompanied by traditional, confirmatory 
science (Chiu et al. 2013). Such side-by-side evaluations 
will help build legal precedent for new methods, as well as 
stakeholder confidence in new methods. As precedent devel-
ops, new types of science to inform risk assessment will 
begin to stand on their own. In a variety of non-regulatory 
applications, such as prioritizing chemicals for testing and 
additional assessment, emergency response, and clean-up 
activities, new science is playing a significantly larger role, 
particularly when traditional data are not available or are 
limited. In this paper, we focus on integrating information 
across an array of data types to evaluate risks in a variety of 
contexts. Almost all new data types can help us understand-
ing public health risks in some way. The challenge is how 
to correctly interpret data and fit the puzzle pieces together.

Here, we discuss risk assessment approaches that have 
broad applications: (1) informatic methods to find, organ-
ize, and integrate risk assessment information; (2) data 
confidence evaluation in different risk assessment appli-
cations; (3) data mining and bioinformatic analyses; (4) 
novel ways to build and use mode of action networks; and 
(5) new data types in dose–response assessment.
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Informatic methods to find, organize and integrate risk 
assessment information

One change that is occurring in risk assessment is the identi-
fication, organization and synthesis of the relevant literature 
itself. Often, we can no longer rely exclusively on human talent 
alone for this central task of risk assessment. The amount of 
literature that must be reviewed for risk assessments is grow-
ing exponentially. A disease of interest, such as cancer, will 
have more than 100,000 new papers published a year, adding 
to the > 30 million pre-existing studies. For well-researched 
chemicals, the potentially relevant number of publications 
identified in traditional key word searches often includes tens 
of thousands of papers. Upon reflection, it becomes obvious 
that individual scientists or even teams of scientists are no 
longer able to do what has been done in the past, i.e., to read 
the relevant literature, organize and integrate information into 
new knowledge for risk assessment, without computational 
help. Therefore, scientists are turning to natural language pro-
cessing to facilitate the systematic review of the literature.

Natural language processing is a discipline at the inter-
section of linguistics, computer science and artificial intel-
ligence. EPA and other regulatory agencies are beginning to 
apply this approach to help identify the likely most relevant 
information for further human review (Painter et al. 2014; 
Gabb and Blake 2016; Gonzalez et al. 2016; Howard et al. 
2016). Computer scientists and a new breed of librarians use 
computer algorithms to help identify and sort papers into 
topics of interest, and exclude off-topic papers, thus, playing 
a substantial role in the development of risk assessments. 
Essentially, computer algorithms search the text of pub-
lished papers for similarities in language and group papers 
accordingly; a “seed” set of highly relevant papers, selected 
by humans, informs this process. Computers make the pro-
cess of identifying information substantially faster and less 
resource intensive, but human curation is still required to 
refine and ensure accuracy. Computer algorithms, which 
“read”, summarize textual descriptions, and write draft 
documents are being developed but are not yet sufficiently 
refined for routine deployment in risk assessment (Blake 
and Lucic 2015). Also in development are programs that can 
extract tabular and quantitative data (e.g., dose–response/
concentration–response data, disease incidence) from the 
primary literature and manage it within databases. This latter 
category is important as it allows for re-analysis and meta-
analysis of a chemical’s data on specific effects (Druwe and 
Burgoon 2016).

Criteria for data confidence evaluation in different risk 
assessment applications

Common to all risk assessments is an evaluation of uncer-
tainty in the underlying data and, hence, the conclusions 

based on these data. Some criteria for reducing uncertainty 
are the same as for traditional data, such as reproducibil-
ity and adequate reporting of methods. Other criteria are 
specific to new methodologies. The first step in this pro-
cess is to determine which studies meet minimum tech-
nical quality. This is particularly important in a rapidly 
developing field like omics where the best practices and 
our scientific understanding is rapidly changing. A study 
that was considered as ‘state of the art’ 2 years ago may 
now have obvious flaws. The Systematic Omics Analysis 
Review (SOAR) protocol was used for evaluation of tran-
scriptomic data (McConnell et al. 2014). This approach is 
currently being expanded to other data types. Others have 
published systematic review schemes that can be very use-
ful, although SOAR appears to be the most parsimonious 
(Dearfield et al. 2016; Vandenberg et al. 2016).

Subsequent to identification of the minimum technical 
criteria, additional restrictions may be placed on data use 
and these can vary by type of assessment. For screening 
and prioritization, the types of data used are more flex-
ible and can be derived from various species, tissues, cell 
types and levels of mechanistic understanding. For exam-
ple, data from invertebrate species like yeast and daphnia 
have proven very informative for comparative toxicity 
testing and investigation of basic biology (Garcia-Reyero 
et al. 2012; Hartman et al. 2015; Goldstein and King 2016; 
Gust et al. 2016; North et al. 2016). For regulatory assess-
ment, we currently prefer data from either human cells or 
from vertebrate cells focusing on highly conserved pro-
cesses in the tissue of interest, because of the importance 
on cell-type and tissue identity in disease (Greene et al. 
2015; Gross and Ideker 2015). An exception to the tissue-
specific data criterion is observed disruption of critical 
mechanisms common to most cell and tissue types (e.g., 
stem cell population modification, epigenomic remodeling, 
cell cycle alterations, DNA repair impairment, endocrine 
disruption). Such disruptions can be linked to either the 
same disease in different tissues (e.g., cancer) or differ-
ent diseases resulting from a common mechanism (e.g., 
chronic inflammatory diseases). Additionally, the closer to 
the intact organism the experimental protocol, the greater 
the confidence in the data. This is because of the impor-
tant roles that metabolism and cell-to-cell and tissue-to-
tissue interaction play in disease. To the extent feasible, 
information on humans is also sought, as the absence of 
such data introduces significant uncertainty (Zeise et al. 
2013; Krewski et al. 2014; Wetmore et al. 2014; Abdo 
et al. 2015; Eduati et al. 2015; Schulte et al. 2015; Iavicoli 
et al. 2016; Kenyon et al. 2016; McCullough et al. 2016; 
Bowers and McCullough 2017). Overall, the understand-
ing of the mechanistic connections between exposure and 
response and the impact of various risk modifiers increases 
our confidence in the risk assessment.
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Although tempting, it is simply not practical to create an 
ordered list of preferred data types in terms of determining 
causation. For instance, a blanket statement that animal stud-
ies are better predictors of human effects than in vitro human 
cell studies is not appropriate or correct. Each data type, be 
they from epidemiological studies, in vivo animal studies, 
in vitro human cells, has specific strengths and weaknesses. 
It is the combination of the available data that synergize to 
lead to a specific level of causal certainty and overall confi-
dence in the assessment. In silico models, including models 
based on machine learning, also have varying confidence 
and certainty. There may be times when they outperform the 
individual assays they use as input data, and others where 
they underperform (Knudsen et al. 2015; Kleinstreuer et al. 
2016a, b). Again, this is a place where predictive perfor-
mance becomes important.

Data mining and bioinformatic analyses

Data mining and bioinformatic analyses are areas where 
significant progress in being made. The National Institutes 
of Health (NIH), the European Community and others 
have established enormous data warehouses that archive 
published biological data. As a consequence, data can be 
acquired and analyzed as never before (Luo et al. 2015; 
Snider et al. 2015; Zhang et al. 2015a, b; Gonzalez et al. 
2016; Juberg et al. 2017). It should be noted that integration 
of information from various data types (genomics, transcrip-
tomics, metabolomics, proteomics, systems biology, and net-
work biology) is what is truly needed, but is difficult. A few 
common databases and their content include: NIH/NCBI 
BioSystems which annotates integrated molecular pathways 
by source, species, biological function/process, disease/
toxicity relevance and availability of probing assays; NIH/
NCBI Gene Expression Omnibus and European Community 
ArrayExpress with MIAME-compliant functional genomics 
data; the NIH Roadmap Epigenomics Project that provides 
epigenomic maps for stem cells and primary ex vivo tissues 
representing tissues and organ systems frequently involved 
in human disease; NIH/NCBI Genotypes and Phenotypes 
(dbGaP) that catalogues interactions of genotype and phe-
notype in humans; Tox21 Consortium’s high-throughput 
assays results; and the US EPA’s Safer Chemicals Program 
that has a computational toxicology database. Additional 
database resources are shown in Supplemental Tables 2 and 
3; see also Zhang et al. (2015a, b). Currently, EPA is using 
these types of databases to help inform the understanding 
of mode of action networks, identify and characterize sensi-
tive populations and risk modifiers, and to help character-
ize dose–response. Development of mechanistic knowledge 
has been fueled by the explosion in high-throughput omics 
data and development of various computational methods that 

facilitate integration of these data into biological networks 
(Greene et al. 2015; Gross and Ideker 2015).

Understanding environmental disease causation and risk 
modification involves understanding interactions within 
biologic networks (Geer et al. 2010; Bouhifd et al. 2015a, 
b; Greene et al. 2015; Gross and Ideker 2015; Zhang et al. 
2015a, b; Oki and Edwards 2016). Due to functional inter-
dependencies among molecular pathways, a disease is rarely 
a consequence of an abnormality in a single gene or even 
pathway, but reflects disruption of complex intracellular net-
works. Many genes contribute to each phenotype and each 
gene contributes to multiple phenotypes (Goh et al. 2007; 
Hartman et al. 2015; Darabos et al. 2016). Importantly, 
individuals or subpopulations with the same disease can 
have different perturbations (Schadt 2009; Barabasi et al. 
2011; Ideker and Krogan 2012). Additionally, the critical 
role of epigenetic modifications has begun to be elucidated 
(Kuppusamy et al. 2015; Schulte et al. 2015; Bowers and 
McCullough 2017). Nuances in network functions are the 
basis for varying susceptibilities in the human population, 
and can define the underpinnings of mixture interactions 
(Yang et al. 2012). Overly simplistic modes of action (MOA) 
are often insufficient to capture our current level of biologic 
understanding or explain public health risks. In this section, 
we will explore innovative ways to develop MOA networks 
and how these more rapidly developed and more robust mod-
els can improve risk assessment. These approaches will be 
discussed in more detail below.

Innovative ways to build mode of action networks

Currently, the US EPA and others are making extensive 
use of the broader literature on pathogenesis combined 
with chemical-specific information to help develop 
mode of action (MOA) networks (US NRC 2017). The 
medical research community has worked extensively to 
develop robust disease models, such as those housed in 
the National Biosystems Institutes of Health’s National 
Center for Biotechnology Information (NIH/NCBI) data-
base. BioSystems (https ://www.ncbi.nlm.nih.gov/biosy 
stems /) is perhaps the most comprehensive biological 
pathways knowledgebase currently with distinct advan-
tages: robust models exist for many major diseases; mod-
els are periodically updated and linked to the underlying 
publications; species and tissue specific, human models 
and “bioconserved” models that facilitate cross-species 
extrapolation are available; importantly, models include 
various data types measured with various methods (e.g., 
omic events, miRNA regulation, transcription, cell signal-
ing, traditional upstream events and prototypic outcomes) 
at different levels of biologic organization, models are 
also linked to the broad array of other NIH databases, 
e.g., Gene, PubMed, BioAssay. Additionally, a variety of 

https://www.ncbi.nlm.nih.gov/biosystems/
https://www.ncbi.nlm.nih.gov/biosystems/
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existing database can provide useful data (Bunyavanich 
and Schadt 2015). These mechanistic models help: “fill 
in the blanks” in existing MOA networks; increase confi-
dence in the causal connections between chemical expo-
sures and effects; identify potential risk modifiers that 
are important for understanding population responses to 
chemical exposures (e.g., genetic polymorphisms or mech-
anistic connection among other environmental factors such 
as lifestyle, preexisting health status, and co-exposures); 
and inform dose–response. This approach is consistent 
with the adverse outcome pathway (AOP) philosophy of 
utilizing other-than-chemical-specific-data to understand 
mechanisms, but more oriented toward network and sys-
tems biology.

The National Research Council raises a number of 
questions in regards to use of mechanistic information to 
inform chemical risk assessments that our research, and 
that of others, is beginning to address (US NRC 2017). For 
several important chemicals (ozone, arsenic, polycyclic 
aromatic hydrocarbons, benzene) the data reflect the fol-
lowing elements.

Identified pathways, alone or in combination with other 
pathways, when sufficiently perturbed, increase the risk of 
an adverse outcome or disease in humans (Dangleben et al. 
2013; US EPA 2014a, b; McCullough et al. 2014; US NRC 
2014; Thomas et al. 2014; Bunyavanich and Schadt 2015; 
Cote et al. 2016). Multiple pathways generally underlie 
causation. Altered expression of various pathways within 
a network also can alter the severity of the disease, as well 
as incidence (Netto 2012; Hatzimichael and Crook 2013; 
McCullough et al. 2014; Bunyavanich and Schadt 2015).

Chemically induced pathways, leading to adverse out-
comes, overlap with the pathways involved in “naturally” 
occurring disease. Thus, it appears that chemical expo-
sures can exacerbate ongoing pathogenesis in some indi-
viduals, and initiate pathogenesis alone or in combination 
with other risk factors (Dangleben et al. 2013; US EPA 
2014a, b; McCullough et al. 2014; Thomas et al. 2014; 
Cote et al. 2016).

The number of pathways and extent of activation var-
ies with exposure–dose, as well as the time post exposure 
(McCullough et al. 2014; Thomas et al. 2014; Mirowsky 
et al. 2016).

Understanding the exposure–dose relationship can be 
critical for characterizing the dose–response and this can 
be critical to extrapolating across various experimental 
paradigms (e.g., across species) (Hatch et al. 2014).

The underpinnings of increased susceptibility due to 
co-exposures, pre-existing disease, genetic profile or life 
stage can be characterized mechanistically (Netto 2012; 
Hatzimichael and Crook 2013; Bailey and Fry 2014; 
McCullough et al. 2014; US NRC 2014; Bunyavanich and 

Schadt 2015; Davis and Burgoon 2015; French et al. 2015; 
McCullough et al. 2016).

While quantitative changes in the epigenome, gene 
expression, or patterns of gene expression can be quantified, 
it is currently difficult to use these changes to predict public 
health risks due to the complexity of network interactions, in 
the absence of in vivo data to anchor upstream data to public 
health risks. In the absence of such data, our current prefer-
ence is to focus on quantification of events as downstream 
as feasible, as these downstream events already integrate 
much network activity. Additionally, quantitative changes 
in pathways are being used to explore comparative poten-
cies of chemicals to disrupt important biological processes 
(Tice et al. 2013) and see “High-content imaging” and “The 
epistemic properties of AOPs” in this paper.

Mechanistic models can be useful in varying degrees of 
completeness (Perkins et al. 2015). Chemicals with some 
MOA data and limited or no traditional can be compared 
against diseases-specific networks for insights into poten-
tial phenotypic outcomes. In this manner, new data types 
can inform hazard identification, as well as dose–response 
in the absence of traditional toxicological data (see “New 
data types in dose–response assessment” below for more 
discussion).

This EPA effort has yielded more coherent and robust 
MOA networks by filling in missing pieces of information 
using existing nonchemical-associated disease models. We 
have not encountered chemical-associated-processes not 
captured in “normal” disease models. In other words, “nor-
mal” pathogenic processes appear shared with chemical-
specific pathogenic processes. Because much of the disease-
based research is fueled by a desire to develop therapeutics, 
experimental data are sometimes available where relevant 
pathways are blocked or altered by pharmacologic agents or 
chemicals with concomitant evaluation of the impact on the 
downstream phenotypic event(s) (Hatzimichael and Crook 
2013; US EPA 2014a, b; McCullough et al. 2014). This pro-
vides powerful experimental evidence that informs several 
important issues: clarifying causal events and pathways, 
including sorting causal events from events related to having 
the disease; exposing pathway nuances (e.g., does blocking 
a pathway prevent the disease or ameliorate a quality of the 
disease such as invasiveness); and providing insights into 
quantitative relationships between specific events, pathways 
and outcomes.

For some chemicals and situations, simple MOAs and 
pathway analyses appear adequate (e.g., carbon monoxide 
and hemoglobin binding, organophosphate pesticides and 
cholinesterase inhibition), but for many metals and chemicals 
(e.g., arsenic, benzene, ozone, polycyclic aromatic hydrocar-
bons, lead) the salient pathogenic processes are more infor-
matively described by MOA networks (McCullough et al. 
2014; Thomas et al. 2014; Cote et al. 2016; Darabos et al. 



Archives of Toxicology 

1 3

2016). We have on several occasions attempted to collapse 
the network models into simpler MOAs. Unfortunately, in 
doing so enough information was lost that the simpler MOAs 
were not useful for risk assessment purposes. In particular, 
important events or potential risk modifiers that operate in 
via different parts of the network were lost. Looking across 
network analyses, the recurrent roles of various events and 
pathways in multiple diseases are evident, moving us away 
from the one chemical, one MOA, one disease model to a 
viewpoint more consistent with the latest science.

Key characteristics of human carcinogens

An notable advance in the understanding the biological 
mechanisms of human cancer is the elaboration of 10 key 
characteristics of human carcinogens (Smith et al. 2016). 
The specific attributes of human carcinogens comprising 
the key characteristics are that the agent: is electrophilic or 
can be metabolically activated to electrophiles; is genotoxic; 
alters DNA repair or causes genomic instability; induces 
epigenetic alterations; induces oxidative stress; induces 
chronic inflammation; is immunosuppressive; modulates 
receptor-mediated effects; causes immortalization; or alters 
cell proliferation, cell death, or nutrient supply (see also 
Smith 2019).

Krewski et al. (2019) conducted an exploratory analysis 
of the key characteristics of 86 Group-1 agents identified by 
the IARC as causes of human cancer, including: pharmaceu-
ticals (20 agents); biological agents (10 agents); (c) arsenic, 
metals, fibers, and dusts (10 agents); (d) radiation (5 agents); 
(e) personal habits and indoor combustions (8 agents); and 
(f) chemical agents and related occupations (33 agents). As 
indicated in Fig. 5, these 86 agents demonstrated a range of 

key characteristics, consistent with the notion that human 
carcinogenesis involves multiple pathways. These agents 
demonstrated an average of four characteristics, ranging 
from 1 to 9 characteristics across the individual agents.

These key characteristics are now being used by the 
International Agency for Research on Cancer (IARC) in its 
evaluation of the carcinogenic potential of agents evaluated 
within the IARC Monographs Programme, in accordance 
with guidance provide in the recently updated Preamble to 
the IARC Monographs (Samet et al. 2019), using systematic 
review to assemble all relevant information from human/
animal/in vivo/in vitro sources. Examples of the use of the 
key characteristics in mechanistic evaluations conducted by 
the IARC in Volumes 112–119 of the IARC Monographs are 
described by Guyton et al. (2018).

Characterizing population variability and co‑exposures 
to various environmental factors using MOA networks

The goal for environmental risk assessment is to estimate the 
population exposure–response relationship. Consequently, 
risk modifiers (environmental co-exposures, lifestyle, 
genetic and pre-existing morbidities) that affect the under-
lying population response distribution are important factors 
in understanding risks. In turn, considerations of underlying 
networks can be key to identifying risk modifiers and the 
sizes of the affect populations. While the task seems daunt-
ing, progress has made in recent years (Zeise et al. 2013; 
Abdo et al. 2015; Davis and Burgoon 2015; Eduati et al. 
2015; McCullough et al. 2016).

As an example, a number of human polymorphisms likely 
to modify disease risks resulting from inorganic arsenic 
exposure have been identified. These polymorphisms appear 

Fig. 5  Key characteristics of 86 
agents known to cause cancer in 
humans
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in genes involved in metabolism, oxidative stress responses, 
DNA repair, and tumor suppression. The network analysis 
results are consistent with epidemiological observations, 
thus adding to the weight of evidence that certain popula-
tions may be at greater (or lesser) risk based on their genetic 
profiles (Faita et al. 2013; Antonelli et al. 2014). Risk modi-
fications by polymorphisms, as well as epigenetic altera-
tions, have been reported for other chemicals as well (US 
EPA 2014a, b; Ravegnini et al. 2015; Carbonari et al. 2016; 
McCullough et al. 2016; Bowers and McCullough 2017). 
This work can be extended to identify populations poten-
tial susceptible to the effects of other chemical exposures, 
based on common underlying mechanisms or key events. 
The interactive potential of various polymorphisms can be 
visualized in MOA network analyses (see Fig. 6), a tech-
nique employed in the development of Kyoto Encyclopedia 
of Genes and Genomes (KEGG) (Kanehisa 2019; Kanehisa 
et al. 2017, 2019).

Additionally, via network analyses, the interactions of co-
exposure can be evaluated. For example, we have character-
ized some potential interactions between arsenic and tobacco 
smoke exposures relative to bladder and lung cancer risks 
(not shown). While there are some common events between 
arsenic and tobacco smoke, other interactions for these two 
pollutants occur at the pathway or network level. Similar 
network level interactions among various environmental fac-
tors also have been observed for benzene, and ozone (US 
EPA 2014a, b; Vawda et al. 2014). A linear MOA would not 
reveal these interactions.

New data types in dose–response assessment

Three approaches to dose–response assessment are dis-
cussed: (1) efforts in network modeling; (2) use of selected 
molecular or cellular events as the basis for a point of 

departure and (3) use of structure activity and read-across 
approaches. This discussion focuses on pharmacodynamic 
aspects of dose–response assessment, although the critical 
role of pharmacokinetics is well recognized.

Network models Dose–response analyses can be facilitated 
by the network analysis approaches described in the MOA 
section (above). Currently, efforts are focusing on quantify-
ing changes in individual key events and processes using 
analyses of pooled data from multiple, high-quality studies. 
The most attention is focused on the farthest downstream 
events, closest to phenotypic outcomes, as they are least 
affected by dynamic upstream feedback and feed forward 
loops. The effort provides a static snapshot in time for 
what is inherently a dynamic process. An analogy is that 
of a roadmap which provides limited information on the 
most likely route to the destination or traffic flow along the 
various routes to the destination. Dynamic network models 
are in their infancy and hold great promise (Knudsen et al. 
2015). Rarely are the types of data collected to drive such 
models (Jaeger et al. 2012; Cohain et al. 2016). Such mod-
els, which are similar to computer information processing 
models, depend on understanding the kinetic relationships 
among event and pathways rather than static measures.

High‑ and  medium‑throughput data to  estimate points 
of departure A point of departure (POD) is an estimate 
of the lowest or no observed effect level for an adverse 
effect and is used as a starting point for low-dose extrapo-
lation. In traditional risk assessment, PODs range from 
a 1 to 10% response rate; uncertainties around low-dose 
extrapolation are generally addressed by dividing the POD 
by various factors or by linear extrapolation to zero. When 
using molecular or cellular events to estimate a POD, 
the lowest concentration where a chemically induced 

Fig. 6  Human bladder cancer 
network with common events 
associated with inorganic arse-
nic (shown in yellow). Adapted 
from NIH BioSystems #83115 
(KEGG: hsa05219, 2015) (color 
figure online)



Archives of Toxicology 

1 3

response exceeds background noise has been used. Given 
that no phenotypic change happens in the absence of some 
preceding molecular or cellular change, it has been pro-
posed that measurements of such early changes could sub-
stitute for more traditional, in vivo data to model points of 
departure (Burgoon and Zacharewski 2008; Judson et al. 
2011; Chiu et al. 2012; Tice et al. 2013; Sand et al. 2016; 
Burgoon et  al. 2017). Correlation of in  vitro-measured 
upstream events to phenotypic changes, however, has 
had mixed results (Thomas et al. 2012; Sand et al. 2016). 
The limited correlation to specific phenotypic outcomes 
is not surprising. Even in  situations where the upstream 
change is known to be biologically significant, the impact 
of network interactions and common variables relative to 
extrapolation to humans (e.g., metabolism species, tissue, 
cell type, interactions among cell and tissue) makes pre-
diction of a specific outcome based only on upstream data 
uncertain.

Specific knowledge of adverse outcomes, however, may 
not be necessary for some screening and risk assessment 
purposes, if there is confidence in the general importance 
and biologic context of the event being measured (Tice 
et al. 2013; Attene-Ramos et al. 2015; Chen et al. 2015; 
Huang et al. 2016). From such knowledge, effects in humans 
(although not specifically defined), could be anticipated. 
Additionally, specific chemical-associated network modifi-
cation could serve as biomarkers of both exposure and effect 
(US NRC 2012a; Thomas et al. 2014; DeBord et al. 2015). 
One such example is the Collaborative Estrogen Receptor 
Activity Prediction Project (CERAPP) which used predic-
tive computational models and high-throughput screening 
data to screen 32,464 chemicals identifying~ 12% as active 
and ~ 21% as potential active estrogen disruptors for which 
further testing is needed (Mansouri et al. 2016a, b). Such an 
effort is possible because of the extensive body of knowl-
edge about endocrine function in humans. The ability to sort 
chemicals, based on new approaches and data, into high, 
medium and lower concern is a tremendous achievement and 
begins to address the backlog of unaddressed chemicals in 
the environment, as well as makes additional research, test-
ing and assessment more efficient. Proceeding to develop 
some risk assessment screening values for the chemicals of 
greatest concern seems warranted.

Sand et al. (2016) have recently explored, in detail, the 
feasibility of and methods for using high-throughput Tox21 
data in dose–response assessment. While the authors note a 
number of science policy decisions necessary for proceed-
ing with use in risk assessment, the technical approach is 
feasible. Several other examples, using various data types, 
are also available (Behl et al. 2015; DeBord et al. 2015; 
Adler et al. 2016; Kuo et al. 2016). Several approaches to 
improving consideration of population variability in such 
dose-response estimates also have been suggested (Zeise 

et al. 2013; Abdo et al. 2015; Eduati et al. 2015; Chiu et al. 
2016; Iavicoli et al. 2016).

Combinations of high- and medium-throughput assays 
are being used to fill critical knowledge gaps between high-
throughput-only and traditional type of information in a 
resource efficient manner (Thomas et al. 2013a, b). These 
approaches are associated with reasonable confidence 
because the evaluation relies on multiple data streams, and 
the phenotypic outcomes are usually suggested by the data. 
It is anticipated that this type of combined testing is the wave 
of the future for information supplied for regulatory risk 
assessment. As an example, considerable attention has been 
given recently to evaluation of a wide variety of brominate 
and organophosphate flame-retardants focusing on devel-
opmental, neurodevelopmental and neural activity impair-
ment. One interesting approach has used a combination of 
short and medium throughput assays (high content assay 
screening using several in vitro cell-based assays, mouse 
embryonic stem cell differentiation, neuroprogenitor cell 
proliferation, and neurite outgrowth from differentiated neu-
rons and firing activity in neural networks) and alternative 
short duration in vivo developmental models (C. elegans and 
zebrafish) (Behl et al. 2015; Ryan et al. 2016). The combi-
nation of information from these assays provides convinc-
ing evidence for chemical impairmentof important biologic 
process involved in development and neuronal function and 
the potential for neurologic impairment in exposed juve-
niles, although the exact phenotypic outcome is unknown. 
Additionally, assays were run using multiple concentra-
tions, allowing for determination of a point of departure and 
the ability to compare the potencies of various chemicals 
in these assays. Uncertainties around species differences, 
metabolism, exposure–dose in humans and, in particular, 
inter-individual variability in human responses clearly exist. 
However, these flame retardant data, which was much more 
rapidly developed than would be possible with traditional 
bioassays, provides valuable insights into potential risks, 
as well as informing “green design” choices (Schulte et al. 
2015). The combined assay results also were used to further 
refine strictly high-throughput assays, thus further increasing 
the efficiency of toxicity testing (Ryan et al. 2016).

Structure–activity relationships and read‑across Research 
has focused on expanding the use of structure–activ-
ity relationship (SAR) approaches to identify appropri-
ate surrogates and/or predict toxicological phenotype(s) 
and associated adverse effect levels. A tiered surrogate 
approach (i.e., decision tree) based on three main types 
of surrogates (structural, metabolic, and toxicity-like) was 
developed to inform selection of chemical analog(s) and 
the associated surrogate toxicity value(s), and a weight-
of-evidence approach based on the proposed decision tree 
applied (Wang et al. 2012). This methodology is techni-
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cally significant as it has been used to date to derive pro-
visional screening reference values in Provisional Peer 
Review Toxicity Value (PPRTV) assessments for picramic 
acid, methylphosphonic acid, n-propylbenzene, tert-butyl-
benzene, sec-butylbenzene, 1,3-dibromobenzene, picric 
acid (2,4,6-trinitrophenol), o-aminophenol and n-heptane. 
(See the US EPA’s Provisional Peer Review Toxicity Val-
ues PPRTV Assessments Electronic Library at: https ://
hhppr tv.ornl.gov/).

Summary of new bioinformatics data

Fascinating insights are being gained into how environmen-
tal factors alter risks of disease; including new understanding 
of how intrinsic and extrinsic factors modify risks. We are 
exploring how these new insights into disease can improve 
risk assessment. Analyses of data rich situations are pro-
viding insight and support of high and medium throughput 
risk assessments. Identification of hazards and risk modifiers 
facilitated by improved understanding of underlying mecha-
nisms. Simultaneously, new approaches to dose–response 
appear ready to apply in selected situations. The greatest 
challenges that risk assessors and managers face, however 
may be to think in new ways about problems and solutions.

Prototype case studies

Implementation of the paradigm change presented in 
TT21C was anticipated to span approximately 20 years. One 
approach proposed to facilitate and accelerate implemen-
tation is the development of prototype approaches applied 
to well-characterized reference compounds to demonstrate 
application (Andersen et  al. 2011). The prototype case 
studies published to date generally involve a comparison 
of the hazards, modes of action, and estimated points of 
departure or margins of exposure identified for reference 
compounds using TT21C approaches that are then com-
pared back to conclusions or metrics from conventional 
toxicological testing. Alternatively, case studies have been 
conducted on larger batches of chemicals to demonstrate 
the significant gains in efficiencies provided by alternative 
testing approaches for applications such as prioritization. 
A variety of well executed case studies have been under-
taken that include focused applications exploring the use 
of toxicogenomics, HTS and other TT21C approaches for 
regulatory applications. Below we provide key examples of 
case studies in this area that advance TT21C application. We 
also highlight the growing role of adverse outcome pathways 
(AOPs) in this area and consider case studies on integrated 
approaches to testing and assessment (IATA) that apply the 
AOP concept.

Case studies on individual chemicals or chemical 
groups: advancing qualitative and quantitative uses 
of toxicogenomics in risk assessment

Extensive work has been undertaken by the US EPA to 
explore how toxicogenomic data can be used in the assess-
ment of the effects of dibutyl phthalate (DBP) on male repro-
ductive system development. A series of companion papers 
was published to describe the results of this effort (Euling 
et al. 2013a, b; Makris et al. 2013; Ovacik et al. 2013). Initial 
scoping phases were conducted to review the available DPB 
genomic and conventional data to determine what aspects 
of risk assessment toxicogenomics might inform. This first 
phase of the project identified data gaps and research needs. 
Endpoints with unexplained modes of action in the toxic-
ity data set were specifically identified for exploration by 
toxicogenomic analysis (in phase 2) to provide mechanis-
tic insight. The overall analysis enabled the generation of 
hypothesized modes of action that were analyzed concur-
rently with apical phenotypes. In phase 2, high-quality toxi-
cogenomic data from in vivo studies in male rats exposed to 
DBP during gestation were evaluated for use in risk assess-
ment. A weight-of-evidence evaluation revealed strong evi-
dence of DBP-induced downregulation of genes in the ster-
oidogenesis and lipid/sterol/cholesterol transport pathways, 
as well as other signaling pathways in the testes of rats. The 
results supported existing hypotheses on the mode of action 
of DBP exposure leading to reductions in fetal testicular 
testosterone production, as well as revealing other potential 
molecular perturbations that might play a role in this and 
other adverse reproductive effects of DBP. This suggested 
that toxicogenomics can be used to identify mode of action 
and contribute to weight of evidence analysis. Overall, this 
early case study provided examples of how toxicogenomic 
data might be integrated in chemical assessment to advance 
the use of twenty-first century data in risk assessment.

The US EPA also generated an extensive database of toxi-
cogenomic signatures on a variety of conazole fungicides 
that provide excellent case studies to demonstrate the poten-
tial use of toxicogenomics in regulatory toxicology. Initial 
studies in livers and thyroids of rodents exposed to various 
conazoles were used to define transcriptional signatures that 
differentiate tumorigenic from non-tumorigenic conazoles 
(Allen et al. 2006; Hester et al. 2006; Wolf et al. 2006; Hes-
ter and Nesnow 2008; Nesnow et al. 2009). These signatures 
are of value for future screening to predict the tumorigenic 
potential of other similar chemicals, and also provide sig-
nificant insight into the mode of action. Alterations in the 
rodent transcriptional profiles led investigators to conduct 
biochemical analyses to support that hepatic retinoic acid 
metabolism plays a critical role in the hepatocarcinogenic-
ity of conazoles (Chen et al. 2009). This is an example of 
how toxicogenomic pre-screening can provide insights into 

https://hhpprtv.ornl.gov/
https://hhpprtv.ornl.gov/
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key event perturbations that can be confirmed by follow-up 
testing. Dose–response studies were also conducted on mice 
(livers) exposed to five different conazoles. Transcriptional 
BMD analysis revealed concordance with apical benchmark 
doses (increased liver weight at 30 days) for the conazoles 
(Bhat et al. 2013). The median transcriptional BMD was 
within an order of magnitude of the BMD for hepatocellular 
tumors. Potency rankings based on the transcriptional BMDs 
were consistent with rankings based on apical effects. These 
results demonstrate the potential utility of gene expression 
changes measured in short term studies for potency assess-
ment and for quantitative risk assessments of longer-term 
exposures.

In vivo dose–response experiments have been con-
ducted by Health Canada scientists to explore the use of 
toxicogenomics in the risk assessment of furan, a rodent 
hepatocarcinogen found in heat-treated foods (Jackson et al. 
2014; Webster et al. 2015a, b; Dong et al. 2016). The first 
study explored toxicogenomic response in the livers of male 
B6C3F1 mice exposed by oral gavage to both carcinogenic 
and non-carcinogenic doses of furan over 21 days (Jackson 
et al. 2014). Unsupervised clustering approaches of furan-
induced transcriptomic profiles revealed strong similarities 
to mouse models of liver regeneration and inflammation, 
and rodent liver cancer, providing insight into key events 
in the mode of action of furan and suggesting these out-
comes as potential hazards. In parallel, functional enrich-
ment analysis indicated an important role for oxidative stress 
response leading to cytotoxicity and alterations in cell cycle 
and inflammatory pathways in furan-exposed mouse liv-
ers. The BMDs for key pathways were highly similar to the 
BMD for mouse liver cancer in the same model. A 90-day 
study on male and female F344 rats exposed to furan by 
oral gavage for 5 days/week over 90 days yielded very simi-
lar findings to the mouse work, supporting the major role 
of oxidative stress, cytotoxicity, cell cycle perturbations 
and inflammation in rat hepatocarcinogenicity (Dong et al. 
2016). The magnitude of the transcriptional responses was 
much greater in male rats, which is consistent with male 
rats being more susceptible to furan-induced hepatocarci-
nogenicity. Moreover, the underlying functional analysis 
provided hypotheses to explain male-susceptibility. The 
toxicogenomic data showed that males express much higher 
levels of cytochrome p450 genes, which may lead to higher 
levels of oxidative stress, whereas females express higher 
levels of phase 2 transcripts and may have increased tol-
erance to the oxidative stress induced by furan exposure 
relative to males. The median pathway BMDs in male rats 
approximated those derived from traditional histopathology 
and the cancer BMD in rats. Overall, the gene expression 
data from these studies contribute significantly to the weight 
of evidence that furan causes rodent hepatocarcinogenic-
ity through a cytotoxicity-regenerative proliferation mode 

of action and demonstrate that transcriptional BMDs can 
be used to approximate a point of departure that is consist-
ent with the points of departure derived from assessment of 
adverse apical effects.

In 2015 Health Canada regulatory and research scien-
tists collaborated in an extensive study to explore the use 
of published toxicogenomic datasets in an evaluation of 
risk posed by exposure to the polycyclic aromatic hydrocar-
bon benzo[a]pyrene (BaP) in contaminated drinking water 
(Chepelev et al. 2015; Moffat et al. 2015). In this project, 
three risk assessments were conducted: (1) a traditional risk 
assessment as conducted by Health Canada’s Water and Air 
Quality Bureau (WAQB); (2) a traditional risk assessment 
that considered available toxicogenomics data in parallel 
with conventional toxicological data; and (3) a risk assess-
ment in which only toxicogenomics data were used to inform 
toxicological effects (no conventional data considered). 
The investigators identified high-quality DNA microarray 
dose–response experiments in rodent tissues and in human 
cells in culture. The toxicogenomic analysis provided clear 
evidence that BaP is an aryl hydrocarbon receptor agonist 
that induces a genotoxic stress response in both rodents 
in vivo and human cells in culture, in parallel with inducing 
multiple additional modulating factors (e.g., oxidative stress, 
inflammatory responses, immunosuppression) that could 
contribute to risk of carcinogenicity. Concordance in tran-
scriptional response between rodent tissues and human cells 
in culture was used to support the human relevance of BaP 
health effects. Thus, the additional data provided by tran-
scriptomics to inform mode of action analysis and human 
relevance enhanced the conventional risk assessment. The 
risk assessment that applied toxicogenomics in the absence 
of apical toxicology data demonstrated that this approach 
can provide useful information in data-poor situations. 
Transcriptional BMDs were within an order of magnitude 
of cancer BMDs in rodent tissues, and the lowest pathway 
BMD that was proposed for use as a point of departure was 
similar to the BMD for the apical endpoint (rodent fores-
tomach cancer) used in the traditional assessment. Overall, 
the work shows that toxicogenomics can provide an effec-
tive tool for hazard identification, mode of action analysis, 
assessment of human relevance, and provides support for its 
use in the selection of the appropriate endpoints for points 
of departure. The data sets and analyses conducted within 
this case study were used within the formal risk assessment 
produced by WAQB, providing the first use of toxicogenom-
ics in a risk assessment by this bureau.

Many studies have used acetaminophen as a model toxi-
cant to demonstrate how toxicogenomics might inform risk 
of hepatotoxicity. These papers span examples of how gene 
expression can advance understanding of inter-individual 
variation in response to acetaminophen (Jetten et al. 2016), 
to exposure characterization, mode of action analysis and 
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development of signatures of hepatotoxicity (Kiyosawa 
et al. 2006; Beyer et al. 2007; Bushel et al. 2007; Zidek 
et al. 2007; Kerns and Bushel 2012). Indeed, a case study 
explored the extensive published analyses on the induction 
of toxicogenomic changes in cells and tissues following 
acetaminophen exposure as a basis by which to assess the 
application of toxicogenomics in hepatic systems toxicology 
for risk assessment (Kienhuis et al. 2011). An interesting 
area of investigation has been in the use of acetaminophen 
as a model agent to establish the relevance of in vitro tools 
to predict hepatotoxicity. For example et al. (Rodrigues et al. 
2016) evaluated gene expression profiles from four human 
hepatic cell systems compared to profiles from patients suf-
fering from acetaminophen-induced acute liver failure. The 
authors found comparable profiles in pathways associated 
with hepatoxicity in the patients and three of the cell lines, 
with HepaRG cells providing the best predictor of hepato-
toxic response in human livers. Thus, the authors demon-
strated that toxicogenomics can inform not only mode of 
action, but selection of relevant in vitro models for hazard 
assessment. A parallelogram approach (Kienhuis et al. 2009) 
has also been used to compare sandwich-cultured primary 
human and rat hepatocytes to rat in vivo liver transcriptional 
profiles. The analysis identified similarities in these models 
based on modulated biochemical pathways and biological 
processes. Overall, the authors demonstrated how a toxi-
cogenomics-based parallelogram approach can be used to 
extrapolate in vitro to in vivo, and across species, to support 
the relevance of mechanisms in these liver models to humans 
in vivo for risk assessment.

These case studies and others have been very informa-
tive in demonstrating a variety of toxicogenomic approaches 
that are useful to human health risk assessment. A signifi-
cant hurdle that exists is the time-consuming nature of 
toxicogenomic data analysis, and the lack of international 
guidance on technical, analytical and reporting aspects of 
toxicogenomic studies. However, we note that many toxicog-
enomic studies are published that fail to fully describe the 
study designs/methodologies/analytical pipelines that were 
applied, or apply inadequate study designs and insufficient 
quality control. This severely restricts the use of toxicog-
enomic data in risk assessment. This should be alleviated 
by efforts to produce best practices and reporting standards 
for omics analyses (Gant et al. 2017).

BMD modeling of toxicogenomic datasets for quantitative 
risk assessment

A significant amount of effort has been invested in devel-
oping approaches for the use of toxicogenomics data in 
quantitative risk assessment. These efforts have focused 
primarily on BMD modeling of gene expression data. In 
addition to the single-chemical case studies described 

above, well-designed toxicogenomic dose–response stud-
ies (encompassing doses that span the NOAEL) have been 
conducted in rodents across a diverse array of time points 
and tissues for many model chemicals. An important study 
by Thomas et al. revealed that the lowest pathway BMD 
from short-term rodent studies (rats and mice, and includ-
ing different tissues) closely approximates BMDs from both 
cancer and non-cancer apical effects (Thomas et al. 2013a, 
b). An additional study on a subset of these data showed that 
a variety of approaches (not just the lowest pathway BMDL) 
can be used to derive points of departure from gene expres-
sion data that approximate apical endpoints, indicating that 
regulatory agencies applying different approaches will not 
result in highly divergent points of departure (Farmahin et al. 
2017). A report was also published by Hester et al. (2015) 
to describe a compilation of case studies exploring the use 
of transcriptional BMDs following short-term rodent expo-
sures. The case studies included liver gene expression for 
conazole pesticides and prototype nuclear receptor-medi-
ated (non-genotoxic) rodent hepatocarcinogens (CAR and 
PPARα agonists), and urinary bladder gene expression for 
a substituted urea pesticide associated with urinary bladder 
cytotoxicity and tumorigenesis in rats. Overall, comparisons 
with BMDs derived from apical effects across all of these 
studies revealed that short-term toxicogenomic BMDs are 
generally within an order of magnitude of BMDs derived 
from conventional endpoints. Two important points have 
emerged from these studies thus far: (1) toxicogenomic 
BMDs from short-term studies in rodents are highly con-
sistent with BMDs derived from conventional endpoints 
assessed at much later time points (e.g., cancer and other 
adverse outcomes); and (2) toxicogenomic BMDs are not 
orders of magnitude lower than BMDs from conventional 
endpoints. The latter has been a serious concern within 
the regulatory community, and dispels the notion that the 
toxicogenomic BMD values would lead to regulatory safety 
threshold that would be too low to be achievable.

A variety of challenges remain in this field. For exam-
ple, the analyses described above span a limited number 
of tissues and toxicological endpoints. Additional work is 
necessary to demonstrate that the toxicogenomic BMDs are 
predictive of other toxicities beyond those assessed (e.g., 
neurotoxicity, reproductive toxicity, etc.). However, impor-
tant progress has been made toward the establishment of 
consensus best practices for BMD modeling of omic data 
(US NTP 2018).

Biological read‑across: use of toxicogenomic profiles 
for hazard identification/potency analysis

Traditional read-across approaches, i.e., data-gap-filling 
from test results of similar tested compounds (Patlewicz 
et al. 2014a, b), in hazard identification have been based on 
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chemical structural analysis and assessment using quantita-
tive structure–activity relationship (QSAR) models derived 
from prototype agents. Traditional read-across is fueled by 
the availability of Big Data in toxicology (Hartung 2016; 
Luechtefeld et al. 2016a, b; Luechtefeld and Hartung 2017). 
Notably, good read-across practices for this very pragmatic 
approach are currently being developed (Ball et al. 2016). 
More recent approaches have explored the integration of 
biological read-across (Zhu et al. 2016) using data derived 
from short-term and HTS assays. This is a promising and 
very active area of research.

Various studies have demonstrated the ability to discern 
hazardous from non-hazardous chemicals within chemi-
cal groupings and assess potency using toxicogenomics. 
For example, mathematical models derived from rodent 
liver expression profiles were developed to discern a panel 
of prototype hepatocarcinogens and non-carcinogens that 
were then applied to assess the hepatocarcinogenicity of 
alkenylbenzene flavoring agents (Auerbach et al. 2010). 
The models effectively differentiated between hepatocarci-
nogenic (estragole and safrole) and non-hepatocarcinogenic 
(anethole, eugenol and isoeugenol) alkenylbenzenes, in addi-
tion to differentiating carcinogenic and non-carcinogenic 
doses of safrole. The models were then used to analyze 
two alkenylbenzenes that have not been subject to rodent 
cancer bioassays (myristicin and isosafrole). The analysis 
predicted that these chemicals are weakly hepatocarcino-
genic in male F344 rats. The authors used this evidence to 
suggest that these chemicals should be higher priorities for 
cancer testing. Nikota et al. (2016) used rodent in vivo pul-
monary gene expression profiles for hazard identification 
of engineered nanomaterials. A total of 22 toxicogenomic 
studies were used to demonstrate increased probability of 
carbon-based nanomaterials (carbon nanotubes and carbon 
black) to induce pulmonary pathogenesis (e.g., fibrosis) rel-
ative to titanium-dioxide nanoparticles. The authors used 
the findings to propose that a tiered approach be used for 
nanomaterial screening to prioritize those with biological 
profiles consistent with nanoparticles that cause pulmonary 
pathogenesis for further testing. Another case study applied 
connectivity mapping to 34 different chemicals across a 
broad spectrum of modes of action at multiple time-points 
and concentrations, in four cell lines (De Abrew et al. 2016). 
The authors demonstrated how connectivity mapping can be 
used to group chemicals by mode of action, and also identify 
potentially undefined toxicological hazards.

An elegant example of the use of toxicogenomic data in 
potency assessment was published by Hannas et al. (2012). 
Male rat fetuses were exposed to increasing doses of five 
phthalate esters during sexual differentiation; these phtha-
lates vary in their ability to induce reproductive tract mal-
formations as a result of reductions in testosterone produc-
tion and the expression of genes involved in steroidogenesis. 

The authors explored the use of real-time quantitative PCR 
analysis of a panel of genes involved in sexual determina-
tion and differentiation, steroidogenesis, gubernaculum 
development, and androgen signaling pathways to assess 
the potency of the phthalates to cause reproductive toxicity. 
Potency ranking based on gene expression changes in fetal 
testes were directly compared to measures of testosterone 
in fetal testes. Certain gene expression endpoints were more 
sensitive predictors of overall potency (based on  ED50) than 
testosterone production. Moreover, potency rankings based 
on testicular gene expression were nearly identical to those 
based on testosterone production.

The above studies provide important examples of ana-
lytical processes for high-content data that are very useful 
for predictive toxicological purposes. Overall, these studies 
demonstrate a very promising approach with the strength 
of leveraging alternative high-dimensional data sources in 
toxicity predictions.

Case studies summary Two recent publications synthesize 
the results of larger numbers of case studies, and describe 
several specific examples of the use of toxicogenomics in 
human health risk assessment to draw more broad con-
clusions surrounding application. These reports serve as 
important summaries of advanced applications in regulatory 
toxicology areas.

The US EPA-led Next Generation (NexGen) of Risk 
Assessment report was a multiyear collaboration that 
assessed new molecular, computational and systems biology 
approaches to risk assessment, with the objective of inform-
ing whether these new data sources provide increased under-
standing of public health risks posed by environmental expo-
sures (Cote et al. 2016). The report summarizes the results 
of over 40 publications to describe the potential application 
of these new data sources to risk assessment and discusses 
strategic research directions (US EPA 2014a, b). The report 
includes the use of genomic data to assess population vari-
ability (genetic susceptibility), an important area that not 
covered within the overview of case studies herein. The col-
laboration involved eight prototypes that were evaluated in 
three risk assessment contexts: (1) major scope decisions 
(generally regulatory decision-making aimed at nationwide 
exposures and associated risks); (2) limited scope decisions 
(generally non-regulatory decision-making for limited expo-
sure, hazard, or data situations); and (3) chemical screening 
and prioritization for further testing, research, or assess-
ment, or for emergency response. In each decision context 
category, the analysis shed light on new methods and data 
types that could be used to inform assessment efforts. AOPs 
and networks emerged as important tools for use of these 
new data streams across all of the decision contexts. The 
lack of best practices for data reporting and study design 
were identified as a limiting factor in the state of the field 
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today. Limited availability of data integration and analytical 
tools/approaches was also noted as critical obstacles. Over-
all, although the authors reported a variety of obstacles and 
challenges, the study advanced understanding of how to 
apply new science to more rapidly identify chemicals and 
exposures of potential concern, clarify mechanisms of action 
and exposure–response relationships, and identify potential 
susceptibility and cumulative risk. The authors also noted 
that the report also led to increased dialogue between risk 
scientists and managers to improve confidence in interpret-
ing and applying these alternative data streams.

A Health Canada-led collaborative effort took a different 
approach to advance the application of toxicogenomics in 
the regulatory domain. Based on the premise that uptake 
in the regulatory community, when chemical specific data 
is available, is limited by lack of published guidance and 
experience, Health Canada collaborated with international 
experts to produce a technical guide on the use of differ-
ent transcriptional profiling technologies and analytical 
approaches in regulatory settings (Bourdon-Lacombe et al. 
2015). The guide was specifically tailored to regulatory sci-
entists with limited experience in toxicogenomics, provid-
ing basic information about how and why gene expression 
analysis is conducted. The guide presents tables to assist 
regulators in defining minimal quality and reporting crite-
ria from different study designs (e.g., in vitro, animal, and 
human studies), technologies (e.g., real-time quantitative 
PCR, DNA microarrays, and RNA-sequencing), and ana-
lytical approaches (e.g., identify differentially expressed 
genes, pathway enrichment, hierarchical cluster analyses, 
benchmark dose modeling, etc.) to differentiate high from 
low quality studies for inclusion in risk assessment. In addi-
tion to providing checklists to identify studies that pass or 
do not pass specific criteria, this synthesis of quality cri-
teria could be mined to produce reporting frameworks for 
regulatory submissions of toxicogenomic data, which will 
hopefully have the additional benefit of improving reporting 
in the peer-reviewed literature. The guide also takes users 
through a variety of specific cases to demonstrate how the 
approaches described were used to provide insight that could 
be leveraged fortoxicological risk assessment. The report 
concludes with a discussion of where genomics is currently 
adding value to risk assessment, and where it is envisioned 
to significantly add value in the future (Yauk et al. 2019).

HTS case studies

Case studies on the use of HTS data in regulatory applica-
tions have taken many forms and it is not possible to present 
an exhaustive review of these publications. Below we pro-
vide illustrative case studies that have advanced the applica-
tion of HTS models in areas in regulatory toxicology.

Development of  predictive toxicology models Studies 
have been conducted to apply HTS to develop predictive 
models for specific hazards. These studies typically com-
pare the results of a panel of HTS assays (e.g., assays from 
ToxCast™ targeting a particular pathway) to the results of 
high quality in vivo studies to test the accuracy of the panel 
of HTS assays in predicting the apical outcome, or apply 
models developed from an HTS training set to data from 
reference compounds to test accuracy in identifying specific 
hazard categories. These experiments provide scientific 
confidence for the appropriate use of HTS data in various 
regulatory contexts. This type of work is also critical for 
the ultimate replacement of specific animal tests with HTS 
assays (e.g., the use of 18 HTS assays to identify estrogen 
receptor bioactivity without the need for the uterotrophic 
assay (US EPA 2014a, b)).

A large amount work in this area has focused in the area 
of endocrine disruption. For example, Cox et al. (2014) used 
endocrine screening prediction models published previously 
(Rotroff et al. 2013) as a case study for predicting in vivo 
androgen-, estrogen- and thyroid hormone-mediated effects, 
and perturbation of the steroidogenesis pathways using pro-
totype chemicals. The authors noted that this was of par-
ticular interest because of the EPA’s use of HTS assays as 
part of its Endocrine Disruption Screening Program Tier 1 
screens (EDSP Tier 1). They first identified in vivo guide-
line study data from endocrine screening assays and non-
guideline endocrine-related studies from the literature. They 
then compared the outcomes of these studies to ToxCast™ 
and EDSP Tier 1 assay results for the same compounds. The 
HTS results were used to develop a set of models to predict 
results for in vivo estrogen receptor- and androgen receptor-
mediated responses in the guideline in vivo assays. The HTS 
cross-validation models had high balanced accuracies for 
androgen and estrogen effects (79% and 85%, respectively. 
However, very low balanced accuracies were obtained for 
thyroid and steroidogenesis pathways. The authors con-
cluded that the HTS assay models are promising for priority 
setting for endocrine screening (in particular for androgen 
and estrogen effects), and proposed a framework for docu-
menting scientific confidence in both the HTS assays and 
the models.

Browne et al. (2015) evaluated the performance of 18 
HTS assays for estrogen receptor (ER) activity (measuring 
ER binding, dimerization, chromatin binding, transcrip-
tional activation and ER-dependent cell proliferation) for 
compounds in which data from the uterotrophic assay were 
available. The HTS assays were highly predictive and the 
results provided strong support for inclusion of the HTS 
assays in the EDSP. Judson et al. (2015) developed a network 
model to use bioactivity patterns of these 18 HTS assays 
to predict ER activity (i.e., agonist or antagonist of ER). 
They applied the model to a library of 1812 commercial 
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and environmental chemicals, including 45 ER positive and 
negative reference chemicals. The model correctly identified 
the agonists and antagonists within the reference chemicals 
with the exception of very weak compounds, and the agonist 
score was correlated with the expected potency of the active 
reference chemicals. They then used the panel to assess the 
remaining compounds and predicted that 111 (6.1%) were 
strongly ER active in agonist or antagonist modes. The work 
demonstrates how the HTS assays can be used for prioritiza-
tion of large number environmental chemicals for follow-
up in vivo endocrine testing, with both studies serving as a 
basis for a proposal to accept data from these tests in lieu of 
the uterotrophic assay. Correspondingly, Kleinstreuer et al. 
(2016a, b) curated an uterotrophic database from available 
research studies as a way to evaluate the performance of 
in vitro assays that measure estrogenic activity.

Chemical and chemical family‑specific case studies In addi-
tion to the use of the existing HTS data to develop and refine 
predictive models, case studies have examined a variety of 
regulatory applications. These studies have generally com-
pared HTS results to conventional testing in vivo to assess 
the suitability of the HTS models for predicting hazard 
and/or risk for the case example chemicals. For instance, 
in keeping with the noted emphasis on the EDSP program 
where a significant amount of progress has been made, HTS 
and the EDSP Tier 1 screening assays for three triazole fun-
gicides (triadimefon, propiconazole and myclobutanil) were 
evaluated against EPA guideline mammalian toxicology 
study data (Paul Friedman et  al. 2016). A high degree of 
qualitative concordance across the assays was found. The 
authors noted that inclusion of guideline studies mitigated 
limitations of the HTS assays for thyroid and steroidogen-
esis pathways. Activity-exposure assessments revealed that 
HTS-predicted human bioactivity and in vivo mammalian 
bioactivity (against chronic human exposure estimates) 
yielded margins that were within 3–5 orders of magnitude. 
The authors noted that the HTS prioritization would have 
been protective of potential in vivo effects. This combined 
analysis was used to support that these agents would be low 
priority for subsequent higher-tiered endocrine testing, and 
provides an example of how HTS and guideline toxicology 
data can be integrated for EDSP tier 1 evaluation of pesti-
cide active ingredients.

Silva et al. (2015) qualitatively compared ToxCast™ 
results (including both in vitro and zebrafish models) from 
endosulfan and methidathion experiments to in vivo and 
in vitro endpoints associated with neuro- and developmen-
tal toxicity, and endocrine effects. The authors also used 
in vitro–in vivo extrapolation to derive rat oral equivalent 
doses for the half-maximal activities of the ToxCast™ 
assays to compare with the lowest observable effects levels 
(LOELs) from in vivo studies. The results were mixed, with 

both concordance and non-concordance across the panels 
for both chemicals between HTS and conventional assays. 
Concordance was strong for several endpoints, including 
oral equivalent doses for estrogen and androgen receptor 
pathways, and zebrafish assays, for both compounds with 
in vivo LOELs. Non-concordant results were primarily false 
inactives, which the authors concluded may have been due to 
insufficient metabolic activation in some assays and limita-
tions in assay design.

Other studies have also shown a balance of concordance/
non-concordance between HTS and in vivo assays. A study 
to examine the activity and potency of ortho-phthalates in 
ToxCast™ assays revealed various commonalities between 
key molecular events identified in  vitro and chemical-
specific hazards from in vivo tests (Pham et al. 2016). The 
results were consistent in identifying parent ortho-phthalates 
as more active than their monoester metabolites, and in dem-
onstrating concordance of toxicity with chain length. How-
ever, there was some discordance, including lack of effects 
on HTS assays associated with male reproductive toxicity. 
The authors recommended that HTS results be interpreted 
in the context of in vivo assays until more broad biological 
coverage or refined models for these pathways are available.

A variety of reports have discussed how HTS data can 
be used for hazard identification across various applications 
(e.g., Damoiseaux et al. 2011; Sipes et al. 2013; Wetmore 
et al. 2015)), with increased use of Big Data approaches 
emphasized as an important path forward (Zhu et al. 2014). 
These approaches are particularly powerful when combined 
with reverse dosimetry and human exposure estimates to 
derive bioactivity-to-exposure ratios (Wetmore et al. 2015).

Overall, because an exhaustive synthesis of HTS pro-
totype studies is beyond the scope of this report, we have 
described select examples of how HTS assays are currently 
being considered to refine testing strategies for chemicals 
and for prioritization. Although the focus above is primarily 
on endocrine response, the results are generalizable to other 
molecular pathways, in particular when multiple upstream 
and downstream assays are available within a pathway. 
There has been good progress in this area and several stud-
ies have shown that exposure limits based on HTS assays (in 
combination with in vitro–in vivo extrapolation) are gen-
erally protective. However, lack of concordance for some 
endpoints has been a cause for concern and may arise due 
to insufficient pathway coverage and/or model relevance. 
More work is needed to increase biological space and model 
relevance (e.g., use of metabolically competent cell lines 
and 3D-organoid models), and refine the systems-biology 
models used to predict hazards and key events in a mode 
of action. Significant uptake in the regulatory community 
beyond the application in screening and priority setting 
will require continued work to define linkages between the 
molecular perturbations and adverse effects.
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Integrated approaches

Increasing consideration is being given to the use of multi-
dimensional datasets that integrate various data streams 
to develop systems-biology levels of understanding of the 
chemical effects (Ankley et al. 2016). Indeed, approaches 
to assess broader biological space spanning a variety of 
model systems are increasingly prevalent in the literature. 
A variety of strategies have been conceptualized for regula-
tory uses that apply new data streams. These generally apply 
tiered approaches, where the type of information acquired 
increases in complexity from the lower to the higher tiers 
(e.g., RISK21 (Embry et al. 2014); US EPA NextGen project 
(US EPA 2014a, b)), which have been applied in case stud-
ies (e.g., Doe et al. 2016; Wolf et al. 2016)). This section 
highlights some key, data-driven publications that advance 
this area through analysis and integration of toxicogenomic, 
HTS, high-content data and/or in silico approaches for vari-
ous applications in risk assessment.

Tiered testing Thomas et al. (2013a, b) used existing and 
previously published data from a variety of key TT21C 
testing approaches to produce a data-driven, tiered test-
ing framework to prioritize further testing of environmen-
tal chemicals. This framework addressed the use of vari-
ous new data sources including HTS and toxicogenomics, 
in vitro–in vivo extrapolation and exposure modeling. The 
first tier of the framework applies HTS and genotoxicity 
data in combination with in vitro–in vivo extrapolation, and 
pharmacokinetic and exposure modeling to calculate first 
order margins of exposure (or bioactivity–exposure ratios). 
A key concept the authors introduced is the differentiation 
of chemicals acting through selective (i.e., interacting with 
specific biomolecules) versus non-selective (causing gen-
eral toxicity across bioassays) modes of action. The authors 
proposed that margins of concern be identified in parallel 
with consideration of the chemical’s selectivity to deter-
mine if the second tier of testing is required. The second 
tier includes toxicogenomic analyses in short-term in vivo 
tests and mode of action studies of selective chemicals, in 
parallel with expanded pharmacokinetic evaluations and 
refined human exposure estimates. Margins of exposure are 
again calculated based on estimates of points of departure 
using BMD modeling of the toxicogenomic data, or mode 
of action studies, alongside consideration of hypothesized 
mode of action based on tier 1 and 2 screening. Margins 
of concern are determined to assess what chemicals require 
tier 3 testing. Through application of this tiered prioritizing, 
the authors demonstrated that many fewer chemicals would 
ultimately be subject to third tier using more conventional 
longer-term animal testing (Thomas et al. 2019).

Several investigators have focused specifically on com-
bined approaches integrating computational toxicology 

and new data streams to develop advanced models for tox-
icity prediction. Indeed, studies have specifically shown 
that toxicogenomics data-based models outperform QSAR 
approaches alone (e.g., carcinogenicity: (Liu et al. 2011); 
hepatotoxicity: (Low et al. 2013)), suggesting that com-
bined approaches may provide more sensitive and accurate 
predictions. Rusyn et al. (2012) proposed the determina-
tion of molecular bioactivity derived from HTS and in vitro 
toxicogenomic assays in combination with cheminformatics 
approaches (i.e., QSAR modeling) for toxicity prediction. 
These authors argued that these data sources could be used 
to generate ‘hybrid QSAR-like quantitative models to pre-
dict human toxicity and carcinogenicity’ that improve model 
prediction accuracy. Low et al. developed a hazard classifi-
cation approach termed Chemical–Biological Read-Across 
(CBRA) to predict compound toxicity using data from both 
chemical and biological analogs (Low et al. 2013). Their 
CBRA approach yielded higher external classification accu-
racy for a panel of adverse effects (hepatotoxicity, hepato-
carcinogenicity, mutagenicity and acute lethality) than other 
methods that used chemical descriptors alone or in combina-
tion with biological data.

An interesting demonstration of the use of chemical–bio-
logical read across was presented for substances of unknown 
or variable composition, complex reaction products, and 
biological materials (UVCBs), which present challenges for 
health assessment (Grimm et al. 2016). Using petroleum 
substances as the example UVCBs, this study explored 
similarities in UVCB bioactivity profiles in induced pluri-
potent stem cell-derived cardiomyocytes and hepatocytes. 
Concentration–response experiments were conducted for 
21 petroleum substances from five product groups. High 
dimensional data included high-content imaging (in cardio-
myocytes and hepatocytes) and transcriptomic data (derived 
using the high-throughput BioSpyder platform for the S1500 
gene list on the hepatocytes for five substances). Analysis 
of bioactivity trends revealed similarity within groups and 
added confidence to the grouping of the petroleum sub-
stances. ToxPi scores based on points of departure from 15 
experimental phenotypes were derived. Bioactivity ToxPi 
analysis revealed a high degree of similarity within product 
categories. The authors found that physico-chemical analysis 
was less able to differentiate between the product categories. 
However, bioactivity profiles were highly correlated with 
physico-chemical properties, and groupings were improved 
when these data were integrated. The transcriptomic analy-
sis supported the groupings by bioactivity profiles and was 
identified as a promising avenue for providing additional 
mechanistic insight for toxicity evaluation. Overall, the 
authors demonstrated an experimental approach to poten-
tially improve confidence in grouping UVCBs for read-
across based on computational analysis of both high-content 
biological information and physical–chemical properties.
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Adeleye et al. (2015) conducted a case study to explore 
how TT21C approaches may be used for chemical safety 
assessment. Using DNA damage response (mediated by p53 
signaling) as the toxicity pathway, the authors developed 
a strategy to apply this pathway to risk assessment of the 
prototype genotoxin quercetin (a flavonoid). The authors 
specifically asked if the use of 0.5% quercetin in a body 
lotion by a consumer would adversely perturb DNA dam-
age/p53 pathway responses. Their approach was based on 
the AOP concept, with formation of micronuclei in a cell 
as the adverse outcome. The authors examined 18-point 
dose–response curves in HT1080 (human fibrosarcoma) 
cells following quercetin exposure using fit-for-purpose HTS 
and high-content screening assays, as well as transcriptom-
ics. The data were applied to computational systems biology 
pathway models to examine the quantitative relationships 
between key pathway elements and predict chemical con-
centrations that cause adaptive versus adverse responses. 
Interestingly, biomarker and gene expression changes did not 
occur at lower concentrations than those causing micronu-
clei. This was consistent with other genotoxins in the same 
model system (Clewell et al. 2014), and led the authors to 
posit that transcriptional activation for this particular path-
way reflects response in the ‘adverse’ range. The authors 
compared in vitro points of departure (NOELs and BMDs) 
to outputs from biokinetic modeling and in vitro–in vivo 
extrapolation. They found that the steady-state Cmax plasma 
concentration was significantly lower than the concentra-
tion required to perturb the measured biomarkers and the 
adverse event (micronuclei). This led the authors to conclude 
that there is a low probability that use of the hypothetical 
product would result in systems level perturbation of the 
toxicity pathway. However, within skin, expected concentra-
tions would be much higher than those inducing micronuclei 
in vitro, leading to the conclusion that additional work is 
needed in relevant model systems to address this finding. 
The work provides an effective example of the construct of 
an AOP-centric in vitro TT21C risk assessment. The authors 
emphasized that additional case studies on prototype chemi-
cals are an effective approach to expedite the use of new data 
in risk assessment.

The above studies illustrate approaches to integrate data 
streams to significantly enhance analysis for a variety of 
regulatory applications. Limitations for these approaches 
are similar to those described above (relevance of models, 
available bioinformatics tools and resources, best practices 
and standards, linkages between molecular perturbations and 
adaptive/adverse effects, etc.). Increasing development and 
publication of AOPs will certainly be of benefit to these 
applications.

AOP casestudies HTS and toxicogenomic data were origi-
nally emphasized as crucial sources of information for 

developing AOPs. To increase efficiencies in AOP develop-
ment, efforts are underway to use publicly available high-
content data to produce computational methodologies for 
AOP development. For example, Oki and Edwards (2016) 
mined HTS and in vivo animal data, and other disease phe-
notype information, using chemicals as common aggrega-
tors between datasets. Computational AOP networks were 
then defined based on this analysis, and two case studies 
(fatty liver disease and an aryl hydrocarbon receptor net-
work) were explored in detail. The analysis confirmed that 
the networks included known nodes in these pathways, but 
also revealed novel outcomes and associations, emphasiz-
ing the value in integrating multiple data sources. Similar 
work leveraged ToxCast and TG-Gates data to generate 
computationally predicted AOP networks that could be used 
by domain experts to expedite formal AOP development 
(Bell et  al. 2016). Sub-networks of a fatty liver computa-
tional AOP were analyzed for a reference chemical (carbon 
tetrachloride) and compared with published mechanistic 
descriptions. The authors concluded that the computational 
AOPs approximated the manually curated AOPs.

Other case studies explored the use of AOPs in differ-
ent risk assessment contexts using various data sources. 
For example, Labib et al. (2016) applied murine pulmonary 
transcriptomic profiles to evaluate the weight of evidence 
in support of multi-walled carbon nanotube (MWCNT)-
induced lung fibrosis. A hypothetical AOP was first pro-
posed, and then lung gene expression profiles from time-
series and dose–response studies on mice acutely exposed to 
three MWCNTs with different physical–chemical properties 
were analyzed. Key events within the AOP were supported 
by the toxicogenomic analysis (i.e., significantly perturbed 
pathways for all three MWCNTs were aligned with pro-
posed key events) and were used to link MWCNT exposure 
to lung fibrosis. Pathway BMDs supported temporal- and 
dose-concordance across the hypothesized key events, with 
lower BMDs for pathways at earlier post-exposure time 
points. Moreover, transcriptional BMDs for key events 
were consistent with apical BMDs for alveolar septal thick-
ness and fibrotic lesions. The study provides an interesting 
example of leveraging well-designed toxicogenomic studies 
to support a hypothetical AOP. The authors argued that the 
AOP and toxicogenomic profiles can be applied to provide 
a mechanism-based method for deriving acceptable levels 
of exposure to nanomaterials when other data are not avail-
able. Molecular modeling methodologies can also be used to 
develop an integrated strategy for toxicity prediction using 
an AOP framework. For example, an in silico molecular 
model of peroxisome proliferator-activated nuclear receptor 
γ (PPARγ) agonistic binding as a molecular initiating event 
leading to liver steatosis was developed that had a balanced 
accuracy of 81%, sensitivity of 85% and specificity of 76% 
(Al Sharif et al. 2016). These studies both demonstrate how 



 Archives of Toxicology

1 3

novel data streams can be used to support AOP development 
and for predictive toxicology purposes.

Perkins et al. (2015) explored the degree of scientific con-
fidence and extent of completeness required for an AOP to 
be useful for different regulatory applications. Case studies 
spanned AOPs with low confidence (membrane disruption 
(narcosis) leading to respiratory failure), moderate confi-
dence (hepatocellular proliferation leading to cancer (partial 
pathway)), and high confidence (covalent binding to proteins 
leading to skin sensitization and aromatase inhibition lead-
ing to reproductive dysfunction in fish). As in the earlier 
examples, the authors demonstrated how new data sources 
were useful in increasing confidence in the AOPs. Moreo-
ver, the authors found that with transparency and thorough 
assessment of the supporting evidence, even partial AOPs 
with unknown molecular initiating events, and all AOPs at 
all levels of confidence, had value in different regulatory 
applications.

Integrated approaches to testing and assessment (IATA) An 
IATA is an approach that integrates (and weighs) various 
sources of information (e.g., physicochemical properties, 
in silico models, grouping and read-across approaches, 
in vitro methods, in vivo tests and human data), and newly 
produced data when required, to inform regulatory decision-
making (OECD 2016e). The various information sources 
are integrated to draw conclusions on the hazard and/or risk 
of chemical exposures. New data streams are expected to 
contribute significantly to IATA (OECD 2016a), which are 
intended to enable reduction and refinement in conventional 
animal testing and various support regulatory applications. 
In general, an AOP can serve as the basis for developing an 
IATA for that regulatory endpoint. There have been various 
advances in this area and focussed case studies.

An excellent discussion on the development and imple-
mentation of AOP-informed IATAs for chemicals or chem-
ical groups has been published as the outcome of a work-
shop entitled “Advancing AOPs for Integrated Toxicology 
and Regulatory Applications” (Tollefsen et  al. 2014). 
This workshop report describes how problem formulation 
based on the risk management scope and goals, selection 
of the AOP to inform the assessment, and evaluation of 
the data for the chemical of interest, influence the types 
of tests that will inform an IATA. The authors proposed 
a framework to guide this process and to determine what 
new data may (or may not) be needed for regulatory deci-
sion-making. They discuss the various data streams (and 
how these may be integrated) that can be used to inform 
IATA development and application. They present three 
case study examples of AOP-informed IATA approaches 
with different levels of scientific confidence that address 
different regulatory scenarios: (1) IATAs based on AOPs 
targeting hormone response (estrogen-, and androgen- and 

thyroid hormone-pathways) for chemical prioritization; 
(2) protein binding leading to skin sensitization for haz-
ard identification and model development (more details 
below); and (3) acetylcholinesterase inhibition leading 
to coma and death, with various uses in risk assessment 
including classification and labeling. Within each example 
they define where new data sources can be mapped to an 
AOP to inform an IATA. An associated paper (Patlewicz 
et al. 2014a, b) outlined an IATA that applied the very well 
established AOP for skin sensitization The IATA focused 
on existing information as well as non-standard testing 
data (OECD 2016a). A pipeline was developed for its 
application to provide a systematic method to collate the 
data from the various sources. The pipeline was applied to 
assess skin sensitization potential for 100 chemicals. The 
authors found that by applying this AOP pipeline, in silico 
and chemico profiling data could predict skin sensitiza-
tion with over 70% accuracy, which could be improved 
when information from other assays was included (e.g., 
mutagenicity data). In addition, a variety of papers have 
proposed frameworks to characterize the scientific confi-
dence required for AOPs to meet different regulatory needs 
(e.g., Becker et al. 2015; Patlewicz et al. 2015)).

The OECD is taking considerable initiative in the area of 
IATA development, testing and application. In particular, the 
Cooperative Chemicals Assessment Programme (CoCAP) 
has a case studies project initiated in 2015 on the develop-
ment and the application of IATAs: the reader is directed 
to the OECD website to explore the on-going publication 
of case studies submitted from member countries annu-
ally (http://www.oecd.org/chemi calsa fety/risk-asses sment /
iata-integ rated -appro aches -to-testi ng-and-asses sment .htm). 
The emphasis of this project at the OECD has been to dem-
onstrate the practical applicability of alternative methods 
as part of IATA for different regulatory decision-making 
contexts and establish best practices and common considera-
tions for the use of new methods for chemical assessment.

Overall, a number of IATA case studies have been devel-
oped to demonstrate methods to integrate data within an 
AOP framework. The scientific confidence for assessing 
AOPs and IATA has been debated and sound approaches 
for evaluation proposed, although this area is still very 
much evolving. Moreover, the levels of confidence required 
for various applications have been extensively discussed. 
Although significant progress has been made in the con-
ceptualization of approaches, additional IATAs, DAs, and 
AOPs are required to provide guidance in applications in 
different regulatory contexts. These should be vetted by the 
international regulatory community prior to adoption, which 
is a primary emphasis of the OECD’s program in this area. 
A main need in this area is further work to develop more 
‘endorsed’ AOPs and IATAs, as there are only a few widely 
accepted models that have been published.

http://www.oecd.org/chemicalsafety/risk-assessment/iata-integrated-approaches-to-testing-and-assessment.htm
http://www.oecd.org/chemicalsafety/risk-assessment/iata-integrated-approaches-to-testing-and-assessment.htm
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Summary

The illustrative prototype case studies described above are 
useful in demonstrating how data from new test methods 
may be used in various applications in risk assessment and 
advancing the field. These case studies span all novel data 
sources, with integration of high-dimensional data increas-
ingly recognized as a critical direction for risk assessment 
in the twenty-first century. Although regulatory uptake has 
been limited to date, there has been significant momentum 
in this area in the past several years. Increasing emphasis on 
case studies by the OECD and other international bodies, 
international efforts to develop best practices/guidance, and 
continued interaction and discussion between the research 
and regulatory communities are necessary to facilitate regu-
latory application.

Challenges and opportunities 
in implementation

Systematic review and evidence‑based risk 
assessment

All areas of the life sciences see enormous increases in pub-
lications with more than half a million compiled in PubMed 
alone per year and estimated at least three times more in 
total. ‘Toxicology’ as a search term gives about ten thou-
sand articles per year in PubMed. Clinical Medicine has 
first embraced this problem of information flooding: The 
Cochrane Collaboration and others have pioneered the crea-
tion of evidence-based medicine over the last four decades. 
Tools such as systematic reviews, quality scoring, risk-of-
bias assessments, meta-analysis and others were developed 
to allow the objective and transparent condensation of all 
available evidence for a given question. The translation 
to toxicology as evidence-based toxicology (EBT) started 
only around the creation of the TT21C report (Hoffmann 
and Hartung 2006) with the first conference held in the same 
year, i.e., 2007 (Griesinger et al. 2009). The report makes 
no mention of EBT, but already in early responses the syn-
ergy of these concepts became clear (Hartung 2009a). EBT 
offers a framework for objectively assessing the current 
approach, help with the integration of existing information 
as data-stream and to renovate validation approaches (Har-
tung 2010) especially for pathway-based assays as mecha-
nistic validation (Hartung 2013). The formal formation of 
the EBT Collaboration (http://www.ebtox .org) on both sides 
of the Atlantic starting in 2011 and the increasing utiliza-
tion of systematic reviews in regulatory contexts (Stephens 
et al. 2016) followed. Tool development (Samuel et al. 2016; 
Hoffmann et al. 2017), harmonization of approaches and 
pilot projects have started, promising to further develop 

this powerful approach to handling diverse and conflicting 
evidence.

In parallel to TT21C, this conceptual framework devel-
oped (Hartung 2009b; Stephens et al. 2013; Hoffmann et al. 
2014, 2016) as a door-opener and quality-assurance partner 
over the last decade. Not surprisingly, the follow-up NRC 
report from 2017 (US NRC 2017) includes now a chapter 
on “Interpretation and Integration of Data and Evidence 
for Risk-Based Decision-Making”, which includes exactly 
these elements. Still, the importance of the EBT concept for 
implementing TT21C seems to be underestimated.

Quality assurance

A crisis of regulatory science in the 1970s, when FDA 
inspections found laboratories not to carry out and not to 
document properly studies used for regulatory purposes, 
led to the development of good laboratory practices (GLP). 
This was fundamental a few years later for the international 
collaboration via OECD and others introducing the mutual 
acceptance of data (MAD), which requires that data are 
produced according to agreed test guidelines under GLP 
in order to make them acceptable in another jurisdiction. 
However, GLP was developed around the predominant tech-
nology of its time, the animal test (Cooper-Hannan et al. 
1999). The increasing use of other types of data further 
accelerated by TT21C requires similar concepts for these 
technologies, first of all the in vitro approaches (Pamies and 
Hartung 2017). This gave birth to good cell culture prac-
tice (GCCP) in the mid-1990s (Gstraunthaler and Hartung 
1999), which were further developed under the auspices of 
the European Centre for the Validation of Alternative Meth-
ods (ECVAM) (Hartung et al. 2002; Coecke et al. 2005). 
Already during its development, GCCP was embraced by 
OECD’s GLP (OECD 2004). More recently, good in vitro 
method practices (GIVIMP) for the development and imple-
mentation of in vitro methods for regulatory use in human 
safety assessment was adapted (OECD 2016b). In 2015, 
the GCCP collaboration was reactivated under the auspices 
of the Center for Alternatives to Animal Testing (CAAT) 
at Johns Hopkins University in order to update the guid-
ance to the technological developments of the last decade, 
namely stem cell and organotypic culture conditions (Marx 
et al. 2016). Two workshops in the US (Pamies et al. 2017) 
and Europe (Pamies et al. 2017) set the base for the cur-
rent drafting of GCCP 2.0. A key element of GCCP are 
reporting standards, which are another line of development 
under GCCP 2.0 (Leist et al. 2010). There are some parallel 
developments for both best practices and reporting stand-
ards and best practices for in vivo and in silico (Tropsha 
2010) approaches as well. It should be noted, that regulatory 
acceptability of new approaches depends on the provision 
of quality assurance standards similar to GLP for animal 

http://www.ebtox.org
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studies (Hartung 2009a). They are also a key element of 
EBT as only quality evidence can be condensed; this is why 
quality scoring of evidence is a critical element of system-
atic reviews (Samuel et al. 2016). Conversely, EBT has the 
potential similar to EBM for health care to guide good prac-
tice and reporting standards development. While not part 
of the original TT21C report, quality assurance approaches 
have emerged over the last decade as critical elements of 
TT21C implementation.

The human toxome project

At the core of TT21C is the concept of basing our testing 
on mechanism. The report conceptualizes this very much 
around the idea of excess activation or inhibition of physio-
logical pathways, called toxicity pathways. This has spurred 
very much the concept of adverse outcome pathways (Ank-
ley et al. 2010), which is a key element of TT21C implemen-
tation especially because of the enormous efforts to move 
this forward on an OECD level (OECD 2013). More than 
200 AOPs are included in the current AOP-Wiki, which are 
created by expert-driven organization of existing knowledge 
typically on the level of modes of action, i.e., rather narrative 
and rarely quantitative.

The Human Toxome Project (http://www.human toxom 
e.org) takes this a step further. Acknowledging that our cur-
rent knowledge is incomplete, biased and too often wrong 
(not reproducible), and seeing the need that ultimately 
molecular definition of toxicity pathways are necessary to 
create a sytems toxicology (Hartung et al. 2012) approach, 
the Human Toxome was initiated as an NIH Transformative 
Research Grant (Bouhifd et al. 2015a, b). The consortium 
included several members involved in the TT21C panel. The 
concept of molecularly defined “Pathways of Toxicity—
PoT” was formed (Kleensang et al. 2014), simply defined as 
a molecular definition of cellular processes shown to mediate 
adverse outcomes of toxicants. Instead of a compilation of 
literature, the Human Project Toxome aims for an unbiased 
(untargeted) mapping of PoT from validated test systems 
and reference toxicants using multi-omics approaches (Har-
tung and McBride 2011). Each and every omics approach 
has too many measured endpoints relative to the affordable 
number of measurements and enormous resulting noise. The 
multi-omics approach aims to use orthogonal technologies 
assuming that perturbations, which show in the same test on 
different levels, are likely to be correct. Then, targeted meas-
urements can verify these perturbations and experimental 
interventions can show causality.

The project was developed around a pre-validated endo-
crine disruptor test, the MCF-7 proliferative response. 
Besides transcriptomics, the most matured omics technol-
ogy, emphasis was given to metabolomics, which is closest 
to the phenotypic changes produced by toxicants (Bouhifd 

et al. 2013; Ramirez et al. 2013). It turned out that both 
the cell system as well as the metabolomics component of 
the project required extensive quality assurance still to be 
defined (Bouhifd et al. 2015a, b; Kleensang et al. 2016). 
The project also developed data-management tools such as 
the Toxome Collaboratorium (Fasani et al. 2015) and sev-
eral tools incorporated into Agilent’s GeneSpring software 
suite. Employing these, the untargeted PoT identification 
from omics data in MCF-7 cells stimulated by estrogenic 
chemicals was developed (Pendse et al. 2016a, b; Maertens 
et al. 2017). This work has laid the foundation for a system-
atic mapping of PoT, which would form then the basis for 
systems toxicology, i.e., the modeling of toxic perturbances 
to ultimately run virtual experiments to predict outcomes 
and assure that our understanding of physiology and patho-
physiology is correct and reflected in the models (Hartung 
et al. 2017). These developments are taking the original 
concepts of a pathway-based toxicity testing of TT21C to 
the next level. However, a concerted effort of PoT mapping 
would need to be established to make this happen. The faster 
growth of the AOP concept prompted recent discussion to 
incorporate the Human Toxome experiences into Effectope-
dia (https ://www.effec toped ia.org), which aims for a more 
molecular definition of AOP. Furthermore, the ToxCast 
and Tox21 programs are increasingly embracing –omics 
approaches, which might make a stand-alone Human Tox-
ome initiative superfluous.

Adopting an integrated and coordinated approach

A key component of any test system is the bioinformatics/
computational systems biology approaches that will take 
quantitative data generated from the imaging, functional, 
and molecular assays and integrate these into a mechanistic 
framework for discerning biological activity and toxicant-
induced effects. The goal of this modeling is to detect emer-
gent disruptions of biological pathways to elucidate adverse 
responses. The adverse response is then used to identify a 
point of departure for the purpose of in vitro-to-in vivo 
extrapolation for human safety assessment targeted for end-
users of this technology.

Over the past decade, various groups have accumulated 
extensive practical experience applying novel computational 
systems biology tools to synthesize various data streams to 
determine disruptions in biological pathways and adverse 
effects (Boekelheide and Andersen 2010; Boekelheide and 
Campion 2010; Bhattacharya et al. 2011, 2012; Boekelheide 
and Schuppe-Koistinen 2012; Andersen et al. 2013, 2015; 
Clewell et al. 2014; Deisenroth et al. 2014; McMullen et al. 
2014; Bouhifd et al. 2015a, b; Clewell et al. 2016). In par-
ticular, developments focused on the definition of signa-
tures of toxicity based on molecular endpoints (Andersen 
et al. 2013; McMullen et al. 2014) have been leveraged to 

http://www.humantoxome.org
http://www.humantoxome.org
https://www.effectopedia.org
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define adversity. At this point in time, it is clear that inte-
grating tools to bring together various data streams, includ-
ing imaging (in vitro pathology), molecular, and functional 
data, are both possible and needed. The data to be inte-
grated includes morphological inputs (e.g., cell prolifera-
tion/counts; cell size; cellular differentiation; morphological 
biomarkers of effect; live cell imaging of cell movement), 
molecular inputs (transcriptomics; protein expression) and 
functional assessments (e.g., action potentials; beating rate; 
calcium waves; altered hormonal responses in co-cultures 
vs. mono-cultures).

Developing and implementing such an integrated com-
putational systems biology framework for interpretation of 
these data streams has the goal of defining adverse effects, 
and will require the following steps.

• Pathway analysis of response to model toxicants. Deter-
mine key pathways perturbed by prototypical toxicants. 
Enrichment analysis (Subramanian et al. 2005; Pendse 
et al. 2017) and over-representation analysis (Kamburov 
et al. 2011) using databases such as Reactome, Kyoto 
Encyclopedia of Genes and Genomes, and Gene Ontol-
ogy will be needed.

• Establish quantitative relationships between phenotypic 
and molecular inputs. Established tools for determin-
ing points of departure for in-life studies (i.e., lowest 
observed effect level and benchmark dose) and their 
adaptation to -omics technologies will be needed. The 
imaging endpoints will be used as landmarks to differen-
tiate which changes in molecular endpoints are adverse 
(vs. adaptive).

• Mode-of-action definition. Assess the relationships 
between modes-of-action derived from molecular inputs. 
Machine learning will be needed to identify aspects of 
the molecular response that are most consistent qualita-
tively (in terms of the pathways induced) and quantita-
tively (in terms of the concentrations that induce them) 
across perturbations of the model system. The degree to 
which the most predictive pathways align with the known 
biology surrounding the model compounds and systems 
will provide further validation of the 3D technologies as 
toxicity platforms.

After developing the fundamental integrating tools 
and thought processes described above, prototype safety 
assessments of chemicals based on endpoint analysis and 
integration, including mode-of-action prediction, in vitro 
point-of-departure determination, and in vitro-to-in vivo 
extrapolation will be conducted to evaluate the performance 
of the approach.

Selection of prototype chemicals. A battery of pro-
totypical toxicants to demonstrate the utility of a safety 
assessment strategy based on the integration of imaging, 

molecular, and functional endpoints will be needed. Model 
selection will depend on data availability, predictivity of 
models, cost, and other factors. Case study chemicals will 
be chosen with available exposure data and, when possi-
ble, in vivo data. Following the computational modeling 
with the prototype toxicants, additional test toxicants will 
need to be evaluated to exercise the model and determine 
its reliability and applicability domain.

Mode-of-action prediction. The strategy for identifying 
compound mechanism will involve a two-tiered approach. 
Determination of a point of departure requires a dense 
concentration response over the range of biological activ-
ity. For compounds lacking sufficient preliminary data, a 
range-finding study to determine what concentrations are 
active, using a small set of imaging, molecular, and func-
tional endpoints will be required. Estimated active and 
cytotoxic concentrations will then be used to establish a 
dense concentration response range to define and validate 
appropriate endpoints for the analysis. Changes in phe-
notype will be related to molecular inputs using newly 
developed models, and mode of action will be determined 
through pathway analysis methodologies that integrate the 
various endpoints, as described above.

In vitro point of departure. A combined weight-of-evi-
dence strategy will be used for identifying points of depar-
ture for in vitro models, considering imaging, molecular, 
and functional endpoints. The relative sensitivities of these 
endpoints will be determined, as well as their relationship 
to in vivo endpoints where applicable. A benchmark dose 
will be used in association with endpoints related to adver-
sity to define concentrations demarking regions of safety.

In vitro-to-in vivo extrapolation (IVIVE). IVIVE will be 
performed (1) to evaluate the predictivity of the in vitro 
point of departure from the in vitro models for the in vivo 
point of departure or dose levels showing effects of well-
characterized toxicants, and (2) to demonstrate the frame-
work to predict in vivo safe exposure conditions based on 
the in vitro point of departure for less well characterized 
environmental chemicals. An interactive workflow will be 
used to optimize in vitro dosing and exposure conditions 
in appropriate in vitro models and collect time course sam-
ples from them. In vitro biokinetic and cellular dosimetry 
modeling will be needed to describe compound exposures 
over time in the in vitro models. The use of long-term cul-
tures will require experimental and computational in vitro 
biokinetics and dosimetry support to assess dose–response 
in the in vitro setting so that these can be linked to relevant 
human exposure conditions (Kramer et al. 2015; Pomponio 
et al. 2015). The description of equivalent in vivo exposure 
conditions will use published whole body PBPK models 
if available or use a high-throughput IVIVE approach to 
estimate reasonable exposure ranges in vivo (Wetmore 
et al. 2015).
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All prediction frameworks have a domain of applicability; 
however, determining this domain for biological systems is 
often not straightforward. To ensure the validity of the proto-
type safety assessments, a prototype training set of chemicals 
will be needed that is data-rich and conservatively included 
in the domain of applicability of the models. If, as expected, 
the models are predictive using these well understood chemi-
cals, additional test chemicals can be studied to broaden the 
assessment of the applicability domain of the models and 
the fidelity of their predictions. This process is expected to 
be iterative, with continued feedback and improvement of 
the predictive capacity of the models and identification of 
adverse effects and points of departure.

The development and implementation of these modeling 
tools will provide the basis for combining disparate technol-
ogies into a quantitative assessment of adversity. By compar-
ing in vitro imaging, molecular and functional data streams, 
and/or in vivo counterparts into a mode-of-action frame-
work based on well understood prototype toxicants, confi-
dence in an integrated definition for adversity will develop. 
Subsequently, as experience builds, less well characterized 
toxicants can be confidently evaluated with detailed in vitro 
dose- and time-responses analyses, providing sufficient 
data to distinguish points of departure for in vitro-to-in vivo 
extrapolations and chemical safety assessments.

Evolution of governmental agency initiatives

NCCT roadmap

The US EPA’s National Center for Computational Toxicol-
ogy (NCCT) has been developing a roadmap to assist in the 
further implementation of the NRC vision for toxicity testing 
in the 21st Century (Thomas et al. 2019). US EPA efforts 
in computational toxicology during the period 2004–2007 
moved toward integration of advances in chemical, biomedi-
cal, computational, and informatics sciences to efficiently 
and economically evaluate the safety of chemicals. The 
early versions of this program applied new, first-generation 
approaches for chemical characterization, toxicity testing, 
IVIVE analyses and exposure modeling, producing various 
data streams to shift away from dependence on animal test-
ing (Richard et al. 2016). The program is now crafting a 
blueprint for the future, looking to the early successes and 
moving on to dealing with remaining challenges for identi-
fying biological targets and estimating relative risks posed 
at realistic exposures. The emphasis remains on the use of 
computational modeling and high-throughput approaches to 
transform components used to understand potential health 
risks of chemicals—chemical characterization, hazard 
evaluation, toxicokinetics and exposure assessment (Fig. 7). 
Surrounding these components are cross-cutting efforts in 
characterizing uncertainty and variability, development of 

software and information technology tools that facilitate 
translation, outreach and training activities, and establish-
ing scientific confidence for different regulatory decisions.

Chemical characterization Development of a high-quality, 
structure-based cheminformatics platform has been essen-
tial for supporting computational chemistry and structure-
based modeling activities. (Q)SAR models have been built 
and provided through the EPA CompTox Chemicals Dash-
board (https ://compt ox.epa.gov/dashb oard/) for a range of 
physicochemical properties, toxicity, and environmental 
fate endpoints (Mansouri et  al. 2016a, b; Mansouri et  al. 
2018). Embedded in the “Predictions” tab of the Dash-
board was the ability to predict hazard and physicochemi-
cal properties using the Toxicity Estimation Software Tool 
(TEST) suite of QSAR models (https ://www.epa.gov/chemi 
cal-resea rch/toxic ity-estim ation -softw are-tool-test). Sys-
tematic read-across approaches also utilize the chemical 
structure information to predict a range of hazard-related 
effects for data-poor chemicals (Shah et  al. 2016a, b). In 
traditional read-across, chemical structure together with 
expert judgment based on physicochemical properties, 
metabolism considerations, and toxicological mechanisms, 
when available, were used to identify appropriate analogs, 
which are then used to infer the effects of a target chemical 
(Wu et al. 2010; Wang et al. 2012). The reliance on expert 
judgment to address uncertainties has hindered its use for 
regulatory acceptance (Patlewicz et al. 2015; Patlewicz and 

Fig. 7  Key elements of the EPA CompTox Blueprint over the next 
5  years. CompTox emphasizes computational modeling and high-
throughput approaches to connect and transform the traditional com-
ponents of chemical risk assessment. Cross-cutting efforts in char-
acterizing uncertainty and variability, development of software and 
information technology tools, outreach and training, and establishing 
scientific confidence will be essential to enable translation of these 
new approach methodologies to regulatory decision-making (Thomas 
et al. 2019)

https://comptox.epa.gov/dashboard/
https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test
https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test
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Fitzpatrick 2016). The investment in systematic read-across 
approaches can quantify the uncertainty and provide bench-
marks to assess whether other contexts of similarity (e.g., 
physicochemical, metabolic or biological as assessed using 
HTS data) reduce the uncertainty (Helman et al. 2018). In 
addition, the program is developing chemical structural 
descriptors to assist systematic chemical categorization and 
prediction of both hazard and exposure-related properties. 
ToxPrint chemotypes have been used to identify structure–
activity enrichments in HTS assays related to neurotoxicity 
(Strickland et al. 2018) and hepatic steatosis (Nelms et al. 
2018), while these and other structural descriptors have 
been used to predict functional use and weight fractions in 
personal care products (Isaacs et  al. 2016). Investment in 
computational chemistry and structure-based approaches 
will help in leveraging chemical information to associate 
chemical structures with hazard, toxicokinetic, and expo-
sure characteristics.

Hazard evaluation The evolution of the initial stages of 
ToxCast and Tox21 led to appreciation of key limitations 
of the suite of HTS assays (Tice et al. 2013). These short-
comings included inadequate coverage of biological targets/
pathways, reduced or idiosyncratic xenobiotic metabolism 
compared to in  vivo situations, limited ability to evaluate 
volatiles or chemicals not soluble in dimethyl sulfoxide and 
challenges in translating perturbations at the molecular level 
to possible tissue-, organ-, and organism-level effects.

To address some of these challenges the initial tier of 
testing requires a broader-based screen that can capture 
potential hazards. Two approaches are now moving forward 
to assess broader biological landscape. In the first, RNA-seq-
based multiplexed read-outs of gene expression interrogate 
the effects of chemical treatment across the entire transcrip-
tome using with automatable, high-throughput transcrip-
tomic measures captured directly from cell lysates in 384-
well format (Yeakley et al. 2017). This approach, termed 
high-throughput transcriptomics (HTTr), sets the stage for 
cost-efficient screening of thousands of chemicals in con-
centration–response format. A second approach uses high-
content imaging of cultured cells stained with multiple dyes 
to measure the effects of chemical treatment on subcellular 
organelles and structural features (Bray et al. 2016). With 
these high-throughput phenotypic profiling (HTPP) tools, 
hundreds of cellular features are assessed in a cost-efficient, 
384-well format with customized image analysis algorithms. 
Over the next several years, the HTTr and HTPP approaches 
will be applied to multiple cell types to provide data across 
a much greater biological space thanassessed with the cur-
rent ToxCast assays. Attempts to use these data streams for 
defining predictive points-of-departure from in vitro high 
content imaging-based assays are already in the early stages 
of development (Shah et al. 2016a, b; Wink et al. 2018).

In a second tier restructured ToxCast assays will allow 
small sets of chemicals to be run in orthogonal in vitro 
assays to confirm the interactions with the biological target 
or MOA inferred from first tier. The portfolio of assays 
for orthogonal confirmation may include existing ToxCast 
or new fit-for-purpose assays (McMullen et al. 2018). In 
a third tier, chemicals with a verified interaction with a 
biological target or pathway would be linked with a likely 
adverse outcome using the AOP framework (Ankley et al. 
2010). If the biological target or pathway perturbed by the 
chemical is not associated with an available AOP, existing 
knowledge of the target or pathway will be used to guide 
development of novel models that can inform creation of 
new AOPs.

Apart from the development of the tiered testing frame-
work, the diversification of chemical space evaluated in the 
HTS assays is being expanded by assembling a library of 
water-soluble chemicals and developing novel air–liquid 
exposure systems to expose cells in concentration response 
to volatile chemicals (Zavala et al. 2018). A two-part strategy 
categorized as ‘extracellular’ and ‘intracellular’ approaches 
will tackle issues related to lack of metabolic competence. 
With an ‘extracellular focus’, chemical metabolism can be 
designed into the media of cell-based assays or the buffer 
of cell-free assays. Multiple directions are being pursued to 
provide the relevant metabolic activity to the assay media or 
buffer. One promising approach embeds S9 or microsomal 
fractions in an alginate matrix and attaches the matrix to 
plastic protrusions on custom designed multi-well plate lids. 
The protrusions extend down into the well of the plates and 
allow chemical metabolism without the S9 or microsomal 
fractions interfering with assay readouts or causing cyto-
toxicity. In an ‘intracellular’ strategy, chemical metabolism 
occurs inside the cell and effectively models target tissue 
metabolism. In one approach, chemically-modified mRNAs 
corresponding to different xenobiotic metabolizing enzymes 
are synthesized and transfected into target cell types singly 
or in multiplexed ratios that mimic specific target tissues, 
e.g., liver (DeGroot et al. 2018). These extracellular and 
intracellular approaches will be applied to retrofit the in vitro 
assays in the first and second tier of the testing framework.

Toxicokinetics and  in  vitro disposition In the future, EPA 
will be extending the domain of applicability of the high-
throughput toxicokinetic (HTTK) models across a broader 
range of environmental chemicals and incorporating addi-
tional assays and in silico tools that address known limi-
tations in existing approaches (Pearce et  al. 2017a). For 
example, studies have been performed high-throughput bio-
availability measurements using the Caco-2 model (Hilgers 
et  al. 1990) to examine the contribution of bioavailability 
to the lack of correlation for some chemicals (Wambaugh 
et al. 2018).
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Further refinement and development of computational 
chemistry and structure-based modeling of tissue partition-
ing, and volume of distribution will address challenges in 
assessing steady-state kinetics in IVIVE models. These com-
putational chemistry approaches build on previous efforts 
in the pharmaceutical industry to estimate tissue partition 
coefficients using physicochemical properties (Schmitt 2008; 
Pearce et al. 2017b) and allow the development of dynamic 
toxicokinetic and physiologically based toxicokinetic 
(PBTK) models for individual chemicals. Non-steady state 
toxicokinetic models can capture important aspects of toxi-
cokinetics, such as the time needed to reach steady state for 
a diverse range of chemicals and estimate of tissue dosim-
etry (e.g., maximal and/or time-integrated concentration) in 
critical time periods of developmental susceptibility. While 
in vitro toxicokinetic methods provide significantly faster 
alternatives to traditional toxicokinetic testing, these meth-
ods still require the time-consuming and sometimes diffi-
cult development of chemical-specific methods for chemical 
concentration analysis. For this reason, in silico approaches 
based upon chemical structure features and physico-chem-
ical properties can predict in vitro toxicokinetic data (Ingle 
et al. 2016). These new in silico models allow toxicokinetics, 
exposure, and hazard to be combined for large screening 
libraries such as Tox21 (Sipes et al. 2017), whereas meth-
ods limited to in vitro-measured toxicokinetics deal only in 
hundreds of chemicals at a time (Wetmore et al. 2012, 2015).

The shift to in vitro models for hazard characterization 
has necessitated an understanding of in vitro disposition, 
i.e., the fate and movement of a chemical within an in vitro 
assay (Blaauboer 2010; Fischer et al. 2017, 2018). Most 
POD analyses from in vitro assays have relied on nominal 
concentrations as the basis for estimates of in vitro potency; 
however, taking into account binding to plastic, intracellular 
transport, and lipid association in the assay situation itself 
can result in a significantly different potency estimate for a 
chemical (Mundy et al. 2004; Meacham et al. 2005; Croom 
et al. 2015; Kramer et al. 2015). To overcome this challenge, 
efforts are now underway to measure directly any differ-
ences between nominal and cellular concentrations for a set 
of chemicals to determine whether in vitro disposition can 
be modeled using computational approaches (Thomas et al. 
2018). A summary of databases for used for hazard charac-
terization is sprovided in Supplemental Table 1.

Exposure assessment To estimate exposure for a broad 
range of chemicals, relatively simple computational mod-
els have predicted median exposure rates for the total US 
population (Wambaugh et  al. 2014). However, the uncer-
tainty around the exposure predictions is relatively large. 
Although more complex exposure models may reduce 
uncertainty, they require detailed parameterization of the 
weight fraction and off-gassing of the chemical in hundreds 

of products in conjunction with detailed human activity 
characterization, which is difficult to scale to thousands of 
chemicals (Isaacs et  al. 2014). Based on the finding that 
consumer product usage was a significant source of expo-
sure (Wallace et al. 1987; Wambaugh et al. 2013), improved 
databases of chemicals known to be in consumer products 
can be developed to parameterize more complex exposure 
models and to reduce uncertainty in exposure predictions 
(Isaacs et  al. 2016). The updated database will include 
new sources of data from safety data sheets and reported 
chemical functional uses (Dionisio et al. 2018). In addition 
to the data mining and curation activities, computational 
models under development will predict likely uses for a 
chemical based on structure (Phillips et al. 2017). There is 
a key behavioral economics piece to this puzzle, i.e., what 
consumer products are being purchased, brought into the 
home, how used, frequency of use, and in what combina-
tion (Egeghy et al. 2016). Portions of this information are 
routinely collected by retailers and market research firms 
for business purposes; however, this information is gener-
ally not available for ExpoCast applications. Future efforts 
need to focus on acquiring these data to evaluate current and 
ongoing population-level consumer product use patterns. 
The ultimate goal of these efforts is predict screening-level 
rates of exposure for any chemical structure by integrating 
formulation science, behavioral economics, and mechanis-
tic fate and transport modeling to delineate linkages among 
inherent properties, functional role, product formulation, 
use scenarios, and environmental and biological concentra-
tions (Egeghy et al. 2016).

To provide experimental data on chemicals in the indoor 
environment, new analytical chemistry methods, such as 
non-targeted analysis (NTA) and suspect screening analysis 
(SSA), are being used to characterize the chemical com-
position of indoor media, such as house dust (Rager et al. 
2016), and various items people frequently encounter (e.g., 
household products and articles of commerce) (Phillips et al. 
2017) and drinking water point-of-use water filters (New-
ton et al. 2018). The new analytical methods have identi-
fied many chemicals not previously known to be present in 
those items and can provide semi-quantitative estimates of 
concentration of their relative mass fraction. The NTA and 
SSA efforts are supported by the work on the cheminformat-
ics infrastructure, while the strengths and limitations of the 
technology are being evaluated through activities such as the 
EPA Non-Targeted Analysis Collaborative Trial—ENTACT 
(Sobus et al. 2018).

Finally, advances in exposure sciences will also address 
chemical mixtures. From a toxicological standpoint, test-
ing all mixture permutations of even a hundred chemicals is 
prohibitively expensive. However, exposure monitoring and 
modeling combined with advanced data mining methods can 
identify certain prevalent mixtures of chemicals that either 
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occur frequently in the environment (Tornero-Velez et al. 
2012) or within biomonitoring data (Kapraun et al. 2017). In 
the future, a few prevalent mixtures will be evaluated using 
high-throughput toxicity testing approaches, enabling design 
of more efficient and focused approaches for examining the 
risks of various mixtures.

FDA roadmap

Since joining the Tox21 consortium in 2010 (Hamburg 
2011), the US Food and Drug Administration has further 
strengthened its commitment to TT21C through the Agen-
cy’s recent predictive toxicology roadmap (USFDA: US 
Food & Drug Administation 2017). The overarching goals of 
this initiative are to foster the development and evaluation of 
new approach methodologies, with a view to incorporating 
these methodologies into regulatory review. FDA expects 
this initiative to ultimately expedite product review and 
help avoid risk products from reaching consumer markets. 
The roadmap is currently undergoing public consultation to 
ensure it meets its intended purpose (USFDA: US Food & 
Drug Administration 2018).

ICCVAM roadmap

The Interagency Coordinating Committee on the Validation 
of Alternative Methods, which works with 16 federal agen-
cies in the United States led by the US National Institute 
for Environmental Health Sciences, has recently developed 
a roadmap for establishing new approaches to evaluate the 
safety of chemicals and medical products (ICCVAM 2018). 
The purpose of this initiative is to promote the use of twenty-
first century science for public health protection. One of 
the specific goals is to encourage the use of new approach 
methodologies (NAMs) by federal agencies and regulated 
industries by the following means.

1. Provide clear language regarding the acceptance of 
NAMs.

2. Collaborate with international partners to facilitate 
global harmonization and regulatory acceptance.

3. Explore processes to incentivize and promote the use of 
NAMs.

4. Identify appropriate metrics for prioritizing activities, 
monitoring progress, and measuring success.

Although challenging, the focus on measuring success 
is key to demonstrating in concrete terms that the new 
approaches to toxicological risk assessment will provide 
significant savings in both cost and time, and ultimately lead 
to enhanced public health protection from potential risks of 
chemical substances (including medical products) to which 
people are exposed.

Canada’s chemicals management plan post 2020

The Canadian Environmental Protection Act (CEPA) is 
the primary federal statute under which environmental 
substances are regulated in Canada. A major accomplish-
ment under the current version of CEPA, in effect since 
1999 but currently in the process of being updated (Can-
ada House of Commons 2017), was the categorization of 
23,000 existing substances registered on Canada’s domes-
tic substances list (DSL) and the subsequent focus on the 
approximately 4300 chemicals that were identified as priori-
ties for evaluation under the Chemicals Management Plan 
(CMP) between 2011 and 2020. With this comprehensive 
chemicals program well in hand, Health Canada is currently 
developing an expanded vision for its Chemicals Manage-
ment Plan (CMP) post-2020. While this vision is currently 
under active development, NAMs such as high-throughput 
screening (HTS) and toxicogenomics are anticipated to play 
an important role in the scientific toolbox being developed 
for use in future screening and evaluation of environmental 
substances. The use of bioactivity–exposure ratios (BERs), 
representing the ratio between doses demonstrating bioactiv-
ity in high-throughput in vitro assays and predicted human 
exposure levels (see Fig. 8), as well as other computational 
and high content approaches are being explored as poten-
tially useful tools for priority setting and decision-making. 
The CMP Risk Assessment Toolbox (Health Canada 2016) 
identifies types of approaches that may be used to address 
substances or groups of substances of varying complexity 
in a fit-for-purpose manner and includes complex assess-
ment for substances or groups of substances that may require 
cumulative assessment approaches; substances or substance 
groupings that require de novo and in-depth risk assess-
ments; and substances or substance groupings for which 
a broad-based or streamlined hazard or exposure analysis 
may be conducted often based on low potential for expo-
sure and conservative scenarios. Moving forward, the NAMs 
being developed and tested will add to the Risk Assessment 
Toolbox for broad-based approaches and support integra-
tion of emerging data into the more complex risk assess-
ment approaches through the development of integrated 
approaches to testing and assessment (IATA). Under the 
CMP, novel approaches to evaluate the environmental or 
human health risk of substances are described in science 
approach documents (SciADs) to demonstrate the approach 
to be used in future assessments or prioritization exercises. 
Publications to date include the threshold of toxicological 
concern (TTC)-based approach for certain substances, eco-
logical risk classification approach, biomonitoring-based 
approaches and an approach to substances with low human 
health hazard concern (Health Canada 2018). In advanc-
ing its vision for chemicals management post-2020, the 
Government of Canada continues working closely with the 
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international regulatory and research communities to build 
confidence and harmonize the expanded application of 
emerging technologies in chemical risk assessment.

EU‑ToxRisk initiative

The elements of TT21C have received considerable support 
in Europe, with, for example, the EU-ToxRisk initiative 
seeking to “drive the required paradigm shift in toxicologi-
cal testing away from ‘black box’ animal testing towards 
a toxicological assessment based on human cell responses 
and a comprehensive mechanistic understanding of cause-
consequence relationships of chemical adverse effects” 
(EU-ToxRisk 2019). This initiative is organized around the 
following four thematic areas: (1) database requirements 
and design; (2) systems toxicology/biology, adverse out-
come pathways; (3) test system evaluations; and (4) risk 
assessment and uncertainties. Oversight for this innovative 
program is provided by an international Scientific Advi-
sory Board, comprising leading experts in toxicological 
risk assessment. Broad stakeholder involvement has been 
achieved through the engagement of a broad range of public, 
private and academic partners. The overarching goal of EU-
ToxRisk is to “deliver testing strategies to enable reliable, 
animal-free hazard and risk assessment of chemicals”.

Conclusions and future perspectives

Over a decade has passed since the publication of the NRC 
report on toxicity testing in the 21st Century in 2007. This 
report espoused a new approach to toxicity testing, taking 
advantage of new developments in the toxicological and risk 

sciences to markedly increase the throughput of traditional, 
largely mammalian-based toxicity testing practices. Key ele-
ments of the TT21C vision were the use of high-throughput 
in vitro screening assays and computational toxicology to 
characterize the toxic potential of the large number of agents 
present in the human environment that could pose potential 
health risks. Central to the vision was the focus on identify-
ing, and avoiding, critical toxicity pathway perturbations that 
could to adverse health outcomes.

The TT21C report included a long-term plan for imple-
menting this vision, spanning a period of 20 years, with 
provision for mid-course corrections. The present review 
both takes stock of progress since 2007 and suggests refine-
ments to the original long-term plan. Overall, progress in 
implementing TT21C appears to be ahead of schedule in 
many areas. The capacity to conduct HTS assays in robotics 
mediated laboratories, such as in the US National Chemical 
Genomics Center, far surpasses what was imagined possi-
ble in 2007. Moving forward, refinements to HTS screen-
ing strategies, including expanding the range of human cell 
lines available for use in screening as well as the spectrum 
of relevant in vitro endpoints to be evaluated, will serve 
to guide the selection of the most appropriate test batter-
ies to support human health risk assessment. Evidence of 
regulatory acceptance of increasing use of new approach 
methodologies for toxicity testing is provided by a recent 
announcement by the US Environmental Protection Agency 
to stop conducting or funding toxicity studies on mammals 
by 2035 (Grim 2019).

While progress has been made in mapping toxicity path-
ways by individual research centers, much remains to be 
done in this regard over the next decade. Like mapping the 
human genome, mapping the human toxome will likely 

Fig. 8  Comparison of bioactivity patterns for 163 ToxCast chemicals with high-throughput exposure modeling results (Wetmore et al. 2015)
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require a ‘big science’ effort to bring this initial work to a 
successful conclusion. This will be a critical success fac-
tor for TT21C, as the development of sensitive and specific 
strategies for identifying toxicity pathway perturbations—
the cornerstone of TT21C—requires an in-depth understand-
ing of the human toxome and embedded toxicity pathways.

The focus on toxicity pathway pathways has served to 
underscore the relevance of molecular and genetic epidemi-
ology, which provides an opportunity to investigate toxicity 
pathway perturbations directly in humans under real-world 
conditions of exposure using appropriate biomarkers. The 
distinction between mechanistic toxicology and molecular 
epidemiology will become increasingly blurred as the focus 
shifts to charting toxicity pathway perturbations in human 
tissues, whether in vitro or in vivo.

Advances in exposure science, including those docu-
mented in the 2012 NRC report exposure science in the 21st 
Century (ES21C), have also contributed to the realization 
of the vision for TT21C. Biomonitoring data characterizing 
human exposure to environmental agents using biomarkers 
of exposure in target tissues, is becoming increasingly avail-
able internationally. The increasing availability of biomoni-
toring equivalents (BEs) provides useful benchmarks for 
identifying populations at risks, where exposure biomarkers 
exceed the corresponding BEs.

The emergence of high-throughput biomonitoring plat-
forms offers the promise of rapidly evaluating exposure to 
large numbers of agents, spanning a large component of 
the human exposome. The combination of high-throughput 
in vitro testing and high-throughput biomonitoring provides 
a new foundation for much more rapid risk assessments and 
subsequent risk decisions.

Progress in both computational toxicology and computa-
tional exposure assessment has served to support the TT21C 
objective of reducing reliance on costly and time-consuming 
animal tests. Sophisticated algorithms for structure–activity 
analysis are increasingly being used to support read-across 
within the EU REACH program (https ://www.ulrea chacr oss.
com). Computational exposure assessment algorithms, such 
as those used in the US EPAs CPCat Database (https ://actor 
.epa.gov/cpcat /faces /home.xhtml ) comprising a library of 
exposure data on over 49,000 chemicals in consumer prod-
ucts, have also served to provide rapid exposure without the 
need empirical measurement.

Advances in toxicology, epidemiology and exposure 
assessment has inspired the development of a framework 
for the next generation of risk science under the US EPAs 
NexGen project. Incorporating advances in risk assessment 
methodology, such as in vitro to in vivo extrapolation; this 
framework integrates new scientific developments in mul-
tiple disciplines to provide a comprehensive blueprint to 
guide twenty-first century risk assessment. Experience with 
this framework has documented that many of the principles 

and procedures embedded in TT21C and ES21C are begin-
ning to find their way into practice. Although much has been 
accomplished since the 2007 NRC vision for the future of 
toxicity testing, much remains to be done to fully operation-
alize this vision. Progress to date has confirmed the integrity 
and fidelity of the NRC vision, which is well on its way to 
becoming a reality. A critical success factor will be mapping 
the human toxome, which will provide the depth of under-
standing needed to complete the transformation away from 
evaluating apical endpoints in toxicity testing to preventing 
toxicity pathway perturbations.
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